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EXISTENCE OF SOLUTIONS FOR FRACTIONAL
INTEGRO-DIFFERENTIAL EQUATIONS WITH INTEGRAL

BOUNDARY CONDITIONS

AHMED HAMROUNI and SAID BELOUL

Abstract. The aim of this study is to prove the existence of solutions for Ca-
puto boundary value problems of nonlinear fractional integro-differential equa-
tions with integral boundary conditions, by using the measure of non compact-
ness combined with Mönch’s fixed point theorem. Two examples are offered to
demonstrate our outcomes.

MSC 2020. 34A08, 34B15, 34G20, 47H08.

Key words. Fixed point, measure of non compactness, boundary value prob-
lem, Caputo derivative.

1. INTRODUCTION

In recent years, fractional differential equations have attracted the inter-
est of many authors, due their applications in various fields of sciences, as in
physics, chemistry, hydrology, biophysics, thermodynamics, blood flow prob-
lems, statistical mechanics, and control theory. That is, most phenomena can
be represented by fractional differential equations, and some results were given
in this way, for example, see [11,18,19] and the references therein.

Particularly, differential equations with integral boundary conditions have
different applications in applied science such as in underground water flow,
thermo-elasticity, population dynamics, and some results are given in this
way, for instance see [2, 5, 8, 12].

By using Krasnoselskii’s fixed point theorem and the Banach principle, Ah-
mad and Sivasundaram [3] investigated the existence of solutions for the fol-
lowing boundary value problem cDαx(t) = f(t, x(t)) +

∫ t

0
k(t, s, x(s))ds, 0 ≤ t ≤ T, 0 < α < 1,

x(0) = u0 − g(x),

where cDα, 0 < α ≤ 1 is the Caputo fractional derivative and f , g, k are given
continuous functions.
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Abdo et al. [1] used the method of the upper and lower solutions, Schauder
and Banach fixed point theorems to prove the existence and uniqueness of the
solution for the following boundary problem:

cDαx(t) = f(t, x(t)), 0 ≤ t ≤ 1, 1 < α ≤ 2,

x(0) =

∫ 1

0
h(s)g(s, x(s))ds+ λ,

where cDα, 0 < α < 1 is the Caputo fractional derivative, λ ≥ 0 and f is a
given function.

In [10], Hamrouni and Beloul employed Mönch’s fixed point theorem to
discuss the existence of solutions of the following boundary value problem:

cDαx(t) + f(t, x(t),cDαx(t)), 0 ≤ t ≤ 1, 1 < α ≤ 2,

ax(0)− bx′(0) = 0

x(1) =

∫ 1

0
h(s)g(s, x(s))ds+ λ,

where cDα, 1 < α ≤ 2 is the Caputo fractional derivative, f , g, and h are
given by: f : [0, 1]×R → R, g ∈ [0, 1]×R → R, h ∈ L1([0, 1],R), a, b, λ ∈ R+,
a+ b > 0 and a

a+b < α− 1.
Motivated by the above works, in this paper we study the existence of

solutions to the following boundary value problem:
cDαx(t) = f(t, x(t)) +

∫ t

0
k(t, s, x(s))ds, 0 ≤ t ≤ 1, 1 < α ≤ 2,

ax(0)− bx′(0) = 0,

x(1) =

∫ 1

0
h(s)g(s, x(s))ds+ λ,

(1)

where cDα, 1 < α ≤ 2 is the Caputo fractional derivative, f , g, and h are given
functions f : [0, 1]×R → R, g ∈ [0, 1]×R → R, h ∈ L1([0, 1],R), a, b, λ ∈ R+,
a+ b > 0 and a

a+b < α− 1.

2. PRELIMINARIES

Denote by X = C([0, 1],R) the Banach space of all continuous functions
x : [0, 1] −→ R, with the usual supremum norm

∥ x ∥∞= sup{|x(t)|, t ∈ [0; 1]}.
Let L1([0, 1]) be the Banach space of measurable functions x : [0, 1] −→ R
which are Bochner integrable, equipped with the norm

∥ x ∥L1=

∫ 1

0
|x(t)|dt.

Let us recall some fundamental facts about the Kuratowski measure of non
compactness.
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Definition 2.1 ([4]). Let E be a Banach space and ΩE the bounded subsets
of E. The Kuratowski measure of non compactness is the map α : ΩE → [0,∞]
defined by

µ(B) = lim inf{ϵ > 0 : B ⊆ ∪n
i=1Bi, diam(Bi) ≤ ϵ}, B ∈ ΩE ,

where
diam(Bi) = sup{∥u− v∥E : u, v ∈ Bi}.

Lemma 2.2 ([4]). Let A and B be two bounded sets.

(1) µ(B) = 0 ⇒ B is relatively compact.
(2) µ(B) = µ(B).
(3) A ⊂ B ⇒ µ(A) ≤ µ(B).
(4) µ(A+B) ≤ µ(A) + µ(B).
(5) µ(cB) ≤ |c|µ(B), c ∈ R.
(6) µ(convB) = µ(B).

Lemma 2.3 ([6]). Let X be a Banach space, If V ⊆ C([[a, b], X) is equicon-
tinuous and bounded, then µ(V (t)) is continuous and

µ

(∫ t

a
V (s)ds

)
≤
∫ t

a
µ(V (s))ds,

where

∫ t

a
V (s)ds =

{∫ t

a
x(s)ds, x ∈ V

}
.

Now, we give some definitions and properties of the Riemann-Liouville and
Caputo derivatives of fractional order.

Definition 2.4 ([13]). The fractional integral of order α > 0 of the function
h ∈ L1([a, b],R+) is defined by

Iα0+h(t) =
1

Γ(α)

∫ t

0

h(s)

(t− s)1−α
ds,

where Γ(α) denotes the classical gamma function, provided that the right hand
side is defined on (0,∞).

Definition 2.5 ([13]). For a given function f : (0,∞) → R, the Riemann-
Liouville fractional derivative of order α > 0 of x is defined by

Dα
0+x(t) =

1

Γ(α− n)

∫ t

0

x(n)(s)

(t− s)α−n+1
ds,

where n = [α] + 1, [α] denotes the integer part of α.

Definition 2.6 ([13]). The Caputo fractional derivative of order α > 0 of
a function x : (0,∞) → R is defined by

cDαx(t) =
1

Γ(n− α)

∫ t

0
(t− s)n−α−1x(n)(s)ds,

where n = [α] + 1, provided that the right side is pointwise defined on (0,∞).
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Lemma 2.7 ([13]). Let α be a non negative real number, then the differential
equation

cDαx(t) = 0

has a solution given by:

x(t) =

n−1∑
i=0

cit
i, ci ∈ R, i = 0, 1, ..., n− 1, n = [α] + 1.

Lemma 2.8 ([7]). Let α > 0, then

Iα(cDαx(t)) = x(t) + c0 + c1t+ c2t
2 + ...+ cn−1t

n−1,

ci ∈ R, i = 0, 1, ..., n− 1, n = [α] + 1.

Theorem 2.9 ([17]). Let C be a bounded, closed and convex subset of a
Banach space such that 0 ∈ C, and let T : C → C be a continuous mapping.
If the implication

V = convT (V ) or V = T (V ) ∪ 0 ⇒ µ(V ) = 0

holds for every subset V of C, then T has a fixed point.

3. MAIN RESULTS

Lemma 3.1. A function x is a solution of (1) if and only if it is a solution
of the following integral equation:

x(t) =
1

Γ(α)

[∫ t

0
(t− s)α−1

(
f(s, x(s)) +

∫ s

0
k(s, τ, x(τ))dτ

)
ds

]
+
at+ b

a+ b

[ ∫ 1

0
h(s)g(s, x(s))ds+ λ− 1

Γ(α)

( ∫ 1

0
(1− s)α−1f(s, x(s))ds

+

∫ 1

0
(1− s)α−1

∫ s

0
k(s, τ, x(τ)dτds

]
.

Proof. Assume x satisfies (1), then from Lemma 2.8 we have

Iα(cDαx(t)) = x(t)− c0 − c1t

=
1

Γ(α)

[∫ t

0
f(s, x(s))ds+

∫ t

0

∫ s

0
k(s, τ, x(τ)dτds

]
,

which implies that

x(t) = c0 + c1t+
1

Γ(α)

[∫ t

0
f(s, x(s))ds+

∫ t

0

∫ s

0
k(s, τ, x(τ)dτds

]
.

Applying the boundary conditions, we find

ax(0)− bx′(0) = ac0 − bc1 = 0
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and

x(1) = c0 + c1

+
1

Γ(α)

[∫ 1

0
(1− s)α−1f(s, x(s))ds+

∫ 1

0
(1− s)α−1

∫ s

0
k(s, τ, x(τ)dτds

]

=

∫ 1

0
h(s)g(s, x(s))ds+ λ,

then

c0 =
b

a+ b

[ ∫ 1

0
h(s)g(s, x(s))ds+ λ

− 1

Γ(α)

( ∫ 1

0
(1− s)α−1f(s, x(s))ds+

∫ 1

0
(1− s)α−1

∫ s

0
k(s, τ, x(τ)dτds

)
and

c1 =
a

a+ b

[ ∫ 1

0
h(s)g(s, x(s))ds+ λ

− 1

Γ(α)

( ∫ 1

0
(1− s)α−1f(s, x(s))ds+

∫ 1

0
(1− s)α−1

∫ s

0
k(s, τ, x(τ)dτds

)
.

Consequently, we obtain

x(t) =
1

Γ(α)

( ∫ t

0
(t− s)α−1f(s, x(s))ds+

∫ t

0
(t− s)α−1

∫ s

0
k(s, τ, x(τ)dτds

)
+
at+ b

a+ b

[ ∫ 1

0
h(s)g(s, x(s))ds+ λ

− 1

Γ(α)

( ∫ 1

0
(1− s)α−1f(s, x(s))ds+

∫ 1

0
(1− s)α−1

∫ s

0
k(s, τ, x(τ)dτds

)
.

Then we can write

x(t) =

∫ 1

0
G(t, s)

(
f(s, x(s)) +

∫ s

0
k(s, τ, x(τ))dτ

)
ds

+
at+ b

a+ b

(∫ 1

0
h(s)g(s, x(s))ds+ λ

)
,

where G is the Green function given by:

(2)

G(t, s) =
1

(a+ b)Γ(α)

·

{
(a+ b)(t− s)α−1 + (at+ b)(1− s)α−1, 0 ≤ s ≤ t ≤ 1,

(at+ b)(1− s)α−1, 0 ≤ t ≤ s ≤ 1.

□
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Lemma 3.2. The function G defined by (2) satisfies

G(t, s) ≤ 2(1− s)α−1

Γ(α)
.

Proof. If 0 ≤ s ≤ t ≤ 1, then

G(t, s) =
1

(a+ b)Γ(α)

[
(a+ b)(t− s)α−1 + (at+ b)(1− s)α−1

]
≤ 1

(a+ b)Γ(α)

[
(a+ b)(t− s)α−1 + (a+ b)(1− s)α−1

]
≤ 1

Γ(α)

[
(t− s)α−1 + (1− s)α−1

]
≤ 1

Γ(α)

[
(1− s)α−1 + (1− s)α−1

]
=

2(1− s)α−1

Γ(α)
.

If 0 ≤ t ≤ s ≤ 1, then

G(t, s) =
1

(a+ b)Γ(α)

[
(at+ b)(1− s)α−1

]
≤ 1

(a+ b)Γ(α)

[
(a+ b)(1− s)α−1

]
≤ 1

Γ(α)
(1− s)α−1

≤ 2(1− s)α−1

Γ(α)
. □

Now, we assume that:

(A1) There exists φ ∈ L∞([0, 1]), such that

|f(t, x(t))− f(t, y(t)| ≤ φ(t)|x− y|

and for each bounded subset A of X, we have

γ(f(t, A)) ≤ φ0γ(A).

(A2) There exists ϕ ∈ L∞([0, 1]), such that

|k(t, s, u(s))− k(t, s, v(s)| ≤ ϕ(t)|u− v|

and for each bounded subset B of X, we have

γ(k(t, s, B)) ≤ ϕ0γ(B).

(A3) There exists ψ ∈ L∞([0, 1]), such that

|g(t, x(t))− g(t, y(t)| ≤ ψ(t)|x− y|
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and for each bounded subset B of X, we have

γ(g(t, C) ≤ ψ0γ(C),

where φ0 = sup
t∈[0,1]

|φ(t)|, ψ0 = supt∈[0,1] |ψ(t)| and ϕ0 = sup
t∈[0,1]

|ϕ(t)|.

Theorem 3.3. Under the assumptions (A1) − (A3) the problem (1) has a
solution provided

2

Γ(α+ 1)
(φ0 + ϕ0) + ∥h∥L1ψ0 + λ < 1.

Proof. Define an operator T : X −→ X by

Tx(t) =

∫ 1

0
G(t, s)

(
f(s, x(s)) +

∫ s

0
k(s, τ, x(τ))dτ

)
ds

+
at+ b

a+ b

(∫ 1

0
h(s)g(s, x(s))ds+ λ

)
.

Clearly, the fixed points of the operator T are solutions of problem (1). We
show that T satisfies the assumptions of Theorem 3.3. The proof will be given
in three steps.

Step 1. T is continuous.
Let (xn) be a sequence such that xn −→ x in C([0, 1],R). Then for each

t ∈ [0, 1] we have

|T (xn)(t)− T (x)(t)| ≤
∫ 1

0
|G(t, s)||f(s, xn(s))− f(s, x(s))|ds

+

∫ 1

0
|G(t, s)|

∫ s

0
|k(s, τ, xn(τ))− k(s, τ, x(τ))|dτ

+

∫ 1

0
|h(s)||g(s, xn(s))− g(s, x(s))|ds.

Assumptions (A1), (A2) and (A3) give:

|T (xn)(t)− T (x)(t)| ≤
∫ 1

0
|G(t, s)|φ0|xn(s)− x(s)|ds

+

∫ s

0
ϕ0|xn(s)− x(s)|dτ +

∫ 1

0
|h(s)|ψ0

∣∣xn(s)− x(s)
∣∣ds

≤
[

2

Γ(α+ 1)
(φ0 + ϕ0) + ∥h∥L1ψ0

]
|xn(s)− x(s)|.

Then

∥T (xn)(t)− T (x)(t)∥∞ ≤
[

2

Γ(α+ 1)
(φ0 + ϕ0) + |h∥L1ψ0

]
∥xn(s)− x(s)∥∞.
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Since xn −→ x, for each t ∈ [0, 1], we get

∥T (xn) (t)− T (x)(t)∥ −→ 0, when n −→ ∞.

Therefore, T is continuous.

Let r be a constant such that

2

Γ(α+ 1)
[(φ0 + ϕ0)r + f∗ + k∗] + ∥h∥L1ψ0r + g∗ + λ ≤ r,

where

f∗ = sup
t∈[0,1]

|f(t, 0)|, g∗ = sup
s∈[0,1]

|g(s, 0)|, and k∗ = sup
t∈[0,1]

|k(t, 0, 0)|.

Let Br = {x ∈ C([0, 1],R) : ∥x∥ ≤ r}. It is clear that Br is a bounded
subset, closed and convex of X.

Step 2. T (Br) ⊆ Br.
Let x be an element of Br, we show that Tx ∈ Br. In fact, for each t ∈ [0, 1]

we have

|T (x)(t)| =
∣∣∣ ∫ 1

0
G(t, s)f(s, x(s))ds

+

∫ 1

0

∫ s

0
G(t, s)k(s, τ, x(τ))dτds+

at+ b

a+ b

(∫ 1

0
h(s)g(s, x(s))ds+ λ

) ∣∣∣.
By (A1), (A2) and (A3), for each t ∈ [0, 1] we have

(3)

|f(t, x(t))| = |f(t, x(t))− f(t, 0) + f(t, 0)|
≤ |f(t, x(t))− f(t, 0)|+ |f(t, 0)|
≤ φ0|x|+ f∗,

(4)

|k(t, s, x(s))| = |k(t, s, x(s))− k(t, 0, 0) + k(t, 0, 0)|
≤ |k(t, s, x(s))− k(t, 0, 0)|+ |k(t, 0, 0)|
≤ ϕ0|x|+ k∗

and

(5)

|g(t, x(t))| = |g(t, x(t))− g(t, 0) + g(t, 0)|
≤ |g(t, x(t))− g(t, 0)|+ |g(t, 0)|
≤ ψ0|x|+ g∗.

Then we have

∥Tx(t)∥ ≤ 2

Γ(α)
((φ0 + ϕ0))r + f∗ + k∗) + (∥h∥L1ψ0r + g∗) + λ.

It follows that for each t ∈ [0, 1] we have ∥Tx(t)∥ ≤ r, which implies

T (Br) ⊂ Br.
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Step 3. TBr is bounded and equicontinuous.
According to Step 2, we have

TBr = {Tx : x ∈ Br} ⊂ Br.

So for every x ∈ Br we have ∥T (x)∥∞ ≤ r, which implies that TBr is bounded.
Let t1, t2 ∈ [0, 1] with t1 < t2 and x ∈ TBr, so we have

|T (x)(t2)− T (x)(t1)|

=
∣∣∣ ∫ 1

0
G(t2, s)

[
f(s, x(s)) +

∫ s

0
k(s, τ, x(τ))dτ

]
ds

+
at2 + b

a+ b

(∫ 1

0
h(s)g(s, x(s))ds+ λ

)
−
∫ 1

0
G(t1, s)

[
f(s, x(s))

+

∫ s

0
k(s, τ, x(τ))dτ

]
ds+

at1 + b

a+ b

(∫ 1

0
h(s)g(s, x(s))ds+ λ

) ∣∣∣
≤
∣∣∣ ∫ 1

0
|G(t2, s)−G(t1, s)|

∣∣∣∣f(s, x(s)) + ∫ s

0
|k(s, τ, x(τ))dτ

∣∣∣∣ ds
+

a

a+ b

∫ 1

0
|h(s)g(s, x(s))(t2 − t1)|ds+ λ

a

a+ b

∣∣∣t2 − t1)
∣∣∣

≤
∫ 1

0
|G(t2, s)−G(t1, s)| |f(s)|ds

+
a|t2 − t1|
a+ b

∫ 1

0
|h(s)||g(s, x(s))|ds+ λ

a

a+ b
|t2 − t1|.

According to (3), (4) and (5), we have

∥T (x)(t2)− T (x)(t1)∥ ≤ ((φ0 + ϕ0)r + f∗ + k∗)

∫ 1

0
[|G(t2, s)−G(t1, s)|] ds

+
a(ψ0r + g∗)

a+ b
∥h(s)∥L1 |t2 − t1|ds+ λ

a

a+ b
|t2 − t1|.

As t2 −→ t1, the right hand side of the above inequality tends to zero, since
G is uniformly continuous (a continuous on a compact) and |t2 − t1| → 0.
Then TBr is equicontinuous.

Let V ⊂ TBr, such that V = {Tx, x ∈ Br} so V ⊂ conv(T (V ) ∪ {0}). The
subset V is bounded and equicontinuous, then from Lemma 2.3 the function
v : t 7−→ µ(V (t)) ∈ R is continuous on [0, 1]. From Lemma 2.3 and the
properties of the measure µ, we get

v(t) = µ(V (t)) ≤ µ
(
TV (t) ∪ {0}

)
≤ µ(TV (t)).
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So, we have

µ(TV (t)) = µ
(
Tx(t), x ∈ V

)
= µ

(∫ 1

0
G(t, s)

[
f(s, x(s)) +

∫ s

0
|k(s, τ, x(τ))dτ

]
ds

+
at+ b

a+ b

(∫ 1

0
h(s)g(s, x(s))ds+ λ

)
, x ∈ V

)
≤ µ

(∫ 1

0
G(t, s)

[
f(t, x(t)) +

∫ s

0
|k(s, τ, x(τ))dτ

]
ds, x ∈ V

)
+ ∥h∥L1µ

(∫ 1

0
g(s, x(s))ds, x ∈ V

)

≤
∫ 1

0
|G(t, s)|µ

(
f(t, x(t)) +

∫ s

0
|k(s, τ, x(τ))dτ

)
ds

+ ∥h∥L1

∫ 1

0
µ(g(s, x(s)))ds.

Then by (A1), (A2), (A3) and by the properties of the measure of non-
compactness, we get:

µ
(
f(t, x(t)) +

∫ s

0
|k(s, τ, x(τ))dτ

)
≤ φ0µ(x(t)) + ϕ0µ(x(t))

≤ (φ0 + ϕ0)µ(x(t))

and

µ
(
g(x(s))

)
≤ ψ0µ(x(s)),

Then

µ
(
T (V )(t)

)
≤ (φ0 + ϕ0)

∫ 1

0
G(t, s)µ(x(s))ds+

at+ b

a+ b

(
ψ0

∫ 1

0
h(s)µ(x(s))ds+ λ

)
≤ 2

Γ(α+ 1)
(φ0 + ϕ0)

∫ 1

0
(1− s)α−1v(s)ds+ ψ0∥h∥L1

∫ 1

0
v(s)ds)

≤
(

2

Γ(α+ 1)
(φ0 + ϕ0) + ψ0∥h∥L1

)
∥v∥∞,

which implies

∥v∥∞ ≤
(

2

Γ(α+ 1)
(φ0 + ϕ0) + ψ0∥h∥L1

)
∥v∥∞.

Hence ∥v∥∞ = 0, thus v(t) = 0 for each t ∈ [0, 1], which implies V (t) is
relatively compact in X. From the theorem of Ascoli-Arzela, V is relatively
compact in Br.
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Applying now Mönch’s theorem, we conclude that T has a fixed point, which
is a solution of the problem (1). □

Finally, we present the two following examples to illustrate our main results.

Example 3.4. Let us consider the following fractional boundary value prob-
lem: 

cD
3
2x(t) =

1

10

t

1 + t2
x(t) +

1

10

∫ t

0
e−t sx(s)

1 + |x(s)|
ds, t ∈ [0, 1]

x(0)− 5x′(0) = 0

x(1) =
1

10

∫ 1

0
sx(s)ds

where

f(t, x) =
1

10

t

1 + t2
x(t), k(t, s, x) =

1

10
e−t sx(s)

1 + |x(s)|
,

t ∈ [0, 1], x ∈ C([0, 1], X),

h(s) = s, g(s, x) =
sx(s)

10
, g ∈ C(X,X), α = 1.5, a = 1, b = 5.

Clearly
a

a+ b
< α− 1, hence

|f(t, x)− f(t, y)| ≤ 1

10

t

1 + t2

∣∣∣∣ t

1 + t2
x− 1

10

t

1 + t2
y

∣∣∣∣
≤ 1

10

t

1 + t2
|x− y|,

|k(t, s, x)− k(t, s, y)| = 1

10
e−t

∣∣∣∣ sx

1 + |x|
− sy

1 + |y|

∣∣∣∣
≤ 1

10
e−t |x− y|

(1 + |x|)(1 + |y|)

≤ 1

10
e−t|x− y|,

|g(t, x)| =
∣∣∣∣ tx10 − ty

10

∣∣∣∣ ≤ t

10
|x− y|.

Then for

φ(t) =
1

10

t

1 + t2
, ϕ(t) =

1

10
e−t, ψ(t) =

t

10
and

φ0 =
1

20
, ϕ0 =

1

10
, ψ0 =

1

10
,

all the conditions (A1), (A2) and (A3) are satisfied and

2

Γ(α)
(φ0 + ϕ0) + ∥h∥L1ψ0 + λ ∼= 0.308 < 1.
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Hence, problem (1) admits at least one solution on [0, 1].

Example 3.5. Consider the following fractional boundary value problem:

cD
3
2x(t) =

1

10

t

1 + t2
x(t) +

2 4
√
3

30

∫ t

0
e−t arctan(t+ sin t+ x(s))ds, t ∈ [0, 1]

x(0)− 5x′(0) = 0

x(1) =
2

5

∫ 1

0

1

(s+ 1)2

(
x(s) +

√
1 + x2(s)

)
ds,

where

f(t, x) =
1

10

t

1 + t2
x(t), k(t, s, x) =

2 4
√
3

30
e−t arctan(t+ sin t+ x(s)),

t ∈ [0, 1], x ∈ C([0, 1], X),

h(s) = s, g(s, x) =
2

5

1

(s+ 1)2

(
x(s) +

√
1 + x2(s)

)
, g ∈ C(X,X),

α = 1.5, a = 1, b = 5. Clearly
a

a+ b
< α− 1, hence

|f(t, x)− f(t, y)| ≤ 1

10

∣∣∣∣ t

1 + t2
x− 1

10

t

1 + t2
y

∣∣∣∣
≤ 1

10

t

1 + t2
|x− y|.

In fact, observe first that using standard tools of differential calculus we can
easily show that

|k(t, s, x)− k(t, s, y)| ≤ 1

10
e−t|x− y|

|g(t, x)− g(t, y)| = 2

5

1

(t+ 1)2

∣∣∣∣12(x− y +
√
1 + x2 −

√
1 + y2

∣∣∣∣
=

2

5

1

(t+ 1)2

∣∣∣∣∣12(x− y)

(
1 +

x+ y
√
1 + x2 +

√
1 + y2

)∣∣∣∣∣
≤ 1

10

1

(t+ 1)2
|x− y|.

By considering

φ(t) =
1

10

t

1 + t2
, ϕ(t) =

1

10
e−t, ψ(t) =

1

10(t+ 1)2
,

φ0 =
1

20
, ϕ0 =

1

10
, ψ0 =

1

10
and

2

Γ(α+ 1)
(φ0 + ϕ0) + ∥h∥L1ψ0 + λ ∼= 0.308 < 1.
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Then all the conditions of Theorem 3.3 are satisfied, and such, problem (1)
has a solution in X.

4. CONCLUSIONS

In this paper we have proved an existence theorem of the solution for a
boundary valued problem of nonlinear fractional integro-differential equations
with integral boundary conditions. The technique is based on the measure of
non compactness combined with Mönch’s fixed point theorem. We also gave
two numerical examples to illustrate the validity of our findings. Our research
encourages the use of this method in the investigation of the existence problems
and the stability of the solution for some problems.
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