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VON NEUMANN LOCAL MATRICES

IULIA-ELENA CHIRU and SEPTIMIU CRIVEI

Abstract. We use our recent results on von Neumann regular matrices, strongly
regular matrices and matrices having a non-zero outer inverse to derive appli-
cations to some generalizations of these concepts, called von Neumann local,
strongly von Neumann local and outer von Neumann local matrices. Among
other properties, we show that the tth compound matrix of every matrix of de-
terminantal rank t over a commutative local ring is strongly von Neumann local,
and every matrix over an arbitrary semiperfect ring is outer von Neumann local.
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1. INTRODUCTION

Von Neumann regular rings were introduced by von Neumann in the 1930s
[12] as an algebraic tool for studying certain lattices, which were useful in the
coordinatization of projective geometry. They have found many applications
throughout the time, not only in algebra, but also in functional analysis, dif-
ferential equations, statistics, probability or cryptography. Recall that a ring
R is called von Neumann regular if every element a ∈ R is von Neumann
regular, i.e., there is an element b ∈ R, called an inner inverse or generalized
inverse of a, such that a = aba. The definition may be adapted to matrices
over a ring R as follows: an m× n-matrix A is called von Neumann regular if
there is an n×m-matrix B such that A = ABA, and in this case B is called
an inner inverse or generalized inverse of A.

More particularly, a ring R is called strongly regular if for every a ∈ R
there is b ∈ R such that a = a2b, and this definition turns out to be left-right
symmetric [3]. Restricting it to elements, a ∈ R is called strongly regular if
a ∈ a2R ∩ Ra2. Note that if a is strongly regular with a = a2c = da2 for
some c, d ∈ R, then one may choose b = ac2 and one has a = a2b = ba2 [4],
and in this case b is called a strong inner (or strong generalized) inverse of a.
Every strongly regular element is von Neumann regular. The definition may
be adapted to matrices over a ring R as follows: an n × n-matrix A is called
strongly regular if there is an n× n-matrix B such that A = A2B = BA2.
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Another important concept when talking about generalized inverses is the
outer inverse of an element. An element b ∈ R is called an outer inverse of
a ∈ R if bab = b. The same definition can be exteded to matrices: an n×m-
matrix B is called an outer inverse of an m× n-matrix A if BAB = B. If A
is a von Neumann regular m × n-matrix with inner inverse n ×m-matrix B,
then it is well known and easy to see that BAB is an outer inverse of A.

For general properties of von Neumann regular rings, strongly regular rings
and various generalized inverses we refer to [5, 10, 11].

Throughout the paper m,n ≥ 2 will be two integers, and R will be a ring
with identity. We denote by Mm,n(R) the set of all m × n-matrices over R,
and by Mn(R) the set of all n× n-matrices over R. Let A ∈ Mm,n(R). Given
subsets I = {i1, . . . , ik} ⊆ {1, . . . ,m} with i1 < · · · < ik and J = {j1, . . . , jl} ⊆
{1, . . . , n} with j1 < · · · < jl, we denote by AI,J the submatrix of A whose
rows and columns are indexed by the sets I and J respectively.

Now let R be a commutative ring. For each k ∈ {1, . . . ,min(m,n)}, the
kth compound matrix of A is defined as the matrix Ck(A) ∈ Mm′,n′(R), where

m′ =
(
m
k

)
and n′ =

(
n
k

)
, consisting of the k × k-minors of A, where for every

I ′ = {i′1, . . . , i′k} with i′1 < · · · < i′k and J ′ = {j′1, . . . , j′k} with j′1 < · · · < j′k,

the (I ′, J ′) entry of Ck(A) is det(AI′,J ′). We denote ck = (−1)kTr(Ck(A))
for every k ∈ {1, . . . , n}. For each k ∈ {1, . . . , r = min(m,n)}, Dk(A) will
denote the ideal of R generated by all k×k-minors of A (i.e., all entries of the
compound matrix Ck(A)), and will be called the kth determinantal ideal of
A. The determinantal rank of a non-zero A ∈ Mm,n(R), denoted by ρ(A), is
defined as the maximal order of a submatrix of A with non-zero determinant.
The determinantal rank of the zero matrix will be zero.

A ring R is called local if it has a unique maximal ideal. We denote by
rad(R) the Jacobson radical of R, that is, the intersection of its maximal
ideals, and by U(R) the set of units of R.

2. VON NEUMANN LOCAL MATRICES

Contessa [9] has introduced von Neumann local rings as the rings R with
the property that a or 1− a is von Neumann regular for every a ∈ R. Clearly,
every von Neumann regular ring and every local ring is von Neumann local.
Also, every von Neumann local ring is an exchange ring. Von Neumann local
rings have been also studied by Abu Osba, Henriksen and Alkam [1], and
Anderson and Badawi [2], which specialized their definition to elements. Thus,
an element a ∈ R is called von Neumann local if a or 1 − a is von Neumann
regular. Clearly, every von Neumann regular element is von Neumann local.

In particular, a matrix A ∈ Mn(R) is von Neumann local if A or In − A
is von Neumann local. We show that there is a rich supply of von Neumann
local matrices. But let us first recall the following theorem.

Theorem 2.1 ([8, Theorem 2.4]). Let R be a commutative ring, and let
A ∈ Mn(R) be a non-zero matrix with ρ(A) = t.
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(1) If A is strongly regular, then ct /∈ rad(R).
(2) If ct ∈ U(R), then A is strongly regular.

Theorem 2.2. Let R be a commutative local ring, and let A ∈ Mn(R) with
ρ(A) ≤ 1. Then A is von Neumann local.

Proof. The case ρ(A) = 0 is clear. Next suppose that ρ(A) = 1 and A is
not von Neumann local. Hence both A and In − A are not von Neumann
regular. Hence det(In − A) /∈ U(R), and thus det(In − A) ∈ M , where M
is the maximal ideal of R. Since ρ(A) = 1, it follows that det(In − A) =
1−Tr(A) ∈ M . This implies that Tr(A) ∈ U(R), because otherwise it follows
that 1 ∈ M , a contradiction. Then A is strongly regular by Theorem 2.1,
hence A is von Neumann regular. This is a contradiction, and thus A is von
Neumann local. □

Corollary 2.3. Let R be a commutative local ring, and let A ∈ Mn(R)
with ρ(A) = t. Then Ct(A) is von Neumann local.

Proof. Since ρ(A) = t, we have ρ(Ct(A)) = 1 by [11, Theorem 2.5]. Hence
Ct(A) is von Neumann local by Theorem 2.2. □

Using our characterizations of von Neumann regular matrices, we may im-
mediately deduce corresponding characterizations of von Neumann local ma-
trices. Recall that a matrix A ∈ Mn(R) will be denoted by Ap when viewed
over the localization Rp of R at a prime ideal p.

Theorem 2.4. Let R be a commutative ring, and let A ∈ Mn(R). Then the
following are equivalent:

(1) A is von Neumann local.
(2) For each k ∈ {1, . . . , n}, Dk(A) or Dk(In − A) is generated by an

idempotent of R.
(3) For every prime (maximal) ideal p of R, Ap ∈ Mn(Rp) is von Neumann

local.
(4) For every prime (maximal) ideal p of R, Ap = 0n or Ap has an invert-

ible ρ(Ap) × ρ(Ap)-submatrix or (In − A)p = 0n or (In − A)p has an
invertible ρ(In −Ap)× ρ(In −Ap)-submatrix.

Proof. This follows by [6, Theorems 4.1,4.3]. □

We recall the following characterization of von Neumann regular matrices,
which will be needed several times.

Theorem 2.5 ([6, Theorem 4.2]). Let R be local, and let A ∈ Mm,n(R).
Then A is von Neumann regular if and only if A is either zero or A has an
invertible ρ(A)× ρ(A)-submatrix.

Theorem 2.6. Let R be a commutative local ring, and let A ∈ Mn(R) with
ρ(A) = t and ρ(In − A) = s. Then A is von Neumann local if and only if
A = 0n or A has an invertible t × t-submatrix or A = In or In − A has an
invertible s× s-submatrix.
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Proof. This follows by Theorem 2.5. □

Next we characterize von Neumann local 2× 2-matrices over commutative
local rings only in terms of determinants. We show that von Neumann local
and strongly von Neumann local matrices coincide in this case.

Theorem 2.7. Let R be a commutative local ring, and let A ∈ M2(R).
Then the following are equivalent:

(1) A is von Neumann local.
(2) det(A) ∈ U(R) ∪ {0} or det(I2 −A) ∈ U(R) ∪ {0}.

If R is not a field, then they are further equivalent to:

(3) det(A) /∈ rad(R) \ {0} or det(I2 −A) /∈ rad(R) \ {0}.
(4) det(A) ∈ U(R) ∪ {0} or 1− Tr(A) ∈ U(R).

Proof. (1) =⇒ (2) We show that the negation of (2) implies the negation
of (1). To this end, assume that det(A) /∈ U(R) ∪ {0} and det(I2 − A) /∈
U(R) ∪ {0}. Suppose that A is von Neumann local. Then A or I2 − A is von
Neumann regular. Since det(A) ̸= 0 and det(I2 − A) ̸= 0, we have ρ(A) = 2
and ρ(I2 − A) = 2. If A is von Neumann regular, then det(A) ∈ U(R), while
if I2 − A is von Neumann regular, then det(I2 − A) ∈ U(R) by Theorem 2.5.
In both cases, we have a contradiction. Consequently, A is not von Neumann
local, as needed.

(2) =⇒ (1) Assume that det(A) ∈ U(R)∪ {0} or det(I2 −A) ∈ U(R)∪ {0}.
Suppose that A is not von Neumann local. Hence both A and I2 −A are not
von Neumann regular. By Theorem 2.2, we have ρ(A) = 2 and ρ(I2 −A) = 2.
Now this together with Theorem 2.5 imply that det(A) /∈ U(R) ∪ {0} and
det(I2 −A) /∈ U(R) ∪ {0}, a contradiction. Hence A is von Neumann local.

(2) ⇐⇒ (3) This is clear.
(3) ⇐⇒ (4) If det(A) ∈ U(R) ∪ {0}, then there is nothing to prove. Next

assume that det(A) /∈ U(R) ∪ {0}, hence det(A) ∈ rad(R) \ {0}. Note that

det(I2 −A) = 1− Tr(A) + det(A).

Then det(I2−A) ∈ rad(R)\{0} if and only if 1−Tr(A)+det(A) ∈ rad(R)\{0}
if and only if 1− Tr(A) ∈ rad(R). □

Example 2.8. (1) A =

(
0 0
0 2

)
∈ M2(Z4) is von Neumann local (since

I2 −A is invertible), but not von Neumann regular by Theorem 2.5.

(2) A =

(
0 1
2 1

)
∈ M2(Z4) is not von Neumann local by Theorem 2.7.

Unlike the case of von Neumann regularity, the property of being von Neu-
mann local is not well behaved with respect to direct products (e.g., see [1,
p.2644]). By [1, Theorem 3.1], a direct product R =

∏
k∈K Rk is von Neumann

local if and only if there is l ∈ K such that Rl is von Neumann local and Rk

is von Neumann regular for every k ∈ K \ {l}. Next we state an element-wise
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version of this result, whose commutative version was given by Anderson and
Badawi [2, Theorem 5.1]. Let us denote by vnr(R) (respectively vnl(R)) the
set of von Neumann regular (respectively von Neumann local) elements of a
ring R.

Theorem 2.9. Let R =
∏

k∈K Rk be a product of arbitrary rings. Then
vnl(R) =

∏
k∈K vnl(Rk) if and only if vnl(Rk) = vnr(Rk) for all but at most

one k ∈ K. In particular, R is a von Neumann local ring if and only if there
is at most one k ∈ K such that Rk is not von Neumann regular, but Rk is von
Neumann local.

Proof. The proof is essentially the same as the proof of [2, Theorem 5.1]
from the commutative case. □

Corollary 2.10. Let R =
∏

k∈K Rk be a product of local commutative
rings such that vnl(Rk) = vnr(Rk) for all but at most one k ∈ K, and let
0n ̸= A ∈ Mn(R). For every k ∈ K, denote by hk : Mn(R) → Mn(Rk)
the canonical projection, and tk = ρ(hk(A)), sk = ρ(In − hk(A)). Then the
following are equivalent:

(1) A is von Neumann local.
(2) For every k ∈ K, hk(A) is von Neumann local.
(3) For every k ∈ K, hk(A) = 0n or A has an invertible tk × tk-submatrix

or hk(A) = In or In − hk(A) has an invertible sk × sk-submatrix.

Proof. This follows by Theorems 2.9 and 2.6. □

Example 2.11. Consider the ring Z12
∼= Z3 × Z4. We have vnl(Z3) =

vnr(Z3) = Z3. Let

A =

(
10 0
0 0

)
∈ M2(Z12).

We can easily prove that A is not von Neumann regular. Consider B = I2 −

A =

(
3 0
0 1

)
, B1 = (B mod 3) =

(
0 0
0 1

)
∈ M2(Z3) and B2 = (B mod 4) =(

3 0
0 1

)
∈ M2(Z4). By Theorem 2.5, both B1 and B2 are von Neumann

regular, hence they are von Neumann local. Then A is von Neumann local by
Corollary 2.10.

3. STRONGLY VON NEUMANN LOCAL MATRICES

We consider a specialization of the notion of von Neumann local element of
a ring. Thus, an element a ∈ R is called strongly von Neumann local if a or
1 − a is strongly regular. Clearly, every strongly regular element is strongly
von Neumann local, and every strongly von Neumann local element is von
Neumann local. In particular, a matrix A ∈ Mn(R) is strongly von Neumann
local if A or In − A is strongly von Neumann local. Note that our concept
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of strongly von Neumann local element is different of the one with the same
name from [1].

Next we improve some results from von Neumann local matrices.

Theorem 3.1. Let R be a commutative local ring, and let A ∈ Mn(R) with
ρ(A) ≤ 1. Then A is strongly von Neumann local.

Proof. An easy adaptation of Theorem 2.2 yields the result. □

Corollary 3.2. Let R be a commutative local ring, and let A ∈ Mn(R)
with ρ(A) = t. Then Ct(A) is strongly von Neumann local.

Proof. Since ρ(A) = t, we have ρ(Ct(A)) = 1 by [11, Theorem 2.5]. Hence
Ct(A) is strongly von Neumann local by Theorem 3.1. □

Our previous results on strongly regular matrices from [8] may be imme-
diately applied to derive corresponding properties of strongly von Neumann
local matrices.

Theorem 3.3. Let R be a commutative ring, and let A ∈ Mn(R). Then the
following are equivalent:

(1) A is strongly von Neumann local.
(2) For every prime (maximal) ideal p of R, Ap is strongly von Neumann

local.
(3) For every prime (maximal) ideal p of R, Ap = 0n or ct ∈ U(Rp) or

Ap = In or ds ∈ U(Rp), where t = ρ(Ap), s = ρ(In − Ap), ct =
(−1)tTr(Ct(A)) and ds = (−1)sTr(Cs(In −A)).

Theorem 3.4. Let R be a commutative local ring, and let A ∈ Mn(R) with
ρ(A) = t and ρ(In −A) = s. Then the following are equivalent:

(1) A is strongly von Neumann local.
(2) A = 0n or ct ∈ U(R) or A = In or ds ∈ U(R), where we denote

ct = (−1)tTr(Ct(A)) and ds = (−1)sTr(Cs(In −A)).

Next we show that von Neumann local and strongly von Neumann local
matrices coincide in this case of 2× 2-matrices over commutative local rings.
But first, let us recall the next theorem.

Theorem 3.5 ([8, Theorem 2.7]). Let R be local and let A ∈ Mn(R) be
a non-zero matrix with ρ(A) = t. Then A is strongly regular if and only if
ct ∈ U(R).

Theorem 3.6. Let R be a commutative local ring, and let A ∈ M2(R).
Then A is strongly von Neumann local if and only if A is von Neumann local.

Proof. For the non-trivial implication assume that A is von Neumann local.
Then det(A) ∈ U(R) ∪ {0} or det(I2 − A) ∈ U(R) ∪ {0} by Theorem 2.7.
Suppose that A is not strongly von Neumann local. Hence both A and I2 −A
are not strongly regular. By Theorem 3.1, we have ρ(A) = 2 and ρ(I2−A) = 2.
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Now this together with Theorem 3.5 imply that det(A) /∈ U(R) ∪ {0} and
det(I2 −A) /∈ U(R)∪ {0}, a contradiction. Hence A is strongly von Neumann
local. □

Example 3.7. (1) A =

(
0 0
0 2

)
∈ M2(Z4) is strongly von Neumann local

(since I2 −A is invertible), but not strongly regular by Theorem 3.5.

(2) A =

(
0 1
2 1

)
∈ M2(Z4) is not strongly von Neumann local, because it is

not von Neumann local by Example 2.8.
(3) By Theorem 3.6, in order to find an example of a von Neumann local

matrix which is not strongly von Neumann local over a commutative local ring
we need to look for some matrix having a larger size than 2× 2. Let us take

A =

0 0 0
0 0 1
1 0 3

 ∈ M3(Z4).

Since ρ(A) = 2 and A has an invertible 2 × 2-submatrix, A is von Neumann
regular by Theorem 2.5, and consequently, A is von Neumann local. Since
the sum of diagonal 2× 2-submatrices of A is 0, A is not strongly regular by
Theorem 3.5. Now consider

I3 −A =

1 0 0
0 1 3
3 0 2

 .

Since ρ(I3−A) = 3 and det(I3−A) = 2 /∈ U(Z4), I3−A is not strongly regular
by Theorem 3.5, and consequently, A is not strongly von Neumann local.

We have already seen that in general the property of being von Neumann
local is not well behaved with respect to direct products, and we have given
Theorem 2.9. Now we deal with the similar problem for strongly von Neumann
local elements in an arbitrary ring R. Let us denote by svnr(R) (respectively
svnl(R)) the set of strongly regular (respectively strongly von Neumann local)
elements of R.

Theorem 3.8. Let R =
∏

k∈K Rk be a product of arbitrary rings. Then
svnl(R) =

∏
k∈K svnl(Rk) if and only if svnl(Rk) = svnr(Rk) for all but at

most one k ∈ K. In particular, R is a strongly von Neumann local ring if and
only if there is at most one k ∈ K such that Rk is not strongly regular, but Rk

is strongly von Neumann local.

Proof. We follow a similar approach as in the proof of the corresponding
result for von Neumann local matrices.

Suppose first that there exist ai ∈ svnl(Ri) \ svnr(Ri) and bj ∈ svnl(Rj) \
svnr(Rj) for some distinct i, j ∈ K. Putting aj = 1 − bj and ak = 1 for
every k ∈ K \ {i, j}, we have (ak)k∈K ∈

∏
k∈K svnl(Rk). On the other hand,



226 I.-E. Chiru and S. Crivei 8

we have (ak)k∈K /∈
∏

k∈K svnr(Rk) = svnr(R), because ai /∈ svnr(Ri). Hence
svnl(R) ̸=

∏
k∈K svnl(Rk).

Conversely, suppose that svnl(Rk) = svnr(Rk) for all but at most one k ∈
K. We claim first that svnl(R) ⊆

∏
k∈K svnl(Rk). To this end, let a =

(ak)k∈K ∈ svnl(R) and denote pk : R → Rk be the canonical projections for
every k ∈ K. Then (pk(a))k∈K ∈ svnl

(∏
k∈K Rk

)
, hence pk(a) ∈ svnr(Rk) or

1− pk(a) ∈ svnr(Rk) for every k ∈ K, which implies that pk(a) ∈ svnl(Rk) for
every k ∈ K, and finally (ak)k∈K ∈

∏
k∈K svnl(Rk). For the other inclusion,

let (ak)k∈K ∈
∏

k∈K svnl(Rk). If svnl(Rk) = svnr(Rk) for every k ∈ K,
then (ak)k∈K ∈

∏
k∈K svnr(Rk) = svnr(R) ⊆ svnl(R). Next assume that

svnl(Rk) = svnr(Rk) for every k ∈ K\{l} for some l ∈ K. Take al ∈ svnl(Rl)\
svnr(Rl). Then 1− al ∈ svnr(Rl) and for every k ∈ K \ {l} we have 1− ak ∈
svnl(Rk) = svnr(Rk), whence 1 − (ak)k∈K ∈

∏
k∈K svnr(Rk) = svnr(R), and

thus (ak)k∈K ∈ svnl(R). This shows that svnl(R) =
∏

k∈K svnl(Rk). □

Corollary 3.9. Let R =
∏

k∈K Rk be a product of local commutative rings
such that svnl(Rk) = svnr(Rk) for all but at most one k ∈ K, and let 0n ̸=
A ∈ Mn(R). For every k ∈ K, denote by hk : Mn(R) → Mn(Rk) the canonical
projection, and tk = ρ(hk(A)), sk = ρ(In − hk(A)). Then the following are
equivalent:

(1) A is strongly von Neumann local.
(2) For every k ∈ K, hk(A) is strongly von Neumann local.
(3) For every k ∈ K, hk(A) = 0n or ctk ∈ U(Rk) or hk(A) = In or dsk ∈

U(R), where ct = (−1)tkTr(Ctk(hk(A))) and dsk = (−1)skTr(Csk(In −
hk(A))).

Proof. This follows by Theorems 3.8 and 3.4. □

Example 3.10. Consider the ring Z12
∼= Z3 × Z4. We have svnl(Z3) =

svnr(Z3) = Z3. Let A =

(
0 0
7 0

)
∈ M2(Z12). Since (A mod 3) =

(
0 0
1 0

)
∈

M2(Z3) is not strongly regular by Theorem 3.5, A is not strongly regular.

Consider B = I2 − A =

(
1 0
5 1

)
, B1 = (B mod 3) =

(
1 0
2 1

)
∈ M2(Z3) and

B2 = (B mod 4) =

(
1 0
1 1

)
∈ M2(Z4). By Theorem 3.5, both B1 and B2

are strongly regular, hence they are strongly von Neumann local. Then A is
strongly von Neumann local by Corollary 3.9.

4. OUTER VON NEUMANN LOCAL MATRICES

Generalizing von Neumann local elements of a ring, an element a ∈ R is
called outer von Neumann local if a or 1− a has a non-zero outer inverse. An
element having a non-zero outer inverse will also be called an outer von Neu-
mann regular element. Clearly, every outer von Neumann regular is outer von
Neumann local, and every von Neumann local element is outer von Neumann
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local. In particular, a matrix A ∈ Mn(R) is outer von Neumann local if A or
In −A is outer von Neumann local. Throughout this section the ring R need
not be commutative.

In our paper [7] we have given a characterization of matrices having a non-
zero outer inverse over semiperfect rings.

Theorem 4.1 ([7, Theorem 4.1]). Let R be a semiperfect ring. Then the
following are equivalent for A = (aij) ∈ Mm,n(R):

(1) There exists some aij having a non-zero outer inverse.
(2) A has a non-zero outer inverse.
(3) A /∈ Mm,n(rad(R)).

We may use it to obtain the following result.

Theorem 4.2. Let R be a semiperfect ring. Then every matrix A = (aij) ∈
Mn(R) is outer von Neumann local.

Proof. Assume that none of A and In−A has a non-zero outer inverse. Then
A, In−A ∈ Mn(rad(R)) by Theorem 4.1. In particular, we have a11, 1−a11 ∈
rad(R), which is a contradiction. Hence A is von Neumann local. □

Example 4.3. Let us give an example of outer von Neumann local matrix
which is not von Neumann local. By Theorem 4.2, one should look for a matrix
over a non-semiperfect ring. Consider the semilocal ring R = Z(2) ∩ Z(3)

(which is not semiperfect), and the matrix A =

(
3 0
0 0

)
∈ M2(R). Direct

calculations show that A does not have a non-zero outer inverse. But we have

B(I2 − A)B = B for B =

(
1 1
3 3

)
∈ M2(R), hence I2 − A =

(
−2 0
0 1

)
has

a non-zero outer inverse, and consequently, A is outer von Neumann local.
On the other hand, direct calculations show that neither A nor I2 − A is von
Neumann regular. Hence A is not von Neumann local.

Let us now recall the following characterization of matrices having a non-
zero outer inverse over local rings.

Theorem 4.4 ([7, Theorem 3.1]). Let R be local and let A = (aij) ∈
Mm,n(R). Then the following are equivalent:

(1) There exists some aij ∈ U(R).
(2) There exists some aij having a non-zero outer inverse.
(3) A has a non-zero outer inverse.
(4) A /∈ Mm,n(rad(R)).

Theorem 4.5. Let R be an arbitrary local ring and let A ∈ Mn(R). Then
the following are equivalent:

(1) A is outer von Nemann local.
(2) A or In −A has an invertible entry.
(3) A or In −A has an entry with a non-zero outer inverse.
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(4) A /∈ Mn(rad(R)) or In −A /∈ Mn(rad(R)).

Proof. This follows from Theorem 4.4. □

Finally, let us see how the property of being outer von Neumann local
behaves with respect to direct products. We obtain some similar result as in
the case of (strongly) von Neumann local property. Let us denote by ovnr(R)
(respectively ovnl(R)) the set of outer von Neumann regular (respectively
outer von Neumann local) elements of a ring R.

Theorem 4.6. Let R =
∏

k∈K Rk be a product of arbitrary rings. Then
ovnl(R) =

∏
k∈K ovnl(Rk) if and only if ovnl(Rk) = ovnr(Rk) for all but at

most one k ∈ K. In particular, R is an outer von Neumann local ring if and
only if there is at most one k ∈ K such that Rk does not have a non-zero outer
inverse, but Rk is outer von Neumann local.

Proof. Use the same path as in the proofs of Theorems 2.9 and 3.8. □

REFERENCES

[1] E. Abu Osba, M. Henriksen and O. Alkam, Combining local and von Neumann regular
rings, Comm. Algebra 32 (2004), 2639–2653.

[2] D. F. Anderson and A. Badawi, Von Neumann regular and related elements in commu-
tative rings, Algebra Colloq. 19 (2012), 1017–1040.

[3] R. F. Arens and I. Kaplansky, Topological representations of algebras, Trans. Amer.
Math. Soc. 63 (1948), 457–481.

[4] G. Azumaya, Strongly π-regular rings, J. Faculty Sci., Hokkaido University, Ser. 1,
Mathematics 13 (1954), 34–39.

[5] A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications,
Canadian Mathematical Society, Springer, New York, 2003.

[6] I.-E. Chiru and S. Crivei, Von Neumann regular matrices revisited, Linear Multilinear
Algebra 71 (2023), 1352–1363.

[7] I.-E. Chiru and S. Crivei, Matrices having non-zero outer inverses, Preprint, 2023.
[8] I.-E. Chiru, S. Crivei and G. Olteanu, Strongly regular matrices revisited, Linear Algebra

Appl. 658 (2023), 233–249.
[9] M. Contessa, On certain classes of MP rings, Comm. Algebra 12 (1984), 1447–1469.

[10] K. R. Goodearl, Von Neumann Regular Rings, Pitman Publishing, London, San Fran-
cisco, Melbourne, 1979.

[11] K. P. S. B. Rao, The Theory of Generalized Inverses over Commutative Rings, Taylor
and Francis, London, New York, 2002.

[12] J. von Neumann, On regular rings, Proc. Natl. Acad. Sci. USA 22 (1936), 707–712.

Received March 5, 2023

Accepted June 15, 2023
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