Laboratory 3: Solving Difference Equations with MAPLE

1. Find the solution for the following difference equations:
(a) $y(n+1)-2 y(n)=0, y(0)=3$;
(b) $y(n+1)-2 y(n)=4 \cdot 3^{n}, y(0)=2$;
(c) $y(n+2)-3 y(n+1)+2 y(n)=2 n^{2}+6 n, y(0)=1, y(1)=2$;
(d) $y(n+2)-3 y(n+1)+2 y(n)=3^{n}\left(2 n^{2}+4 n\right), y(0)=2, y(1)=1$;
2. Consider the simple interest formula $S_{n}=(1+n p) S_{0}$ and the compound interest formula $S_{n}=(1+p / r)^{n} S_{0}$. There are three options to earn interest. Company A offers simple interest at a rate of 6%. Company B offers compound interest at a 4% rate with a conversion period of one month. Company C offers compound interest at a 4% rate with a conversion period of three months.
(a) Calculate for the three cases the amount on deposit after 5, 10, 15, and 20 years for any principal S_{0}.
(b) Which interest offer maximizes the amount on deposit after $5,10,15$,and 20 years?
3. The loan on a house is $\$ 200,000$.
(a) Calculate the monthly repayment needed to have the loan repaid after 30 years. The interest rate is 5%.
(b) Calculate the total amount paid back on the loan.
4. Let's consider the National Income Model

$$
y_{n+2}=\alpha(1+\beta) y_{n+1}-\alpha \beta y_{n}+\gamma .
$$

Find the solution in the following cases:
(a) $\alpha=0.5, \beta=0, \gamma=1$
(b) $\alpha=0.5, \beta=2, \gamma=1$
(c) $\alpha=0.6, \beta=2, \gamma=1$
(d) $\alpha=0.8, \beta=4, \gamma=1$
using the initial conditions $y(0)=0, y(1)=1$. Plot the solutions.
5. Consider the following difference equation:

$$
x_{n+1}=\frac{a \cdot x_{n}+b}{c \cdot x_{n}+d}
$$

such that $c \neq 0, a d-b c \neq 0$.
(a) Making the substitution $c \cdot x_{n}+d=\frac{y_{n+1}}{y_{n}}$ you will get a second order linear difference equation
(b) Solve the equation

$$
x_{n+1}=\frac{2 \cdot x_{n}+3}{3 \cdot x_{n}+2}
$$

