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MODULAR HADAMARD, RIEMANN-LIOUVILLE
AND WEYL FRACTIONAL INTEGRALS
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Abstract. This paper establishes the modular inequalities for the Hadamard
fractional integrals, the Riemann-Liouville fractional integrals and the Weyl frac-
tional integrals.
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1. INTRODUCTION

This paper aims to investigate the mapping properties of the Hadamard
fractional integrals Jα

0+,µ;γ,σf , J
α
−,µ;γ,σf , I

α
0+,µ;γ,σf and Iα−,µ;γ,σf , the Riemann-

Liouville fractional integrals Rαf and the Weyl fractional integrals Wαf when
Φ(|f(x)|) is integrable where Φ is a modular function. That is, we obtain the
modular inequalities in the sense of [19] for the above operators.

The Riemann-Liouville fractional integrals Rαf were introduced to study
the αth order antiderivative of f when α is not an positive integer. Precisely,
when α is a positive integer, the αth order derivative of Rαf is f . In addition,
the Weyl fractional integral, roughly speaking, is the dual operator of the
Riemann-Liouville fractional integrals. That is, for any nonnegative Lebesgue
measurable functions f and g, we have∫ ∞

0
Rαf(x)g(x)dx =

∫ ∞

0
f(x)Wαg(x)dx.

The reader is referred to [22] for the applications of the above integral on
fractional calculus.

The Hadamard fractional integrals were introduced by Hadamard in [9]. It
is related with the fractional calculus in the framework of Mellin transform,
see [5, p. 388]. The studies of Hadamard fractional integrals was extended
by Butzer, Kilbas and Trujillo, where a number of Hadamard type fractional
integrals Jα

0+,µ;γ,σf , J
α
−,µ;γ,σf , I

α
0+,µ;γ,σf and Iα−,µ;γ,σf were introduced [4, 5].
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The mapping properties for the Riemann-Liouville fractional integrals and
the Weyl fractional integrals on Lebesgue spaces were established in [10] and
these results were extended to weighted Lebesgue spaces in [1, 21].

The reader is referred to [4,5] for the mapping properties of the Hadamard
fractional integrals and the Hadamard type fractional integrals Jα

0+,µ;γ,σf ,
Jα
−,µ;γ,σf , I

α
0+,µ;γ,σf and Iα−,µ;γ,σf on Lebesgue spaces endowed with the mea-

sure dt
t . Moreover, for the mapping properties of the Hadamard fractional

integrals and the Hadamard type fractional integrals on function space of
bounded mean oscillation, amalgam spaces and function spaces of q-integral
p-variation, see [13,15,17], respectively.

This paper is devoted to extending the mapping properties for the above
fractional integrals when Φ(|f(x)|) is integrable, where Φ is a modular func-
tion. Notice that the investigations for the Hardy-Littlewood maximal oper-
ator, the Marcinkiewicz interpolation, the Fourier transform and the k-plane
transform for f satisfying ∫

Rn

Φ(|f(x)|)dx < ∞

had been conducted in [3, 7, 11,12].
We obtain our results by using the decreasing rearrangement of Lebesgue

measurable function [2, Chapter 2, Section 1] and the operators of joint weak
type [2, Chapter 3, Section 5]. Both notions are important tools for the study
of mapping properties of operators on function spaces [2, Chapter 3, Section 5]
and modular spaces [11, 12, 18]. Moreover, we also use the Hardy inequalities
[6] on modular spaces to obtain our desired results.

This paper is organized as follows. The definitions and the mapping prop-
erties of the Hadamard fractional integrals Jα

0+,µ;γ,σf , J
α
−,µ;γ,σf , I

α
0+,µ;γ,σf and

Iα−,µ;γ,σf , the Riemann-Liouville fractional integrals Rαf and the Weyl frac-
tional integrals Wαf on Lebesgue spaces are presented in Section 2. The
definition of operators of joint weak type and the Hardy inequalities on modu-
lar spaces are given in Section 3. Our main results are established in Section 4.
An application of our main result on the mapping properties of the Riemann-
Liouville fractional integrals, the Weyl fractional integrals and the Hadamard
fractional integrals on Orlicz spaces are presented at the end of Section 4.

2. PRELIMINARIES AND DEFINITIONS

Let µ be a totally σ-finite measure on (0,∞), Let M(µ) and M be the set
of µ-measurable functions and the Lebesgue measurable functions on (0,∞),
respectively.

For 0 < α < 1, the Riemann-Liouville fractional integral Rαf and the Weyl
fractional integralWαf for a locally integrable function f on (0,∞) are defined
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as

Rαf(x) =
1

Γ(α)

∫ x

0
(x− t)α−1f(t)dt, x > 0,

Wαf(x) =
1

Γ(α)

∫ ∞

x
(t− x)α−1f(t)dt, x > 0,

respectively, where Γ(·) is the Gamma function.
In view of [10, Theorem 383], we have the following results for the Riemann-

Liouville fractional integral and the Weyl fractional integral.

Theorem 2.1. Let 0 < α < 1 and 1 < p < 1
α . If

1

q
=

1

p
− α,

there exists a constant C > 0 such that for any f ∈ Lp, we have(∫ ∞

0
|Rαf(x)|qdx

)1/q

≤ C

(∫ ∞

0
|f(x)|pdx

)1/p

,(∫ ∞

0
|Wαf(x)|qdx

)1/q

≤ C

(∫ ∞

0
|f(x)|pdx

)1/p

.

We also have the corresponding result for the Hadamard fractional inte-
grals. Let α > 0, the Hadamard fractional integral Jα

0+f for locally integrable
function f is defined as

(Jα
0+f)(x) =

1

Γ(α)

∫ x

0

(
log

x

u

)α−1
f(t)

dt

t
,

where Γ(α) is the Euler gamma function. The Hadamard fractional integral
was introduced by Hadamard in [9]. The reader is also referred to [22, Section
18.3], for the applications of the Hadamard fractional integrals.

The Hadamard fractional integrals had been generalized by using the con-
fluent hypergeometric function, which is also named as a Kummer function.
The confluent hypergeometric function Φ[a, c; z] is defined for |z| < 1, c > 0
and a ̸= −j, j ∈ N ∪ {0} by

Φ[a, c; z] =

∞∑
k=0

(a)k
(c)k

zk

k!

where (a)k, k ∈ N ∪ {0} is the Pochhammer symbol [8, Section 6.1] given by

(a)0 = 1, (a)k = a(a+ 1) · · · (a+ k − 1), k ∈ N.
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For β > 0, γ ∈ R and µ, σ ∈ C, the generalized Hadamard fractional
integrals Jα

0+,µ;γ,σf , J
α
−,µ;γ,σf , I

α
0+,µ;γ,σf and Iα−,µ;γ,σf are defined as

Jα
0+,µ;γ,σf(x) =

1

Γ(α)

∫ x

0

(
t

x

)µ (
log

x

t

)α−1
Φ
[
γ, α;σ log

x

t

]
f(t)

dt

t
,

Jα
−,µ;γ,σf(x) =

1

Γ(α)

∫ ∞

x

(x
t

)µ
(
log

t

x

)α−1

Φ

[
γ, α;σ log

t

x

]
f(t)

dt

t
,

Iα0+,µ;γ,σf(x) =
1

Γ(α)

∫ x

0

(
t

x

)µ (
log

x

t

)α−1
Φ
[
γ, α;σ log

x

t

]
f(t)

dt

x

and

Iα−,µ;γ,σf(x) =
1

Γ(α)

∫ ∞

x

(x
t

)µ
(
log

t

x

)α−1

Φ

[
γ, α;σ log

t

x

]
f(t)

dt

x
,

respectively.
Since Φ[a, c; 0] = 1, when σ = 0, the above Hadamard fractional integral

Jα
0+,µ;γ,0 reduces to the Hadamard fractional integral Jα

0+. Moreover, Jα
−,µ;γ,σ,

Iα0+,µ;γ,σ and Iα−,µ;γ,σ become the Hadamard type fractional integrals intro-

duced and studied in [4].
We now give the mapping properties for Jα

0+,µ;γ,0, Jα
−,µ;γ,σ, Iα0+,µ;γ,σ and

Iα−,µ;γ,σ. Let dω = dt
t and

Lp
ω =

{
f ∈ M : ∥f∥Lp

ω
=

(∫ ∞

0
|f(t)|pdt

t

) 1
p

< ∞

}
where dt is the Lebesgue measure on (0,∞).

According to [5, Theorems 4 and 5], we have the following results.

Theorem 2.2. Let c, γ ∈ R, α > 0 and µ, σ ∈ C. Suppose that 1 ≤ p ≤ q
satisfy 1

p − 1
q < α.

(1) If Re(µ − σ) > c or Re(µ − σ) = c and γ < 1
p − 1

q , then the operator

Jα
0+,µ−c;γ,0 is bounded from Lp

ω to Lq
ω.

(2) If Re(µ−σ) > −c or Re(µ−σ) = −c and γ < 1
p −

1
q , then the operator

Jα
−,µ+c;γ,σ is bounded from Lp

ω to Lq
ω.

(3) If Re(µ − σ) > c − 1 or Re(µ − σ) = c − 1 and γ < 1
p − 1

q , then the

operator Iα0+,µ−c;γ,σ is bounded from Lp
ω to Lq

ω.

(4) If Re(µ − σ) > 1 − c or Re(µ − σ) = 1 − c and γ < 1
p − 1

q , then the

operator Iα−,µ+c;γ,σ is bounded from Lp
ω to Lq

ω.

The reader is reminded that we present the mapping properties for the
operators Jα

0+,µ−c;γ,0, J
α
−,µ+c;γ,σ, I

α
0+,µ−c;γ,σ and Iα−,µ+c;γ,σ while the results in

[5, Theorems 4 and 5] are mapping properties for Jα
0+,µ;γ,0, J

α
−,µ;γ,σ, I

α
0+,µ;γ,σ

and Iα−,µ;γ,σ. That is, in Theorem 2.2, the parameter c appears in the indices
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of the operators while for the results in [5, Theorems 4 and 5], the parameter
c appears in the definition of weighted Lebesgue spaces [5, (1.10)].

3. DECREASING REARRANGEMENTS AND MODULAR FUNCTIONS

In this section, we first present the notion of decreasing rearrangement of
Lebesgue measurable function. This notion is related with operators of joint
weak type. We also recall the definition of modular functions. It is an ex-
tension of Young’s function used in the study of Orlicz spaces. At the end of
this section, we present some results on the modular estimates of the Hardy
operators.

We begin with a review on the notion of decreasing rearrangement. Let µ
be a totally σ-finite measure on (0,∞). For any f ∈ M(µ) and s > 0, write

dµf (s) = µ({x ≥ 0 : |f(x)| > s})

and

f∗
µ(t) = inf{s > 0 : dµf (s) ≤ t}, t > 0.

We call f∗
µ the decreasing rearrangement of f with respect to µ. We say that

f and g are µ-equimeasurable if dµf (s) = dµg (s) for all s > 0.

When µ is the Lebesgue measure, we write f∗
µ by f∗. When µ is the measure

dω = dt
t on (0,∞) where dt is the Lebesgue measure on (0,∞), we write the

decreasing rearrangement of f with respect to dω by f∗
ω.

We write f ≈ g if Bf ≤ g ≤ Cf, for some constants B,C > 0 independent
of appropriate quantities involved in the expressions of f and g.

We recall the definition of linear operator of joint weak type from [2, Chapter
3, Definitions 5.1, 5.3 and 5.4].

Definition 3.1. Let µ0, µ1 be totally σ-finite measures on (0,∞). Suppose
1 ≤ p0 < p1 ≤ ∞ and 1 ≤ q0, q1 ≤ ∞ with q0 ̸= q1. Let T be a linear operator
whose domain is some linear subspace of M(µ0) and whose range is contained
in M(µ1).

We say that T is of joint weak type (p0, q0; p1, q1) if∫ 1

0
s

1
p0 f∗

µ0
(s)

ds

s
+

∫ ∞

1
s

1
p1 f∗

µ0
(s)

ds

s
< ∞

and there is a constant C > 0 such that

(Tf)∗µ1
≤ C

(
t
− 1

q0

∫ tm

0
s

1
p0 f∗

µ0
(s)

ds

s
+ t

− 1
q1

∫ tm

0
s

1
p1 f∗

µ0
(s)

ds

s

)
where

m =

1
q0

− 1
q1

1
p0

− 1
p1

.

Next, we turn to the definition of modular function.



268 K.-P. Ho 6

Definition 3.2. A Lebesgue measurable function Φ : [0,∞) → [0,∞) is
called a modular function if Φ is a non-decreasing function with

lim
t→0+

Φ(t) = 0.

A Young’s function is a modular function. For the definition of Young’s
function, the reader is referred to [2, Chapter 4, Definition 8.1].

For any modular function Φ and f ∈ M(ω), we have

(1)

∫ ∞

0
Φ(f∗

ω(t))dt =

∫ ∞

0
Φ(|f(x)|)dx

x
.

A modular function Φ is said to satisfy the △2 condition if there exists a
constant K > 0 such that

(2) Φ(2t) ≤ KΦ(t), t > 0.

We write Φ ∈ △2 if it satisfies the △2 condition. If Φ ∈ △2, then

(3) Φ(a+ b) ≤ Φ(2max(a, b)) ≤ Cmax(Φ(a),Φ(b)) ≤ C(Φ(a) + Φ(b)).

We recall the definitions of two Hardy type operators used in [6]. They
are related to the estimates for the Hadamard, Riemann-Liouville and Weyl
fractional integrals by using the operator of joint weak type.

Let 0 < a, b < ∞. For any f ∈ M, define

Saf(t) =
1

t1/a

∫ t

0
f(s)s1/a

ds

s
,

S̃bf(t) =
1

t1/b

∫ ∞

t
f(s)s1/b

ds

s
.

We now present the modular inequalities for the Hardy type operators Sa

and S̃b.

Theorem 3.3. Let 0 < a ≤ 1 and Φ be a modular function. There exist
constants B,C > 0 such that for any decreasing nonnegative function f ,∫ ∞

0
Φ(Saf(t))dt ≤ B

∫ ∞

0
Φ(Cf(t))dt

if and only if there exist constants H,K > 0 such that

(4) ta
∫ t

0

Φ(y)

ya+1
dy ≤ HΦ(Kt), ∀t > 0.

We write Φ ∈ Ca if Φ satisfies (4).

Let 0 < a0 < a1 ≤ 1. We find that for any t > 0

ta0
∫ t

0

Φ(y)

ya0+1
dy = ta0

∫ t

0
ya1−a0 Φ(y)

ya1+1
dy ≤ ta0ta1−a0

∫ t

0

Φ(y)

ya1+1
dy

= ta1
∫ t

0

Φ(y)

ya1+1
dy.
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Therefore,

(5) Φ ∈ Ca1 ⇒ Φ ∈ Ca0 .

We also have the modular inequality for S̃b.

Theorem 3.4. Let 0 < b < ∞ and Φ be a modular function. There exists
a constant C > 0 such that for any decreasing nonnegative function f ,∫ ∞

0
Φ(S̃bf(t))dt ≤ C

∫ ∞

0
Φ(f(t))dt

if and only if there exists a constant B > 0 such that

(6) tb
∫ ∞

t

Φ(y)

yb+1
dy ≤ BΦ(t), ∀t > 0.

We write Φ ∈ C̃b if Φ satisfies (6).

Let 0 < b0 < b1 ≤ 1. We find that for any t > 0

tb1
∫ ∞

t

Φ(y)

yb1+1
dy = tb1

∫ ∞

t
yb0−b1 Φ(y)

yb0+1
dy ≤ tb1tb0−b1

∫ ∞

t

Φ(y)

yb0+1
dy

= tb0
∫ ∞

t

Φ(y)

yb0+1
dy.

Therefore,

(7) Φ ∈ C̃b0 ⇒ Φ ∈ C̃b1 .

For the proofs of Theorems 3.3 and 3.4, the reader is referred to [6, Theorems
2.1 and 2.3] and [6, Theorem 4.5 (iii)], respectively. Theorems 3.3 and 3.4 are
used in the following section to obtain the main results of this paper.

4. MAIN RESULT

In this section, we establish the main results of this paper, the modular
estimates of the Hadamard, the Riemann-Liouville and the Weyl fractional
integrals.

Theorem 4.1. Let c, γ ∈ R, α > 0, 0 ≤ θ < α and µ, σ ∈ C. Let Φ ∈ △2

be a modular function. Suppose that there exist 1 < β < κ < ∞ such that
Φ ∈ Cβ ∩ C̃κ.

(1) If Re(µ − σ) > c or Re(µ − σ) = c and γ < θ, then there exists a
constant Hθ > 0 depending on θ such that∫ ∞

0
Φ(t−θ(Jα

0+,µ−c;γ,0f)
∗
ω(t))dt ≤ Hθ

∫ ∞

0
Φ(|f(t)|)dt

t
.

(2) If Re(µ − σ) > −c or Re(µ − σ) = −c and γ < θ, then there exists a
constant Hθ > 0 depending on θ such that∫ ∞

0
Φ(t−θ(Jα

−,µ+c;γ,σf)
∗
ω(t))dt ≤ Hθ

∫ ∞

0
Φ(|f(t)|)dt

t
.
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(3) If Re(µ− σ) > c− 1 or Re(µ− σ) = c− 1 and γ < θ, then there exists
a constant Hθ > 0 depending on θ such that∫ ∞

0
Φ(t−θ(Iα0+,µ−c;γ,σf)

∗
ω(t))dt ≤ Hθ

∫ ∞

0
Φ(|f(t)|)dt

t
.

(4) f Re(µ− σ) > 1− c or Re(µ− σ) = 1− c and γ < θ, then there exists
a constant Hθ > 0 depending on θ such that∫ ∞

0
Φ(t−θ(Iα−,µ+c;γ,σf)

∗
ω(t))dt ≤ Hθ

∫ ∞

0
Φ(|f(t)|)dt

t
.

Proof. We just present the proof for (1) as the proofs for (2)-(4) follow
similarly.

Let 1 < pi < qi < ∞, i = 0, 1 be selected so that 1 < p0 < β < κ < p1 < ∞
and

1

p0
− 1

q0
=

1

p1
− 1

q1
= θ.

Since
1

p0
− 1

q0
=

1

p1
− 1

q1
= θ < α,

Theorem 2.2 guarantees that Jα
0+,µ−c;γ,0 : Lpi

ω → Lqi
ω , i = 0, 1 are bounded.

Therefore, Jα
0+,µ−c;γ,0 is of joint weak type (p0, q0, p1.q1) [2, Chapter 4, Theo-

rem 4.11].
Since

m =

1
q0

− 1
q1

1
p0

− 1
p1

= 1,

we have

(8) (Jα
0+,µ−c;γ,0f)

∗
ω(t) ≤ Kθ

(
t
− 1

q0

∫ t

0
s

1
p0 f∗

ω(s)
ds

s
+ t

− 1
q1

∫ t

0
s

1
p1 f∗

ω(s)
ds

s

)
for some Kθ depending on θ.

We find that

t
− 1

q0

∫ t

0
s

1
p0 f∗

ω(s)
ds

s
+ t

− 1
q1

∫ t

0
s

1
p1 f∗

ω(s)
ds

s

= t
1
p0

− 1
q0

1

t
1
p0

∫ t

0
s

1
p0 f∗

ω(s)
ds

s
+ t

1
p1

− 1
q1

1

t
1
p1

∫ t

0
s

1
p1 f∗

ω(s)
ds

s

= tθS 1
p0

f∗
ω(t) + tθS̃ 1

p1

f∗
ω(t).(9)

Therefore, (8) and (9) yield

t−θ(Jα
0+,µ−c;γ,0f)

∗
ω(t) ≤ Kθ

(
S 1

p0

f∗
ω(t) + S̃ 1

p1

f∗
ω(t)

)
.
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By applying the modular
∫∞
0 Φ(·)dt on both sides of the above inequality,

(2) and (3) give∫ ∞

0
Φ(t−θ(Jα

0+,µ−c;γ,0f)
∗
ω(t))dt

≤ Kθ

(∫ ∞

0
Φ(S 1

p0

f∗
ω(t))dt+

∫ ∞

0
Φ(S̃ 1

p1

f∗
ω(t))dt

)
.

As 1 < p0 < β < κ < p1 < ∞, (5) and (7) assure that Φ ∈ Cp0 ∩ C̃p1 .
Consequently, Theorem 3.3 and 3.4 show that∫ ∞

0
Φ(t−θ(Jα

0+,µ−c;γ,0f)
∗
ω(t))dt ≤ Kθ

∫ ∞

0
Φ(Df∗

ω(t))dt

for some D > 0. As Φ ∈ △2, (1) yields∫ ∞

0
Φ(t−θ(Jα

0+,µ−c;γ,0f)
∗
ω(t))dt ≤ Hθ

∫ ∞

0
Φ(|f(x)|)dx

x

for some constant Hθ > 0 depending on θ. □

We have similar results for the Riemann-Liouville integrals and the Weyl
fractional integrals.

Theorem 4.2. Let 0 < α < 1 and let Φ ∈ △2 be a modular function.
Suppose that there exist 1 < β < κ < 1

α such that Φ ∈ Cβ ∩ C̃κ. We have a
constant C > 0 such that∫ ∞

0
Φ(t−α(Rαf)

∗(t))dt ≤ C

∫ ∞

0
Φ(|f(x)|)dx,∫ ∞

0
Φ(t−α(Wαf)

∗(t))dt ≤ C

∫ ∞

0
Φ(|f(x)|)dx.

As the proof for the preceding theorem follows from the proof of Theorem
4.1, for brevity, we skip the details and leave it to the reader.

As an application of Theorem 4.2, we have the modular inequalities for
one-sided fractional maximal operators. For any 0 < α < 1, the one-sided
maximal operators are defined as

(M−
α )f(x) = sup

0<h<x
hα−1

∫ x

x−h
|f(t)|dt,

(M+
α )f(x) = sup

0<h
hα−1

∫ x+h

x
|f(t)|dt.

Since (M−
α )f(x) ≤ (Rα|f |)(x) and (M+

α )f(x) ≤ (Wα|f |)(x), we have the fol-
lowing results.
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Corollary 4.3. Let 0 < α < 1 and let Φ ∈ △2 be a modular function.
Suppose that there exist 1 < β < κ < 1

α such that Φ ∈ Cβ ∩ C̃κ. We have a
constant C > 0 such that∫ ∞

0
Φ(t−α(M−

α f)∗(t))dt ≤ C

∫ ∞

0
Φ(|f(x)|)dx,∫ ∞

0
Φ(t−α(M+

α f)∗(t))dt ≤ C

∫ ∞

0
Φ(|f(x)|)dx.

We now present another application of Theorems 4.1 and 4.2 on the mapping
properties of the Hadamard, the Riemann-Liouville and the Weyl fractional
integrals on Orlicz spaces.

We recall the definition of Orlicz spaces [2, Chapter 4, Definition 8.6].

Definition 4.4. Let µ be a totally σ-finite measure on (0,∞) and let Φ
be a Young’s function. The Orlicz space LΦ(µ) consists of those f ∈ M such
that

∥f∥LΦ(µ) = inf{λ > 0 :

∫ ∞

0
Φ(|f(x)|/λ)dµ ≤ 1} < ∞.

The reader is referred to [20] for the study and applications of Orlicz spaces.
The following gives the definition of the Lorentz-Orlicz space [12, Definition

4.4]. The Lorentz-Orlicz space is used to characterize the mapping properties
of the Hadamard, the Riemann-Liouville and the Weyl fractional integrals on
Orlicz spaces.

Definition 4.5. Let a ∈ R, µ be a totally σ-finite measure on (0,∞) and
Φ be a Young’s function. The Lorentz-Orlicz space LΦ,a(ω) consists of those
f ∈ M such that

∥f∥LΦ,a(µ) = inf{λ > 0 :

∫ ∞

0
Φ(taf∗

µ(t)/λ)dt ≤ 1} < ∞.

When µ is the Lebesgue measure, we write LΦ(µ) = LΦ. LΦ,a(µ) = LΦ,a.
The Lorentz-Orlicz space is a generalization of the Lorentz spaces, see [12].

According to Theorems 4.1, 4.2 and Definition 4.5, we establish the following
mapping properties for the Hadamard, the Riemann-Liouville and the Weyl
fractional integrals on Orlicz spaces.

Corollary 4.6. Let c, γ ∈ b, α > 0, 0 ≤ θ < α and µ, σ ∈ C. Let Φ ∈ △2

be a modular function. Suppose that there exist 1 < β < κ < ∞ such that
Φ ∈ Cβ ∩ C̃κ.

(1) If Re(µ − σ) > c or Re(µ − σ) = c and γ < θ, then there exists a
constant Hθ > 0 depending on θ such that

∥Jα
0+,µ−c;γ,0f∥LΦ,−θ(ω) ≤ Hθ∥f∥LΦ(ω).

(2) If Re(µ − σ) > −c or Re(µ − σ) = −c and γ < θ, then there exists a
constant Hθ > 0 depending on θ such that

∥Jα
−,µ+c;γ,σf∥LΦ,−θ(ω) ≤ Hθ∥f∥LΦ(ω).
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(3) If Re(µ− σ) > c− 1 or Re(µ− σ) = c− 1 and γ < θ, then there exists
a constant Hθ > 0 depending on θ such that

∥Iα0+,µ−c;γ,σf∥LΦ,−θ(ω) ≤ Hθ∥f∥LΦ(ω).

(4) f Re(µ− σ) > 1− c or Re(µ− σ) = 1− c and γ < θ, then there exists
a constant Hθ > 0 depending on θ such that

∥Iα−,µ+c;γ,σf∥LΦ,−θ(ω) ≤ Hθ∥f∥LΦ(ω).

We have the corresponding results for the Riemann-Liouville and Weyl frac-
tional integrals.

Corollary 4.7. Let 0 < α < 1 and let Φ ∈ △2 be a modular function.
Suppose that there exist 1 < β < κ < 1

α such that Φ ∈ Cβ ∩ C̃κ. We have a
constant C > 0 such that

∥Rαf∥LΦ,−α
≤ C∥f∥LΦ

, ∥Wαf∥LΦ,−α
≤ C∥f∥LΦ

.

The above corollaries can also be obtained by using the interpolation de-
veloped in [14, 18]. Furthermore, Corollary 4.7 also yields the mapping prop-
erties for the one-sided maximal operators M−

α and M+
α on Orlicz spaces and

Lorentz-Orlicz spaces. In addition, we can also obtain the mapping properties
for Rα and Wα by using the extrapolation such as the results in [16]. For
simplicity, we skip the details and leave it to the reader.

REFERENCES

[1] K. Andersen and E. Sawyer, Weighted norm inequalities for the Riemann-Liouville and
Weyl fractional integral operators, Trans. Amer. Math. Soc., 308 (1988), 547–558.

[2] C. Bennett and R. Sharpley, Interpolations of Operators, Academic Press, New York,
1988.

[3] B. Bongioanni, Modular inequalities of maximal operators in Orlicz spaces, Rev. Un.
Mat. Argentina, 44 (2003), 31–47.

[4] P. Butzer, A. Kilbas and J. Trujillo, Fractional calculus in the Mellin setting and
Hadamard-type fractional integrals, J. Math. Anal. Appl., 269 (2002), 1–27.

[5] P. Butzer, A. Kilbas and J. Trujillo, Compositions of Hadamard-type fractional integra-
tion operators and the semigroup property, J. Math. Anal. Appl., 269 (2002), 387–400.

[6] M. Carro and H. Heing, Modular inequalities for the Calderón operator, Tohoku Math.
J. (2), 52 (2000), 31–46.

[7] M. Carro and L. Nikolova, Some extensions of the Marcinkiewicz interpolation theorem
in terms of modular inequalities, J. Math. Soc. Japan, 55 (2003), 385–394.

[8] A. Erdelyi, W. Magnus, F. Oberhettinger and F. Tricomi, Higher Transcendental Func-
tions, Vol. 1, McGraw-Hill Book Company, New York, 1953.

[9] J. Hadamard, Essai sur l’étude des fonctions données par leur développement de Taylor,
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