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AN IMPROVEMENT OF CAUCHY RADIUS
FOR THE ZEROS OF A POLYNOMIAL

SUBHASIS DAS

Abstract. For a given polynomial

p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0

of degree n with complex coefficients, the Cauchy radius r0 is a unique positive
root of the equation

|an| tn −
(
|an−1| tn−1 + |an−2| tn−2 + · · ·+ |a1| t+ |a0|

)
= 0.

It refers to a radius of the circular region |z| ≤ r0 in which all the zeros of p(z) lie.
The basic aim has been to determine the smallest radius, thereby, minimizing
the area of the circular region. In this present paper, we have obtained a result
which gives an improvement of the Cauchy radius. Also, we produce an annular
region whose center is different from the origin in which the zeros of p(z) lie.
Moreover, in many cases, our results give better approximations for estimating
the region of polynomial zeros than that obtained from many other well-known
results.
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1. INTRODUCTION AND STATEMENT OF RESULTS

Let

p (z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0

be a polynomial of degree n with complex coefficients. Concerning the bounds
for the moduli of the zeros of p(z), Cauchy [3] (see also [12, Chapter VII,
Section 27, Theorem 27.1]) introduced the following result.

Theorem 1.1 ([12]). All the zeros of p(z) lie in the closed circular region

|z| ≤ r0,

where r0 (also called Cauchy radius of p(z) and is denoted by ρ[p(z)]) is the
only positive root of the equation

|an| tn −
(
|an−1| tn−1 + |an−2| tn−2 + · · ·+ |a1| t+ |a0|

)
= 0.
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An improvement of Cauchy radius of p(z) was found in [14, Theorem 8.3.1]
by Rahman and Schmeisser that can be written as follows.

Theorem 1.2 ([14]). All the zeros of p(z) lie in the closed circular region

|z| ≤ ρ
[(

anz
k − an−k

)
p (z)

]
,

where k is the smallest positive integer such that an−k ̸= 0. Moreover

ρ
[(

anz
k − an−k

)
p (z)

]
≤ ρ [p (z)] .

In the literature there are some results (see [1, 4, 7–9, 13–15]) on the refine-
ment and improvement of Theorem 1.1.

In this paper, we have obtained some new results on polynomial zeros. The
upper bound of our first result gives an improvement of the Cauchy radius
of p(z) in Theorem 1.1. The second result produces a circular or an annular
region whose center is different from the origin. More precisely, we prove the
following.

Theorem 1.3. All the zeros of p(z) lie in the closed circular region

|z| ≤ t0,

where t0 is an unique positive root of the equation

|an|2 t2n −
n∑

j=1

|cn−j | tn−j = 0, where cn−j =

n−j∑
k=0

akλn−j−k; j = 1, 2, . . . , n

and the values λ0, λ1, λ2, . . . , λn−1 are determined by solving the n equations

j∑
k=0

an−j+kλn−k = 0; j = 1, 2, . . . , n

with λn = an. Moreover, when a0 ̸= 0, the zeros of p (z) lie in the closed
annular region

1

t′0
≤ |z| ≤ t0,

where t′0 is an unique positive root of the equation

|a0|2 t2n −
n∑

j=1

∣∣c∗j ∣∣ tn−j = 0,

where

c∗j =

n−j∑
k=0

an−kλ
∗
j+k; j = 1, 2, . . . , n

and the values λ∗
1, λ

∗
2, . . . , λ

∗
n are determined by solving the n equations

j∑
k=0

aj−kλ
∗
k = 0; j = 1, 2, . . . , n
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with λ∗
0 = a0.

Using Theorem 1.3, we obtain the following result.

Theorem 1.4. All the zeros of p(z) lie in the closed circular region

|z − z∗0 | ≤ ρ0,

where ρ0 is an unique positive root of the equation

|an|2 t2n −
n∑

j=1

|cn−j | tn−j = 0, where cn−j =

n−j∑
k=0

dkλn−j−k; j = 1, 2, . . . , n

and the values λ0, λ1, λ2, . . . , λn−1 are determined by solving the n equations

j∑
k=0

dn−j+kλn−k = 0; j = 1, 2, . . . , n with λn = dn = an,

dp =

(
n

n− p

)
an (z

∗
0)

n−p +

(
n− 1

n− p− 1

)
an−1 (z

∗
0)

n−p−1 + · · ·

+

(
n− k

n− p− k

)
an−k (z

∗
0)

n−p−k + · · ·+
(
p+ 1

1

)
ap+1z

∗
0 +

(
p

0

)
ap;

p = 0, 1, 2, . . . , n

with (
0

0

)
= 1, (z∗0)

0 = 1,

(
r

−j

)
= 0,

(
r

0

)
= 1; r, j = 1, 2, . . . , n,

and
z∗0 = −an−1

nan
.

Moreover, when d0 ̸= 0, the zeros of p(z) lie in the closed annular region

1

ρ′0
≤ |z − z∗0 | ≤ ρ0,

where ρ′0 is an unique positive root of the equation

|d0|2 t2n −
n∑

j=1

∣∣c∗j ∣∣ tn−j = 0,

where

c∗j =

n−j∑
k=0

dn−kλ
∗
j+k; j = 1, 2, . . . , n

and the values λ∗
1, λ

∗
2, . . . , λ

∗
n are determined by the n equations

j∑
k=0

dj−kλ
∗
k = 0; j = 1, 2, . . . , n

with λ∗
0 = d0.
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In the particular case when an−1 = 0, Theorem 1.4 reduces to Theorem 1.3.

Remark 1.5. The result in Theorem 1.3 attains its limits (both lower and
upper bounds) by the polynomial p (z) = anz

n + an−1z
n−1 + · · · + a1z + a0,

where a0 = a1 = · · · = an−1 = an = 1 which can be seen by observing
that λn = λ∗

n = 1, λn−1 = λ∗
n−1 = −1, λj = λ∗

j = 0; j = 0, 1, . . . , n − 2 and

|an| = |a0| = 1, |cn−1| = |c∗1| = 1, |cn−j | =
∣∣∣c∗j ∣∣∣ = 0; j = 2, 3, . . . , n, and

therefore, t0 = t′0 = 1.

Remark 1.6. For a0 = 0, Theorem 1.3 and Theorem 1.1 never produce an
annular region with the center in the origin for the location of zeros of p(z).
Here, both theorems give a circular region for polynomial zeros with center in
the origin. However, when an−1 ̸= 0, Theorem 1.4 produces an annular region
of zeros of p(z) with center

z∗0 = −an−1

nan
,

even though a0 = 0.

Remark 1.7. In many cases, our results give better regions related with the
Cauchy region and its subsequent refinements. To illustrate this, we consider
two types of polynomial, one having no gaps and the other whose second
highest term is absent i.e., Lacunary type [12, Ch. VIII, Sect. 34, p. 156]
defined by

p (z) = z6 + 6z5 − 49z4 − 374z3 + 216z2 + 5600z + 9600

and

P (z) = z5 + 2z3 + 3z2 + 4z + 5,

respectively.

We see that all the zeros of p(z) lie in the following regions.

(i) |z| ≤ 12.6028, by Theorem 1.1,
(ii) |z| ≤ 10.8869, by Theorem 1.2,
(iii) |z| ≤ 9.8240, by Melman [13, Theorem 3.1] (which is the smallest),
(iv) |z| < 24.5705, by Sun and Hsieh [15, Theorem 1],
(v) |z| < 31.9259, by Bairagi, Jain, Mishra and Saha [1, Corollary 1.1],
(vi) |z| ≤ 14.5184, by Jain [9, Theorem 1],
(vii) |z| < 14.2048, by Lagrange [11] (see also [2, Theorem 1.1]),
(viii) |z| ≤ 14.1031, by Batra, Mignotte and S, tefănescu [2, Theorem 3.1],
(ix) |z| ≤ 101.511, by Dehmer and Mowshowitz [7, Theorem 2],
(x) |z| < 240.6768, by Dehmer and Mowshowitz [7, Theorem 3],
(xi) 2.1576 ≤ |z| ≤ 7.9261, by Theorem 1.3,
(xii) 1.5866 ≤ |z + 1| ≤ 8.1813, by Theorem 1.4.



5 An improvement of Cauchy radius for the zeros of a polynomial 233

Again, using either Theorem 1.3 or Theorem 1.4, all the zeros of P (z) lie in

1.0278 ≤ |z| ≤ 1.7803,

whereas the regions obtained by previous well-known results are as follows:

(i) |z| ≤ 2.1719, by Theorem 1.1,
(ii) |z| ≤ 1.7863, by Theorem 1.2,
(iii) |z| ≤ 1.8932, by Melman [13, Theorem 3.1] (which is the smallest),
(iv) |z| ≤ 5.9993, by Datt and Govil [5, Theorem 1],
(v) |z| ≤ 2.8564, by Lagrange [11] (see also [2, Theorem 1.1]),
(vi) |z| ≤ 2.8425, by Batra, Mignotte and S, tefănescu [2, Theorem 3.1],
(vii) |z| ≤ 5.9482, by Jain [8, Theorem 1],
(viii) |z| < 2.2566, by Jain [9, Theorem 1],
(ix) |z| < 2.3507, by Bairagi, Jain, Mishra and Saha [1, Theorem 1.5],
(x) |z| ≤ 2.3744, by Sun and Hsieh [15, Theorem 1],
(xi) |z| ≤ 5.9993, by Dehmer [6, Theorem 3.2],
(xii) |z| ≤ 5.9998, by Dehmer [6, Theorem 3.3].

2. PROCEDURE TO DETERMINE T0 AND T ′
0 IN THEOREM 1.3

We can easily determine the values of t0 and t′0 in Theorem 1.3 by the
following steps:

Step 1. For a given polynomial

p (z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0

with a0 ̸= 0, let us construct two lower triangular matrices A and A
∗
with

diagonal elements an and a0 respectively as follows:

A =



an 0 0 · · · 0 0 0
an−1 an 0 · · · 0 0 0
an−2 an−1 an · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · ·
a2 a3 a4 · · · an 0 0
a1 a2 a3 · · · an−1 an 0
a0 a1 a2 · · · an−2 an−1 an


(n+1)×(n+1)

and

A
∗
=



a0 0 0 · · · 0 0 0
a1 a0 0 · · · 0 0 0
a2 a1 a0 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · ·
an−2 an−3 an−4 · · · a0 0 0
an−1 an−2 an−3 · · · a1 a0 0
an an−1 an−2 · · · a2 a1 a0


(n+1)×(n+1)
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Step 2. Determine

λ = [λn, λn−1, · · · , λ0]
(n+1)×1

and λ
∗
= [λ∗

0, λ
∗
1, · · · , λ∗

n](n+1)×1

by solving the equations

A.λ = b and A
∗
.λ

∗
= b

∗
,

where

b =
[
a2n, 0, · · · , 0

]
(n+1)×1

and b
∗
=
[
a20, 0, · · · , 0

]
(n+1)×1

respectively.

Step 3. Determine the co-factors of (1, 1) entries with respect to A and

A
∗
, which are denoted by Aan(1,1) and A

∗
a0(1,1), respectively, and obtain the

transpose of Aan(1,1) and A
∗
a0(1,1) given by

A
T
an(1,1) =



an an−1 an−2 · · · a3 a2 a1
0 an an−1 · · · a4 a3 a2
0 0 an · · · a5 a4 a3
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · an an−1 an−2

0 0 0 · · · 0 an an−1

0 0 0 · · · 0 0 an


n×n

and

A
∗T
a0(1,1) =



a0 a1 a2 · · · an−3 an−2 an−1

0 a0 a1 · · · an−4 an−3 an−2

0 0 a0 · · · an−5 an−4 an−3

· · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · a0 a1 a2
0 0 0 · · · 0 a0 a1
0 0 0 · · · 0 0 a0


n×n

,

respectively.

Step 4. Determine

c = [cn−1, cn−2, · · · , c0]n×1 and c∗ = [c∗1, c
∗
2, · · · , c∗n]n×1

which are obtained from

c = A
∗T
a0(1,1)

.λn and c∗ = A
T
an(1,1).λ

∗
0,

where

λn = [λn−1, λn−2, · · · , λ0]n×1
and λ

∗
0 = [λ∗

1, λ
∗
2, · · · , λ∗

n]n×1 ,

respectively.
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Step 5. Determine an unique positive roots t0 and t′0 by solving the equa-
tions

|an|2 t2n −
n∑

j=1

|cn−j | tn−j = 0 and |a0|2 t2n −
n∑

j=1

∣∣c∗j ∣∣ tn−j = 0,

respectively.
Also, for finding ρ0 and ρ′0 from Theorem 1.4, at first, we calculate the dj ’s

by the following rule

dp =

(
n

n− p

)
an (z

∗
0)

n−p +

(
n− 1

n− p− 1

)
an−1 (z

∗
0)

n−p−1 + · · ·

+

(
n− k

n− p− k

)
an−k (z

∗
0)

n−p−k + · · ·+
(
p+ 1

1

)
ap+1z

∗
0 +

(
p

0

)
ap;

p = 0, 1, 2, . . . , n,

with (
0

0

)
= 1, (z∗0)

0 = 1,

(
r

−j

)
= 0,

(
r

0

)
= 1; r, j = 1, 2, . . . , n,

and

z∗0 = −an−1

nan
.

Now, set

aj = dj ; j = 1, 2, . . . , n

and obtain t0 and t′0 by using the above steps (Step 1 to Step 5), and set
ρ0 = t0 and ρ′0 = t′0 respectively.

3. AN IMPROVEMENT OF THE CAUCHY RADIUS

In this section, we establish that the new upper bounds of Theorem 1.3 are
an improvement of the Cauchy radius of p(z). For this, it is sufficient to prove
ρ[λ (z) p (z)] ≤ ρ[p (z)], i.e., t0 ≤ r0. From Theorem 1.3, it is clear that the
upper bound is the Cauchy radius t0 of λ (z) p (z) which is an unique positive
root of the equation H (t) = 0, where

H (t) = |an|2 t2n −R (t) , R (t) =
n∑

j=1

|cn−j | tn−j .

Now

R (r0) =
n∑

j=1

|cn−j | rn−j
0 =

n∑
j=1

∣∣∣∣∣
n−j∑
k=0

akλn−j−k

∣∣∣∣∣ rn−j
0

≤
n∑

j=1

(
n−j∑
k=0

|ak| |λn−j−k|

)
rn−j
0 =

n−1∑
k=0

|λk| rk0

n−k−1∑
j=0

|aj | rj0

 .
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So,

|an|2 r2n0 −R (r0) ≥ |an|2 r2n0 −
n−1∑
k=0

|λk| rk0

n−k−1∑
j=0

|aj | rj0

 .

Again the values λk, for k = 0, 1, . . . , n − 1, are satisfying the following n
equations

j∑
k=0

an−j+kλn−k = 0; j = 1, 2, . . . , n

with λn = an. These give

|an| |an−j | =

∣∣∣∣∣
j∑

k=1

an−j+kλn−k

∣∣∣∣∣ ; j = 1, 2, . . . , n (as λn = an) ,

and so

|an| |an−j | ≥

(
|an| |λn−j | −

j−1∑
k=1

|an−j+k| |λn−k|

)
; j = 1, 2, . . . , n.

Now, we multiply the above inequalities by rn−j
0 for j = 1, 2, . . . , n successively

and by adding them we get

|an|
n−1∑
j=0

|aj | rj0 ≥ |an|
n−1∑
j=0

|λj | rj0 −
n−1∑
k=1

|λk|
rn−k
0

 n−1∑
j=n−k

|aj | rj0

 ,

|an|2 rn0 ≥ |an|
n−1∑
j=0

|λj | rj0 −
1

rn0

n−1∑
k=1

|λk| rk0

|an| rn0 −
n−k−1∑
j=0

|aj | rj0

 ,

|an|2 r2n0 ≥ |an| rn0
n−1∑
j=0

|λj | rj0 − |an| rn0
n−1∑
k=1

|λk| rk0

+
n−1∑
k=1

|λk| rk0

n−k−1∑
j=0

|aj | rj0

 ,

or

|an|2 r2n0 ≥ |an| rn0 |λ0|+
n−1∑
k=1

|λk| rk0

n−k−1∑
j=0

|aj | rj0

 .

Using the above inequality, we have

|an|2 r2n0 −R (r0) ≥

|an| rn0 |λ0|+
n−1∑
k=1

|λk| rk0

n−k−1∑
j=0

|aj | rj0

−
n−1∑
k=0

|λk| rk0

n−k−1∑
j=0

|aj | rj0

 ,
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or

|an|2 r2n0 −R (r0) ≥ |an| rn0 |λ0| − |λ0|

n−1∑
j=0

|aj | rj0

 ,

or

|an|2 r2n0 −R (r0) ≥ |an| rn0 |λ0| − |λ0| |an| rn0

as |an| rn0 =

n−1∑
j=0

|aj | rj0

 .

Clearly,

|an|2 r2n0 −R (r0) ≥ 0.

Therefore, we conclude that

t0 ≤ r0, i.e., ρ[λ (z) p (z)] ≤ ρ[p (z)].

4. PROOF OF THEOREMS

Proof of Theorem 1.3. At first, we consider a polynomial g(z) defined by

g (z) = λ (z) p (z) ,

where

λ (z) = λnz
n + λn−1z

n−1 + · · ·+ λ1z + λ0

is a complex polynomial of degree n whose coefficients λk, for k = 0, 1, . . . , n−1
are to be determined.

Clearly,

g (z) = anλnz
2n +

n∑
j=1

b2n−jz
2n−j +

n∑
j=1

cn−jz
n−j ,

where

b2n−j =

j∑
k=0

an−j+kλn−k, cn−j =

n−j∑
k=0

akλn−j−k; j = 1, 2, . . . , n.

Now, we choose the values of λn, λn−1, . . . , λ0 for which

anλn = a2n and b2n−j = 0; j = 1, 2, . . . , n.

Determine cn−1, cn−2, . . . , c0 by using the known values of λn, λn−1, . . . , λ0

from the relations

cn−j =

n−j∑
k=0

akλn−j−k; j = 1, 2, . . . , n.

So g (z) becomes

g (z) = a2nz
2n +

n∑
j=1

cn−jz
n−j .
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Now given |z| > 0,

|g (z)| ≥ |an|2 |z|2n −
n∑

j=1

|cn−j | |z|n−j .

Clearly, the equation

|an|2 t2n −
n∑

j=1

|cn−j | tn−j = 0

has exactly one positive root, say t0, and so

|an|2 t2n −
n∑

j=1

|cn−j | tn−j > 0, if t > t0,

which implies

|g (z)| > 0, if |z| > t0.

Therefore, all the zeros of g (z) lie in the disc |z| ≤ t0, and it follows that
the zeros of p (z) lie in

|z| ≤ t0.

In case if a0 ̸= 0, we choose a polynomial

λ∗ (z) = λ∗
0z

n + λ∗
1z

n−1 + · · ·+ λ∗
n−1z + λ∗

n

for which the first n terms latter of the leading term of

g∗ (z) = λ∗ (z) p∗ (z)

vanish with λ∗
0 = a0, where

p∗ (z) = znp

(
1

z

)
.

Now

g∗ (z) = a0λ
∗
0z

2n +
n∑

j=1

b∗jz
2n−j +

n∑
j=1

c∗jz
n−j ,

where

b∗j =

j∑
k=0

aj−kλ
∗
k, c∗j =

n−j∑
k=0

an−kλ
∗
j+k; j = 1, 2, . . . , n.

As for

λ∗
0 = a0 and b∗j = 0; j = 1, 2, . . . , n,

we can uniquely determine λ∗
1, λ

∗
2, . . . , λ

∗
n and consequently we determined the

polynomial λ∗ (z) . Now we obtain c∗j for j = 1, 2, . . . , n by using the relations

c∗j =

n−j∑
k=0

an−kλ
∗
j+k for j = 1, 2, . . . , n.
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So

g∗ (z) = a20z
2n +

n∑
j=1

c∗jz
n−j .

For |z| > 0,

|g∗ (z)| ≥ |a0|2 |z|2n −
n∑

j=1

∣∣c∗j ∣∣ |z|n−j .

As the equation

|a0|2 t2n −
n∑

j=1

∣∣c∗j ∣∣ tn−j = 0,

has exactly one positive root, say t′0, which gives

|g∗ (z)| > 0, for |z| > t′0.

This leads us to the desired result. □
Proof of Theorem 1.4. First of all, we construct a transformation from the

z-plane to the ω-plane defined by

ω = L (z) = z − z∗0 ,

where z∗0 is a complex number, which needs to be determined so that the
polynomial p (z) in the z-plane transforms to T (ω) in the ω-plane with the
property that the coefficient of ωn−1 in T (ω) is absent.

Clearly,

T (ω) = p (ω + z∗0)

= dnω
n + dn−1ω

n−1 + dn−2ω
n−2 + · · ·+ d1ω + d0,

where

dp =

(
n

n− p

)
an (z

∗
0)

n−p +

(
n− 1

n− p− 1

)
an−1 (z

∗
0)

n−p−1 + · · ·

+

(
n− k

n− p− k

)
an−k (z

∗
0)

n−p−k + · · ·+
(
p+ 1

1

)
ap+1z

∗
0 +

(
p

0

)
ap;

p = 0, 1, 2, . . . , n,

with (
0

0

)
= 1, (z∗0)

0 = 1,

(
r

−j

)
= 0,

(
r

0

)
= 1; r, j = 1, 2, . . . , n.

As the coefficient of ωn−1 in T (ω) is absent, i.e., dn−1 = 0, i.e.,(
n

1

)
anz

∗
0 +

(
n

0

)
an−1 (z

∗
0)

0 = 0,

which can determine the value of

z∗0 = −an−1

nan
.
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Using Theorem 1.3 on T (ω) in the ω-plane, we obtain that all the zeros of
T (ω) lie in the circular region

|ω| ≤ ρ0,

and when d0 ̸= 0, the zeros of T (ω) lie in the annular region

1

ρ′0
≤ |ω| ≤ ρ0

in the ω-plane.
Clearly L−1 : z = L−1 (ω) = ω+ z∗0 is the inverse mapping of L from the ω-

plane to the z-plane and it is an Entire Linear Transformation. So it preserves
the shape.

Now we consider a circle in the ω-plane defined by

Ω : |ω| = ρ0.

Because

L−1 (Ω) : |z − z∗0 | = ρ0

and

L−1 (0) = z∗0 ∈ Int
(
L−1 (Ω)

)
: |z − z∗0 | < ρ0,

we obtain that the zeros of p (z) must lie in the circular region

|z − z∗0 | ≤ ρ0,

in the z-plane. Also, for d0 ̸= 0, by applying a similar argument, we get the
desired result. □
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