
MATHEMATICA, 65 (88), No 2, 2023, pp. 275–285

EXISTENCE AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS
FOR NON-LINEAR WAVE EQUATIONS OF KIRCHHOFF TYPE

WITH VISCOELASTICITY

MOHAMED MELLAH and ALI HAKEM

Abstract. In this paper we deal with the initial boundary value problem of the
following non-linear wave equation of Kirchhoff type

|ut|ρutt −M

(∫
Ω

|∇u|2dx
)
∆u−∆utt +

∫ t

0

g(t− s)∆u(s)ds−∆ut = 0,

whereM is a continuous function on [0,+∞) such thatM(s) ≥ m0 > 0 for all s ≥
0. By assuming ρ > 0 is such that H1

0 (Ω) ↪→ Lρ+2(Ω) and g > 0 is exponentially
decreasing, we discuss the global existence and asymptotic behavior of solutions.
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1. INTRODUCTION

In this paper, we investigate the existence and asymptotic behavior of so-
lutions for the following non-linear Kirchhoff type problem

(1)

|ut|ρutt −M

(∫
Ω
|∇u|2dx

)
∆u−∆utt

+

∫ t

0
g(t− s)∆u(s)ds−∆ut = 0, x ∈ Ω, t > 0,

u(x, t) = 0, (x, t) ∈ ∂Ω× R+,

u(x, 0) = u0(x), ut(x, 0) = u1(x) x ∈ Ω,

where M is a continuous function on [0,+∞) such that M(s) ≥ m0 > 0 for
all s ≥ 0, Ω is a bounded domain of Rn (n ≥ 1) with smooth boundary ∂Ω,
and ρ is a positive constant. Here, g represents the kernel of the memory term
which is assumed to decay exponentially (see assumption (A2)).
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Viscoelasticity problems have been handled carefully in several papers, and
other results relating the global existence and decay of the global solution have
been found. For example, Cavalcanti et al. [1] studied the following problem

(2)

|ut|ρutt −∆u−∆utt

+

∫ t

0
g(t− s)∆u(s)ds− γ∆ut = 0 (x, t) ∈ Ω× R+,

u(x, t) = 0, (x, t) ∈ ∂Ω× R+,

u(x, 0) = u0(x), ut(x, 0) = u1(x) x ∈ Ω,

where Ω is a bounded domain of Rn with a smooth boundary ∂Ω and ρ is a
positive real number. By assuming ρ > 0 is such that H1

0 (Ω) ↪→ L2(ρ+1)(Ω)
and g > 0 is exponentially decreasing, they established global existence in the
case γ ≥ 0 and obtained exponential decay of the energy in the case γ > 0.
Cavalcanti et al. [2] considered this model and proved intrinsic decays for
large classes of relaxation kernels described by the inequality g′ + H(g) ≤ 0
with convex function H. Replacing strong damping by weak damping in (2),
several authors have studied the energy decay rates of the related problems
like

(3)

|ut|ρutt −∆u−∆utt

+

∫ t

0
g(t− s)∆u(s)ds+ h(ut) = 0, (x, t) ∈ Ω× R+,

u(x, t) = 0, (x, t) ∈ ∂Ω× R+,

u(x, 0) = u0(x), ut(x, 0) = u1(x) x ∈ Ω.

When h(ut) = ut, Han and Wang [4] investigated the global existence and
exponential stability of the energy for solutions for (3). When h(ut) = |ut|mut
(m > 0), the general decay of energy was investigated by the same authors
[3]. Later, Park and Park [8] established the general decay for (2) with general
nonlinear weak damping.

Messaoudi and Tatar ([6, 7]) considered (2) only with integral dissipation,
namely

|ut|ρutt −∆u−∆utt +

∫ t

0
g(t− s)∆u(s)ds = 0, (x, t) ∈ Ω× R+,

u(x, t) = 0, (x, t) ∈ ∂Ω× R+,

u(x, 0) = u0(x), ut(x, 0) = u1(x) x ∈ Ω.

Under some assumptions on g, they obtained exponential and polynomial de-
cay rates. Motivated by the above contributions, in the present work we will
study the initial-boundary value problem (1). Under suitable assumptions,
we prove the existence of a global solution by means of the Galerkin method.
Further, the asymptotic behavior of solution is established.
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2. PRELIMINARIES

In this section, we begin with some notations and assumptions used through-
out this article. For the Sobolev spaceH1

0 (Ω) we consider the norm ∥u∥H1
0 (Ω) =

∥∇u∥2, where ∥ · ∥p denotes the standard norm in Lp(Ω). The inner product
in Lp is denoted by (·, ·). If u = u(t, x) is a function in L2(0, T ;H1

0 (Ω)) and g
is continuous, we put

(g ◦ u)(t) =
∫ t

0
g(t− s)|∇u(t)−∇u(s)|2ds.

Now, we make the following assumptions on problem (1):

(A1) Assumption on M(s).
We assume that M(s) ∈ C([0,∞),R) satisfying

M(s) ≥ m0 > 0, M(s)s ≥
∫ s

0
M(τ)dτ,

for all s ≥ 0. For example M(s) = m0 + sr, r ≥ 1.

(A2) Assumption on g.
We assume that g : [0,∞) → (0,∞) is a bounded C1 function satisfying

g(0) > 0, m0 −
∫ ∞

0
g(s)ds = l > 0,

such that there exist positive constants ξ1 and ξ2 satisfying

−ξ1g(t) ≤ g′(t) ≤ −ξ2g(t), for all t ≥ 0.

(A3) For the nonlinear term |ut|ρutt, we further assume

0 < ρ < ∞, when n ≤ 2, and 0 < ρ ≤ 4

n− 2
, when n ≥ 3.

Definition 2.1 (Weak solution). A function u(x, t) is called a weak solution
of (1) on the interval Ω×[0, T ), with 0 < T ≤ +∞ being the maximal existence
time, if

u ∈ L∞(0, T ;H1
0 (Ω)), ut ∈ L∞(0, T ;H1

0 (Ω)) and utt ∈ L∞(0, T ;H1
0 (Ω))

satisfies the following conditions:

(i) for any ϕ ∈ H1
0 (Ω) and a.e. t ∈ [0, T ), we have

(|ut|ρutt, ϕ) +
(
M

(
∥∇u∥22

)
∇u,∇ϕ

)
+ (∇utt,∇ϕ) + (∇ut,∇ϕ)

−
(∫ t

0
g(t− s)∇u(s)ds,∇ϕ

)
= 0,

(ii) u(x, 0) = u0(x) in H1
0 (Ω), ut(x, 0) = u1(x) in H1

0 (Ω).
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Remark 2.2. Since 0 < ρ < ∞, when n ≤ 2, and 0 < ρ ≤ 4
n−2 , when n ≥ 3,

according to the Sobolev embedding theorem, we have

H1
0 (Ω) ↪→ Lρ+2(Ω) and ∥ϕ∥ρ+2 ≤ Cρ+2∥∇ϕ∥2, for all ϕ ∈ H1

0 (Ω),

where Cρ+2 is the optimal embedding constant from the Sobolev space H1
0 (Ω)

to Lρ+2(Ω). Noting that

ρ

ρ+ 2
+

1

ρ+ 2
+

1

ρ+ 2
= 1,

by the Hölder inequality we can see that the nonlinear term∫
Ω
|ut|ρuttϕ dx

makes sense.

3. GLOBAL EXISTENCE OF SOLUTIONS

The main goal in this section is devoted to discuss the existence of global
weak solutions for the problem (1) by using the Galerkin approximation.

Theorem 3.1. Assume that (A1)-(A3) hold. Let u0(x), u1(x) ∈ H1
0 (Ω),

then the problem (1) admits at least a global weak solution u : Ω → R such
that

u ∈ L∞(0,∞;H1
0 (Ω)), ut ∈ L∞(0,∞;H1

0 (Ω)), utt ∈ L∞(0,∞;H1
0 (Ω)).

Proof. To establish the existence of a solution to problem (1), we use the
Faedo-Galerkin approximations. Let {ωj(x)} be a complete orthogonal basis
in H1

0 (Ω). Then we construct the approximate solutions uk for the problem
(1) in the form

uk(t) =
k∑

j=1

δkj(t)ωj(x), k = 1, 2, ....,

which satisfies

(4)

(|ukt|ρuktt, ωj) +
(
M

(
∥∇uk∥22

)
∇uk,∇ωj

)
+ (∇uktt,∇ωj) + (∇ukt,∇ωj)

−
(∫ t

0
g(t− s)∇uk(s)ds,∇ωj

)
= 0,

and

(5)


uk(x, 0) =

k∑
j=1

δkj(0)ωj(x) → u0(x) in H1
0 (Ω), k → ∞,

ukt(x, 0) =
k∑

j=1

δ′kj(0)ωj(x) → u1(x) in H1
0 (Ω), k → ∞.
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Multiplying (4) by δ′kj(t) and summing for j = 1, ....., k, we obtain

(|ukt|ρuktt, ukt) +
(
M

(
∥∇uk∥22

)
∇uk,∇ukt

)
+ (∇uktt,∇ukt)

+ (∇ukt,∇ukt)−
(∫ t

0
g(t− s)∇uk(s)ds,∇ukt

)
= 0.

By a direct calculation, it follows that

1

ρ+ 2

d

dt
∥ukt∥ρ+2

ρ+2 +
1

2

d

dt
∥∇ukt∥22 +

1

2

d

dt

∫ ∥∇uk∥22

0
M(s)ds

− 1

2

d

dt

∫ t

0
g(s)ds∥∇uk(t)∥22 +

1

2

d

dt
(g ◦ ∇uk)(t)

= −∥∇ukt∥22 −
1

2
g(t)∥∇uk∥22 +

1

2
(g′ ◦ ∇uk)(t) ≤ 0,

which implies that

(6)
d

dt
Ek(t) = −∥∇ukt∥22 +

1

2
(g′ ◦ ∇uk)(t)−

1

2
g(t)∥∇uk∥22 ≤ 0,

where

(7)

Ek(t) = E(uk, ukt) =
1

ρ+ 2
∥ukt∥ρ+2

ρ+2 +
1

2
∥∇ukt∥22

+
1

2

d

dt

∫ ∥∇uk∥22

0
M(s)ds− 1

2

∫ t

0
g(s)ds∥∇uk(t)∥22

+
1

2
(g ◦ ∇uk)(t).

Integrating (6) over (0, t), we obtain

(8) Ek(t) ≤ Ek(0).

On the other hand, from (A1) and (A2), we get

(9)

Ek(t) ≥
1

ρ+ 2
∥ukt∥ρ+2

ρ+2 +
1

2
∥∇ukt∥22 +

1

2

(
m0 −

∫ t

0
g(s)ds

)
∥∇uk∥22

+
1

2
(g ◦ ∇uk)(t) ≥

1

ρ+ 2
∥ukt∥ρ+2

ρ+2 +
1

2
∥∇ukt∥22 +

l

2
∥∇uk∥22

+
1

2
(g ◦ ∇uk)(t) ≥ 0.

Combining (8) and (9), and using (5), we infer

(10)

∥ukt∥ρ+2
ρ+2 + ∥∇ukt∥22 + ∥∇uk∥22 + (g ◦ ∇uk)(t)

≤ Ek(0)

min
{

1
ρ+2 ,

1
2 ,

l
2

} ≤ C1.

Here and in the sequel Ci, i = 1, 2, ...., we will denote various constants inde-
pendent of k and t.
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Also, integrating (8) from 0 to t, there appears the relation∫ t

0
g(t− s)∥∇uk(s)∥22ds = 2(Ek(0)− Ek(t)) +

∫ t

0
(g′ ◦ uk)(s)ds

− 2

∫ t

0
∥∇ukt∥22ds,

which together with (9) and (A2) yields that

(11)

∫ t

0
g(t− s)∥∇uk(s)∥22ds ≤ 2Ek(0) ≤ C2.

Multiplying (4) by δ′′kj(t) and summing for j = 1, ..., k, one has

(12)

(|ukt|ρuktt(t), uktt) + (M(∥∇uk∥22)∇uk,∇uktt) + (∇uktt,∇uktt)

+ (∇ukt,∇uktt)−
(∫ t

0
g(t− s)∇uk(s)ds,∇uktt

)
= 0.

Applying the Young and Hölder inequalities, we get from (12) and (A1) that

(13)

∫
Ω
|ukt|ρ|uktt|2dx+ ∥∇uktt∥22 = −(M(∥∇uk∥22)∇uk,∇uktt)

+ (∇ukt,∇uktt)−
(∫ t

0
g(t− s)∇uk(s)ds,∇uktt

)
≤ 3η∥∇uktt∥22 +

1

4η
∥∇ukt∥22 +

m2
0

4η
∥∇uk∥22

+
1

4η

∫ t

0
g(s)ds

∫ t

0
g(t− s)∥∇uk(s)∥22ds, ∀η > 0.

Let us take η small enough such that 1− 3η > 0. So, by a simple calculation,
(13) becomes

(14)

∫
Ω
|ukt|ρ|uktt|2dx+ (1− 3η)∥∇uktt∥22 ≤

1

4η
∥∇ukt∥22

+
m2

0

4η
∥∇uk∥22 +

1

4η

∫ t

0
g(s)ds

∫ t

0
g(t− s)∥∇uk(s)∥22ds.

Using (10) and (11), we easily obtain from (14) the following inequality

(15) ∥∇uktt∥22 ≤ C3, 0 ≤ t < ∞.

Using Hölder inequality, we have for 0 ≤ t < ∞

(16) (|ukt|ρuktt, uktt) ≤ ∥ukt∥ρρ+2∥uktt∥
2
ρ+2 ≤ [(ρ+ 2)C1]

ρ
ρ+2 ∥uktt∥2ρ+2.
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The estimates (10), (15) and (16) allow us to get a subsequence of {uk},
which from now on will be denoted by {uk}; and functions u, µ, χ such that:

(17) uk → u weak star in L∞(0,∞;H1
0 (Ω)), k → ∞,

(18) ukt → ut weak star in L∞(0,∞;H1
0 (Ω)), k → ∞,

(19) ukt → ut weak star in L∞(0,∞;Lρ+2(Ω)), k → ∞,

(20) uktt → utt weakly L∞(0,∞;H1
0 (Ω)), k → ∞,

(21) |ukt|ρukt → µ weak star in L∞(0,∞;L
ρ+2
ρ+1 (Ω)), k → ∞,

(22) |ukt|ρuktt → χ weakly in L∞(0,∞;L
ρ+2
ρ+1 (Ω)), k → ∞.

Since H1
0 (Ω) ↪→ L2(Ω) is compact, by the Aubin-Lions theorem, we deduce

that

(23) uk → u strongly in L∞(0,∞;L2(Ω)), k → ∞,

(24) ukt → ut strongly in L∞(0,∞;L2(Ω)), k → ∞,

(25) uktt → utt strongly in L∞(0,∞;L2(Ω)), k → ∞,

and further using Lemma 1.3 in [5], we obtain easily

(26) |ukt|ρukt → µ = |ut|ρut weak star in L∞(0,∞;L
ρ+2
ρ+1 (Ω)), k → ∞,

(27) |ukt|ρuktt → χ = |ut|ρutt weakly in L∞(0,∞;L
ρ+2
ρ+1 (Ω)), k → ∞.

Taking k → ∞ in (4) and then making use of (17) − (20) and (26) − (27),
we arrive at

(28)

(|ut|ρutt, ωj) + (M(∥∇u∥22)∇u,∇ωj) + (∇utt,∇ωj) + (∇ut,∇ωj)

−
(∫ t

0
g(t− s)∇u(s)ds,∇ωj

)
= 0.

Considering that the basis {ωj(x)}∞j=1 is dense in H1
0 (Ω), we choose a func-

tion ϕ ∈ H1
0 (Ω) having the form ϕ =

∑k
j=1 δjωj(x), where {δj}∞j=1 are given

functions.
Multiplying (28) by δj and then summing for j = 1, ....., it follows that

(29)

(|ut|ρutt, ϕ) + (M(∥∇u∥22)∇u,∇ϕ) + (∇utt,∇ϕ) + (∇ut,∇ϕ)

−
(∫ t

0
g(t− s)∇u(s)ds,∇ϕ

)
= 0, ∀ϕ ∈ H1

0 (Ω).

Hence, the proof of Theorem 3.1 is completed. □
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4. ASYMPTOTIC BEHAVIOR OF SOLUTIONS

In this section we consider the asymptotic behavior of solutions to (1).

Theorem 4.1. Suppose that the assumptions (A1)-(A3) hold and u =
u(x, t) be the global solution to problem (1) obtained in Theorem 3.1. For
φ : R+ → R+ a increasing C2 function such that

φ(0) = 0, φ′(0) > 0, lim
t→+∞

φ(t) = +∞, φ′′(t) < 0 ,∀t ≥ 0,

we have for κ > 0

E(t) ≤ E(0)e−κφ(t), ∀t ≥ 0.

Proof. Let ϕ = ut in equation (29), then

d

dt

[
1

ρ+ 2
∥ut∥ρ+2

ρ+2 +
1

2
∥∇ut∥22 +

1

2

∫ ∥∇u∥22

0
M(s)ds

]

− d

dt

[
1

2

∫ t

0
g(s)ds∥∇u(t)∥22 −

1

2
(g ◦ ∇u)(t)

]
+ ∥∇ut∥22 +

1

2
g(t)∥∇u∥22 −

1

2
(g′ ◦ ∇u)(t) = 0,

that is,

d

dt
E(t) + ∥∇ut∥22 +

1

2
g(t)∥∇u∥22 −

1

2
(g′ ◦ ∇u)(t) = 0,

where E(t) is defined in (7),

(30)

E(t) =
1

ρ+ 2
∥ut∥ρ+2

ρ+2 +
1

2
∥∇ut∥22 +

1

2

∫ ∥∇u∥22

0
M(s)ds

− 1

2

(∫ t

0
g(s)ds

)
∥∇u∥22 +

1

2
(g ◦ ∇u)(t).

Then, in view of assumption (A2), one has

(31)

d

dt
E(t) = −∥∇ut∥22 −

1

2
g(t)∥∇u∥22 −

1

2
(g′ ◦ ∇u)(t)

≤ −∥∇ut∥22 −
1

2
g(t)∥∇u∥22 −

1

2
ξ2(g ◦ ∇u)(t) ≤ 0.

This means that the energy E(t) is uniformly bounded (by E(0)) and is de-
creasing in t.

Before proving Theorem 4.1 we need to state some technical lemmas.

Lemma 4.2. For any t ≥ 0, the energy E(t) satisfies

(32)
d

dt
E(t) ≤ −∥∇ut∥22 −

1

2
ξ2(g ◦ u)(t)−

1

2

[
g(0)− ξ1∥g∥L1(0,∞)

]
∥∇u∥22.
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Proof. From assumption (A2) and since∫ t

0
g′(s)ds = g(t)− g(0),

we obtain

(33)
−1

2
g(t)∥∇u∥22 = −1

2
g(0)∥∇u∥22 −

1

2

(∫ t

0
g′(s)ds

)
∥∇u∥22

≤ −1

2
g(0)∥∇u∥22 +

ξ1
2
∥g∥L1(0,∞)∥∇u∥22.

Combining (31) and (33) we conclude that for all t ≥ 0:

d

dt
E(t) ≤ −∥∇ut∥22 −

1

2
ξ2(g ◦ ∇u)(t)− 1

2

[
g(0)− ξ1∥g∥L1(0,∞)

]
∥∇u∥22 ≤ 0.

□

Lemma 4.3. The energy E(t) satisfies

(34) E(t) ≤ β∥∇ut∥22 + m̃0∥∇u∥22 +
1

2
(g ◦ ∇u)(t), for all t ≥ 0,

where

β =

(
1

ρ+ 2
Cρ+2
ρ+2 (2E(0)

ρ
2 +

1

2

)
,

and

0 < m̃0 =
1

2
max

{
M(s), s ∈ [0, C1]

}
< ∞.

Proof. First we note that similarly to (9) one has

E(0) ≥ E(t) =
1

ρ+ 2
∥ut∥ρ+2

ρ+2 +
1

2
∥∇ut∥22

+
1

2

∫ ∥∇u∥22

0
M(s)ds− 1

2

∫ t

0
g(s)ds∥∇u(t)∥22 +

1

2
(g ◦ ∇u)(t)

≥ 1

ρ+ 2
∥ut∥ρ+2

ρ+2 +
1

2
∥∇ut∥22 +

1

2

(
m0 −

∫ t

0
g(s)ds

)
∥∇u(t)∥22

+
1

2
(g ◦ ∇u)(t) ≥ 1

ρ+ 2
∥ut∥ρ+2

ρ+2 +
1

2
∥∇ut∥22

+
l

2
∥∇u∥22 +

1

2
(g ◦ ∇u)(t) ≥ 0.

Since E(t) is decreasing, from the Sobolev embedding theorem we have

(35)

1

ρ+ 2
∥ut∥ρ+2

ρ+2 ≤
1

ρ+ 2
Cρ+2
ρ+2∥∇ut∥ρ+2

2 =
1

ρ+ 2
Cρ+2
ρ+2∥∇ut∥ρ2∥∇ut∥22

≤ 1

ρ+ 2
Cρ+2
ρ+2 (2E(0))

ρ
2 ∥∇ut∥22.
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From (30), (35), (A1) and since
∫ t
0 g(s)ds > 0, we deduce

E(t) ≤
(

1

ρ+ 2
Cρ+2
ρ+2 (2E(0))

ρ
2 +

1

2

)
∥∇ut∥22

+
1

2

∫ ∥∇u∥22

0
M(s)ds+

1

2
(g ◦ ∇u)(t)

≤
(

1

ρ+ 2
Cρ+2
ρ+2 (2E(0))

ρ
2 +

1

2

)
∥∇ut∥22

+
1

2
M(∥∇u∥22)∥∇u∥22 +

1

2
(g ◦ ∇u)(t)

≤
(

1

ρ+ 2
Cρ+2
ρ+2 (2E(0))

ρ
2 +

1

2

)
∥∇ut∥22 + m̃0∥∇u∥22

+
1

2
(g ◦ ∇u)(t).

Let β =
(

1
ρ+2C

ρ+2
ρ+2 (2E(0))

ρ
2 + 1

2

)
, then we get (34). □

Multiplying (32) by eκφ(t) (where κ > 0) and utilizing Lemma 4.2, we have

d

dt

(
eκφ(t)E(t)

)
≤ −eκφ(t)∥∇ut∥22 −

1

2

[
g(0)− ξ1∥g∥L1(0,∞)

]
eκφ(t)∥∇u∥22

− 1

2
ξ2(g ◦ ∇u)(t)eκφ(t) + κφ′(t)eκφ(t)E(t)

≤ −
[
1− κβφ′(t)

]
eκφ(t)∥∇ut∥22

− 1

2

[
ξ2 − κφ′(t)

]
eκφ(t)(g ◦ ∇u)(t)

− 1

2

[
g(0)− ξ1∥g1∥L1(0,∞) − 2κm̃0φ

′(t)
]
eκξ(t)∥∇u∥22.

Using the fact that φ′ is decreasing we arrive at

(36)

d

dt

(
eκφ(t)E(t)

)
≤ −

[
1− κβφ′(0)

]
eκφ(t)∥∇ut∥22

− 1

2

[
ξ2 − κφ′(0)

]
eκφ(t)(g ◦ ∇u)(t)

− 1

2

[
g(0)− ξ1∥g1∥L1(0,∞) − 2κm̃0φ

′(0)
]
eκξ(t)∥∇u∥22.

Choosing ∥g∥L1(0,∞) sufficiently small so that

g(0)− ξ1∥g1∥L1(0,∞) = B > 0,

and defining

κ0 = min

{
1

βφ′(0)
,

ξ2
φ′(0)

,
B

2m̃0φ′(0)

}
,
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we conclude by taking κ ∈ (0, κ0] in (36) that

(37)
d

dt

(
eκφ(t)E(t)

)
≤ 0, t > 0.

Integrating (37) over (0, t), it follows that

E(t) ≤ E(0)e−κφ(t), t > 0.

This completes the proof of Theorem 4.1. □

Example 4.4. For φ(t) = t + t
t+1 , we get the following exponential decay

rate
E(t) ≤ E(0)e−κt, for all t ≥ 0.

For ζ(t) = ln(1 + t), we get the following polynomial decay rate

E(t) ≤ E(0)(1 + t)−κ, for all t ≥ 0.
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