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LID DRIVEN CAVITY FLOW
WITH TWO POROUS SQUARE OBSTACLES

IOAN PAPUC

Abstract. The flow of Newtonian incompressible fluid inside a two-dimensional
lid-driven cavity with two non-adherent porous square blocks was numerically
studied. The non-linear governing equations, Darcy-Forchheimer-Brinkman for
the porous medium and Navier-Stokes for the free fluid region, were solved using
the finite element method. The streamlines and velocity profile of the fluid
inside the cavity, as well as the maximum value of the stream function and the
coordinates of the main vortex created, are investigated to determine the effect
of the Reynolds number, the different combinations of Darcy number and the
different placements of the porous squares, on the behaviour of the fluid flow.
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1. INTRODUCTION

The boundary value problems in bounded Lipschitz domains with interior
interface between free fluid region and porous medium play a very important
role in the study of transport phenomena that arises in many real life situ-
ations from natural environment and industrial systems. This is the reason
why, in recent years, these problems have been intensively studied from a the-
oretical perspective, but especially using gradually more varied and advanced
numerical methods.

Using a fictitious domain formulation, Angot investigated in [3] the flow
of a viscous incompressible fluid in a fluid-porous-solid assembly by applying
the Brinkman model over a fictitious porous domain that includes the whole
domain being adapted according to the structure of each part (see also [4]).

Kohr et al. obtained in [9] the existence of a solution for the nonlinear
Neumann-transmission problem for the Brinkman and Stokes equations in
Rn, n = 2, 3, by using a layer potential approach and the Leray-Schauder
theory.
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Also, implying results from potential theory and a fixed point theorem,
Kohr et al. analysed in [10] a boundary value problem described by the Darcy-
Forchheimer-Brinkman and Navier-Stokes nonlinear equations.

Two bounded Lipschitz domains in Rn, n = 2, 3 were considered, one en-
closed in another, with linear Robin type condition on the exterior boundary
and linear transmission condition on the common interface between porous
and free fluid regions. On the other hand, a well-known problem, encountered
in a wide variety of forms and configurations, thus becoming a benchmark
problem for testing new numerical methods, is the study of the fluid flow in-
side of a lid-driven cavity. A version of this problem that fits perfectly with
our conditions is the study of the movement of a fluid in a lid-driven cavity
that contains a porous obstacle inside.

Al-Amiri studied in [2], using the finite element method, the mixed-con-
vection heat transfer in a lid-driven square cavity with heated bottom wall,
containing a porous block inside. The effect that different values of Richardson
number, as well as different locations and sizes of the porous block have on
the heat and mass transfer is also investigated.

By applying the finite difference method, Bondarenko et al. evaluated in
[5] the convective flow and heat transfer inside of a lid driven cavity with two
adjacent porous blocks and filled by alumina/water nanofluid. Fluctuations in
flow and heat transfer rate due to variations of the Richardson number, size of
the porous blocks and concentration of solid nanoparticles were analyzed. The
mixed convection was studied also by Bourada et al [6] in a lid driven square
cavity having a porous obstacle on the middle of the bottom wall. The porous
rectangle is maintained at a hot temperature while the sliding lid is kept at
a cold temperature. The multiple-relaxation-time Lattice Boltzmann method
was applied. Different values for the Darcy number, Richardson number and
different shapes of porous obstacle were considered.

Our intention is to study numerically the flow of a Newtonian viscous incom-
pressible fluid, with no temperature assumption, inside of a two-dimensional
lid driven cavity with two non-adjacent porous square obstacles with different
permeabilities. We also investigate the influence of the dimensionless Reynolds
number, different combinations of Darcy numbers and various locations of the
porous obstructions on the nature and intensity of the fluid flow.

2. MATHEMATICAL MODEL OF THE PROBLEM

A two dimensional lid-driven square cavity of dimension L, filled by a New-
tonian viscous incompressible fluid is considered. Two porous square obstacles
of dimension l < L, each of them having different permeability, are placed in-
side the cavity in certain locations specified by the Cartesian coordinates of
their centers (xC1 , yC1) , (xC2 , yC2) .
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In what follows we will denote the porous domain by Ωp := Ωp1∪Ωp2 and the
free fluid region by Ωf . In addition, the exterior boundary of the domain will
be denoted by Γ which will have two components, Γwall, representing the fixed
vertical and bottom walls of the cavity and Γlid, the top wall that is moving to
the right with a constant velocity vlid. Also, for the common interface between
the fluid zone and the porous medium we will use the notations: Γ1 := ∂Ωp1

and Γ2 := ∂Ωp2 .

Fig. 2.1 – The lid driven cavity with 2 porous square blocks.

For the mathematical formulation of the above stated problem we will con-
sider a couple of two well known equations in the steady-state form: the
Navier-Stokes equation for the free fluid area Ωf and the Darcy-Forchheimer-
Brinkman for the porous medium Ωp (cf. eg. [1, 8, 13, 14]). Also, the veloc-
ity and corresponding pressure are considered continuous across the interface
Γ1 ∪ Γ2. Hence, the system of equations and the transmission and boundary
conditions that describes the flow of the fluid inside the lid driven cavity with
porous obstacles is the following:

(1)



ρ(v · ∇)v = −∇p+ µ∆v, divv = 0 in Ωf
ρ

ψ2
(v · ∇)v = −∇p+ µ

ψ
∆v− µ

Ki
v−

ρCf√
Ki

|v|v, divv = 0 in Ωpi

vfluid = vporous on Γi

pfluid = pporous on Γi

v = (vlid, 0) on Γlid

v = (0, 0) on Γwall,

where i = 1, 2, ψ is the porosity and Ki denotes the permeability of the
medium Ωi, ρ and µ are the density and the dynamic viscosity of the fluid and

Cf =
1.75√
150ψ3

is the friction coefficient (cf. e.g. [12]).
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Next, we use the following dimensionless variables in order to express the
the dimensional equations and boundary conditions (1) in a non-dimensional
form

X =
x

L
; Y =

y

L
; Vx =

vx
V0

; Vy =
vy
V0

; P =
p

ρV 2
0

.

Note that (vx, vy) and (Vx, Vy) represents the components of the dimensional
velocity v and the dimensionless one V. Moreover, V0 is the characteristic
velocity which will be exactly the velocity vlid of the moving lid.

Hence, the system of governing equations and boundary conditions (1) will
have the following equivalent form:

(2)



(V · ∇)V = −∇P +
1

Re
∆V in Ωf

divV = 0 in Ωf
1

ψ
(V · ∇)V = −ψ∇P +

1

Re
∆V− ψ

ReDai
V−

ψCf√
Dai

|V|V in Ωpi

divV = 0 in Ωpi

Vfluid = Vporous on Γi

Pfluid = Pporous on Γi

V = (1, 0) on Γlid

V = (0, 0) on Γwall,

Let us mention that the non-dimensional Reynolds number, denoted by Re,
is defined as

Re =
V0Lρ

µ
and the Darcy number, Dai, is introduced by

Dai =
Ki

L2
.

Moreover, we are going to consider the stream function Ψ, which is given
as follows

(3) Vx =
∂Ψ

∂Y
, Vy = − ∂Ψ

∂X
.

3. NUMERICAL METHOD AND VALIDATION OF THE MODEL

The system (2), containing the couple of nonlinear equations and the trans-
mission and boundary conditions, are solved together with the equations (3),
by applying the finite element method implemented in COMSOL software.

The solution for the non-linear stationary model is obtained involving an
iterative algorithm based on Newton’s method, which stops when the relative
tolerance falls below a given ϵ > 0 which will be taken ϵ = 10−6 in what
follows.

For the discretization of the domain, a non-uniform mesh of free quad was
chosen. In order to obtain the best approximation of the solution with a
relatively low computational cost, a mesh independence test was performed.
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We analysed the effect of the number of boundary elements and the max-
imum size of the elements on the maximum value of the stream function,
that was denoted by Ψmax := max(|Ψ|). Hence, for the case when the non-
dimensional parameters were set at the following values

Re = 100, Da1 = Da2 = 0.1, ψ = 0.3, l = 0.2,
(xC1 , yC1) = (0.3, 0.5), (xC2 , yC2) = (0.7, 0.5),

and a number of 8 different configurations of the mesh were considered within
the range of 25 × 25 and 150 × 150 elements. The effect of the grid size
is observed in Table 1, where the values of Ψmax computed for each corre-
sponding case seem to converge to a certain value as the number of boundary
elements increases. Hence, the grid with 150 elements on the boundary looks
appropriate, so it will be chosen for the further simulations.

Table 1 – Mesh dependence of the maximum stream function value.

Elements on the boundary Ψmax ErrorΨmax

25 0.10803411
50 0.10822701 192.9 × 106

75 0.10824833 21.32 × 106

100 0.10825726 8.93 × 106

125 0.10825251 4.75 × 106

150 0.10825247 0.04 × 106

In order to verify if our approach is valid, we need to compare the obtained
results with those existing in the literature. To this end we are going to set the
porosity at ψ = 0.999 and the non-dimensional Darcy number for both porous
squares to Da = 105. In this way, our problem approximates with a fairly good
accuracy the classical lid-driven cavity flow problem, containing only free fluid
inside, without any porous medium assumption. Consequently, the validation
of the method can be done by comparing our solution with those obtained for
the study of free fluid flow governed only by the Navier-Stokes equations.

For different values of the Reynolds number, we have included in Table 2
the maximum value of the stream function and the coordinates of the location
where this value is reached. Table 2 shows a good agreement between the
results obtained in this paper and those reported in [7] and [11].

Table 2 – Comparison of Ψmax and (xΨmax , yΨmax) for the classical lid driven cavity.

Re 100 400 1000

Present paper 0.103522 0.114012 0.119127
(0.613,0.738) (0.552,0.605) (0.528,0.566)

Ghia et al. [7] 0.103423 0.113909 0.117929
(0.617, 0.734) (0.554,0.605) (0.531,0.562)

Marchi et al. [11] 0.103521 0.113988 0.118936
(0.616,0.737) (0.553,0.605) (0.531,0.565)
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4. RESULTS AND DISCUSSION

In what follows, our aim is to study the effects that the Reynolds number,
the Darcy number and the locations of the porous obstacles produce on the
behaviour of the fluid inside the cavity.

Numerical investigations are performed for the following values 1 ≤ Re ≤
500, 0.001 ≤ Da1,Da2 ≤ 10, and xC1 , yC1 , xC2 , yC2 ∈ {0.3, 0.5, 0.7}, where
C1, C2 denotes the centers of the porous squares. Meanwhile, the other non-
dimensional parameters are kept to their default values L = 1, l = 0.2 and
ψ = 0.3.

The mass transport phenomena will be analysed based on the velocity pro-
files of the particles of fluid and stream lines displayed in the figures, as well
as on the maximum values of the stream function and the coordinates of the
main vortexes, which will be included in tables.

4.1. THE EFFECT OF THE REYNOLDS NUMBER

First we evaluate the impact of the non-dimensional Reynolds number on
the flow of the fluid in the lid driven cavity. Taking the same permeabil-
ity in both square obstacles, Da1 = Da2 = 0.1, and keeping them at a
fixed positions C1(0.3, 0.5), C2(0.7, 0.5), we set the following values for Re:
1, 50, 100, 200, 250, 300, 400, 450, 500.

As we can see in Figure 4.2, for low values of Reynolds number, the flow
of the fluid is laminar and it becomes turbulent as Re increases, creating a
second vortex in the lower right corner and even a third one in left corner.

(a) Re = 1 (b) Re = 50 (c) Re = 100 (d) Re = 200

(e) Re = 250 (f) Re = 300 (g) Re = 400 (h) Re = 500

Fig. 4.2 – Velocity and streamlines for ψ = 0.3, Da1 = Da2 = 0.1, C1(0.3, 0.5), C2(0.7, 0.5)
and different values of Re.
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As the value of 300 is reached and exceeded, the two vertices at the bottom
of the cavity join and form a new cell that is significant in size. Due to the
presence of the porous medium with the configuration and permeability spec-
ified above, the value 500 is the highest for which a solution can be obtained
using the stationary model. Also, Table 3 suggests that the higher value for
the stream function is obtained when Re = 450.

Table 3 – Dependency of Ψmax on Re.

Re Ψmax Main vortex center (xΨmax , yΨmax)

1 0.095735 (0.501,0.771)

50 0.100608 (0.557,0.755)

100 0.108252 (0.570,0.731)

200 0.118755 (0.541,0.701)

250 0.122021 (0.530,0.694)

300 0.124257 (0.525,0.694)

400 0.126472 (0.522,0.688)

450 0.126702 (0.521,0.684)

500 0.125771 (0.526,0.678)

4.2. THE EFFECT OF DARCY NUMBERS

Now we consider the fixed values of Re = 100 and (xC1 , yC1) = (0.3, 0.5),
(xC2 , yC2) = (0.7, 0.5), and we set the permeabilities of the porous squares at
different values given by their corresponding Darcy numbers: Da1 = 10, 10−1,
10−3 and Da2 = 10, 10−1, 10−3.

It can be seen in Figure 4.3 that for higher values of Da, the small squares
do not slow down the fluid, which penetrates the porous medium without
encountering significant opposition. On the other hand, for Da tending to
zero, the porous obstacle begins to behave like a blockage, the low velocity
of the fluid in the porous media being highlighted in Figure 4.3 (c), (e), (f),
(g) by the dark blue color. Another important aspect that can be observed
in Figure 4.3 is the laminar character of the fluid movement in each of the 3
cases with Da2 = 10−3. No vortex can be seen in images (c), (e), (h), because
the second obstacle blocks the flow of fluid that is engaged by the sliding of
the top wall of the cavity. The same conclusion can be drawn from Table 4,
where the third column contains the lowest values of Ψmax, which means that
the second square has a much higher efficiency in changing the flow intensity.

Table 4 – Dependency of Ψmax on Da1 and Da2.

Da1 \ Da2 10 10-1 10-3

10 0.109073 0.1086107 0.082496
(0.564;0.725) (0.564;0.725) (0.660;0.806)

10-1 0.108714 0.108252 0.082405
(0.564;0.725) (0.570;0.731) (0.660;0.806)

10-3 0.093812 0.093566 0.078498
(0.626;0.767) (0.626;0.767) (0.673;0.817)
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(a)
Da1 = 10
Da2 = 10

(b)
Da1 = 10
Da2 = 10−1 (c)

Da1 = 10
Da2 = 10−3 (d)

Da1 = 10−1

Da2 = 10

(e)
Da1 = 10−3

Da2 = 10−3 (f)
Da1 = 10−3

Da2 = 10−1 (g)
Da1 = 10−3

Da2 = 10
(h)

Da1 = 10−1

Da2 = 10−3

Fig. 4.3 – Velocity and streamlines for ψ = 0.3, Re = 100, C1(0.3, 0.5), C2(0.7, 0.5) and
different values of Da1 and Da2.

4.3. THE EFFECT OF THE LOCATION OF THE POROUS BLOCKS

Next, we assume that Re = 100 and both porous squares have the same
permeability Da1 = Da2 = 0.1 and we study the influence of the position of
the obstacles inside the cavity on the trajectories of the fluid particles and
on the maximum stream function value. Hence, we consider the following
values for the Cartesian coordinates of the centers of the square obstacles
C1(xC1 , yC1), C2(xC2 , yC2) : 0.3, 0.5, 0.7. The combinations and configurations
formed with these coordinates can be found in Table 5.

Table 5 – Dependency of Ψmax on the position of C1(xC1 , yC1), C2(xC2 , yC2)-coordinates of
the square centers.

(xC1 , yC1)/ (xC2 , yC2) Ψmax (xΨmax , yΨmax)

(0.3,0.3) / (0.7,0.3) 0.102555 (0.617,0.743)

(0.3,0.5) / (0.7,0.5) 0.108252 (0.570,0.731)

(0.3,0.7) / (0.7,0.7) 0.093035 (0.576,0.686)

(0.3,0.3) / (0.3,0.7) 0.096544 (0.636,0.762)

(0.5,0.3) / (0.5,0.7) 0.088332 (0.630,0.805)

(0.7,0.3) / (0.7,0.7) 0.095640 (0.546,0.66)

(0.3,0.3) / (0.7,0.7) 0.093992 (0.563,0.679)

(0.3,0.7) / (0.7,0.3) 0.098265 (0.635,0.754)
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Figure 4.4 shows the impact that the placement of porous bodies has on fluid
movement. In most cases, there is a reduction in turbulence, the most obvious
being situations (a) and (f) where the flow becomes completely laminar. Also,
the configuration (f), in which the obstacles are placed in the middle of the
cavity, one above the other, generates the lowest value of the stream function,
which can be found in Table 5, and which proves a reduction of fluid flow in
the enclosure.

(a)
C1(0.3, 0.7)
C2(0.7, 0.7)

(b)
C1(0.3, 0.5)
C2(0.7, 0.5)

(c)
C1(0.3, 0.3)
C2(0.7, 0.3)

(d)
C1(0.3, 0.3)
C2(0.7, 0.7)

(e)
C1(0.3, 0.3)
C2(0.3, 0.7)

(f)
C1(0.5, 0.3)
C2(0.5, 0.7)

(g)
C1(0.7, 0.3)
C2(0.7, 0.7)

(h)
C1(0.3, 0.7)
C2(0.7, 0.3)

Fig. 4.4 – Velocity and streamlines for ψ = 0.3, Re = 100, Da1 = Da1 = 0.1 and different
location of C1 and C2

5. CONCLUSION

The flow of a Newtonian incompressible fluid inside a square cavity with
sliding lid, containing inside two non-adherent porous block with different per-
meabilities, were studied numerically. The effect of different values of Reynolds
number, as well as different combinations of Darcy number associated to each
porous block and various locations of the obstruction in the movement of the
fluid is analysed.

The investigation on the changes that occur in the pattern of the stream
lines, in the velocity profile and on the maximum values of the stream function
shows that flow rate increases as the Reynolds number increases and decreases
as the Darcy number decreases. Similar effects can also be obtained by con-
veniently placing obstacles inside the cavity, placing them vertically in the
middle or horizontally at the top will reduce the velocity and the turbulence.



10 Lid driven cavity flow with two porous square obstacles 295

REFERENCES

[1] A. M. Al-Amiri, Analysis of momentum and energy transfer in a lid-driven cavity filled
with a porous medium, Int. J. Heat Mass Transfer, 43 (2000), 3513–3527.

[2] A. M. Al-Amiri, Implication of placing a porous block in a mixed-convection heat-
transfer, lid-driven cavity heated from below, Journal of Porous Media, 16 (2013), 367–
380.

[3] P. Angot, Analysis of singular perturbations on the Brinkman problem for fictitious
domain models of viscous flows, Math. Methods Appl. Sci., 22 (1999), 1395–1412.

[4] P. Angot, A fictitious domain model for the Stokes/Brinkman problem with jump em-
bedded boundary conditions, C. R. Math. Acad. Sci. Paris, 348 (2010), 697–702.

[5] D. S. Bondarenko, M. A. Sheremet, H. F. Oztop and N. Abu-Hamdeh, Mixed convection
heat transfer of a nanofluid in a lid-driven enclosure with two adherent porous blocks,
Journal of Thermal Analysis and Calorimetry, 135 (2019), 1095–1105.

[6] A. Bourada, K. Bouarnouna, A. Boutra, M. Benzema and Y. K. Benkahla, Numerical
simulation of mixed convection in a lid driven cavity with porous obstacle using (MRT-
LBM), in 2nd National Conference on Computational Fluid Dynamics & Technology
(CFD & Tech), 2018.

[7] U. Ghia, K.N. Ghia and C.T. Shin, High-Re Solutions for incompressible flow using the
Navier-Stokes equations and a multigrid method, J. Comput. Phys., 48 (1982), 387–411.

[8] Z. Guo and T. S. Zhao, Lattice Boltzmann model for incompressible flows through porous
media, Phys. Rev. E, 66 (2002), 1–9.

[9] M. Kohr, M. L. de Cristoforis and W. L. Wendland, Nonlinear Neumann-transmission
problems for Stokes and Brinkman equations on Euclidean Lipschitz domains, Potential
Anal., 38 (2013), 1123–1171.

[10] M. Kohr, M. L. de Cristoforis and W. L. Wendland, On the Robin-transmission bound-
ary value problems for the nonlinear Darcy-Forchheimer-Brinkman and Navier-Stokes
systems, J. Math. Fluid Mech., 18 (2016), 293–329.

[11] C. H. Marchi, R. Suero and L. K. Araki, The lid-driven square cavity flow: numerical
solution with a 1024×1024 grid, Journal of the Brazilian Society of Mechanical Sciences
and Engineering, 31 (2009), 186–198.

[12] K. Vafai, Convective flow and heat transfer in variable-porosity media, J. Fluid Mech.,
147 (1984), 233–259.

[13] S. Whitaker, The Forchheimer equation: a theoretical development, Transport in Porous
Media, 25 (1996), 27–61.

[14] D. Yang, Z. Xue and Z. Mahias, Analysis of momentum transfer in a lid-driven cavity
containing a Brinkman-Forchheimer medium, Transport in Porous Media, 92 (2012),
101–118.

Received April 9, 2022

Accepted June 22, 2022

Babes,-Bolyai University

Department of Mathematics
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