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ON THE GOLDIE DIMENSION OF FINITELY GENERATED
LOCALLY CYCLIC MODULES

BRAHIM BOUDINE and SOIBRI MOINDZE

Abstract. Let R be a commutative ring with identity. In this paper we investi-
gate the Goldie dimension of finitely generated locally cyclic R-modules. Then,
we give a characterization of rings whose finitely generated locally cyclics have
finite Goldie dimension.
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1. INTRODUCTION

For physicists, dimensions in the universe are viewed as independent di-
rections. In order to show if our R-module M contains only one independent
physical direction, let us say that this R-module cannot contain any direct sum
of two nonzero submodules, otherwise these direct factors will present two in-
dependent physical directions. In particular, if N and L are two nonzero
submodules of M , then L∩N ̸= (0), otherwise their sum will be a direct sum.
Recall that a submodule N of M is called an essential submodule of M (or a
large submodule of M) if for any submodule L of M , L ∩N ̸= {0} and M is
called a uniform R-module if every nonzero submodule of M is essential [8].
Then, an R-module which contains only one independent physical direction is
exactly a uniform R-module.

Now, if we have a direct sum of n uniform submodules in M then, we get
n independent physical directions in M . In order to ensure that all directions
in our universe are covered, it is enough that this direct sum of uniform sub-
modules be an essential submodule in M . In other words, if N =

⊕n
k=1Nk

is an essential submodule of M such that for each k ∈ {1, ..., n}, Nk is a
uniform submodule of M , then n is the number of independent physical direc-
tions in our universe M , and it is called the Goldie dimension (or the uniform
dimension) of the R-module M , denoted by Gdim(M) = n (see [7]).
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Throughout this paper all rings will be commutative with identity. An
R-module M is called a multiplication module if for any submodule N of
M , there is an ideal I of R such that N = I.M , in this case we can take
I = [N : M ] = {r ∈ R | (∀m ∈ M), r.m ∈ N} (see for example [1, 5]).

Our aim in this paper is to investigate the Goldie dimension of finitely gen-
erated locally cyclic R-modules. Some important lemmas on locally cyclic
modules and multiplication modules are given in Section 2, then we prove
several results in Section 3, which characterize uniform finitely generated lo-
cally cyclic modules and Goldie dimensions of finitely generated locally cyclic
modules. Furthermore, we give a condition under which any finitely gener-
ated locally cyclic R-module has a finite Goldie dimension. This generalizes
partially the results obtained by Al-Huzali, Jain, and Lopez-Permouth in [2].

2. PRELIMINARIES AND LEMMAS

By the following fact, finitely generated multiplication modules and finitely
generated locally cyclic modules are the same.

Lemma 2.1 ([5, Proposition 5]). A finitely generated module is a multipli-
cation module if and only if it is locally cyclic.

Recall that an R-module M has cancellation if I.M = J.M implies that
I = J for any ideals I and J of R. The R-module M has weak cancellation if
I.M = J.M implies that I +AnnR(M) = J +AnnR(M) for any ideals I and
J of R.

Lemma 2.2 ([3, Theorem 5.16]).

(i) A module is a multiplication module and has weak cancellation if and
only if it is finitely generated and locally cyclic.

(ii) A module is a multiplication module and has cancellation if and only if
it is finitely generated and a faithful locally cyclic module.

Lemma 2.3. Let M be a multiplication R-module and N1 and N2 two sub-
modules of M . Then, the following statements are equivalent:

(i) N1 ∩N2 = (0).
(ii) [N1 : M ] ∩ [N2 : M ] ⊆ AnnR(M).

Proof. Step 1. Let r ∈ [N1 ∩ N2 : M ]. Then, r.m ∈ N1 ∩ N2 for any
m ∈ M . Namely, r.m ∈ N1 and r.m ∈ N2 for any m ∈ M . Thus, r ∈ [N1 : M ]
and r ∈ [N2 : M ]. This proves that r ∈ [N1 : M ] ∩ [N2 : M ].

Conversely, if r ∈ [N1 : M ] ∩ [N2 : M ], then r.m ∈ N1 and r.m ∈ N2 for
any m ∈ M . Namely, r ∈ [N1 : M ] and r ∈ [N2 : M ]. This proves that
[N1 ∩N2 : M ] = [N1 : M ] ∩ [N2 : M ].

Step 2. We know that N1 = [N1 : M ].M and N2 = [N2 : M ].M , then
N1 ∩ N2 = ([N1 : M ].M) ∩ ([N2 : M ].M). As well as, N1 ∩ N2 = [N1 ∩ N2 :
M ].M = ([N1 : M ]∩ [N2 : M ]).M . Therefore, N1∩N2 = ([N1 : M ].M)∩([N2 :
M ].M) = ([N1 : M ] ∩ [N2 : M ]).M .
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Step 3. N1 ∩N2 = (0) means that ([N1 : M ]∩ [N2 : M ]).M = (0) which is
equivalent to saying that [N1 : M ] ∩ [N2 : M ] ⊆ AnnR(M). □

Lemma 2.4. Any integral domain is uniform.

Proof. Let R be an integral domain and I and J be two ideals of R such
that I ∩ J = (0) and I ̸= (0). Let a be a nonzero element in I and b be an
element in J . Then, ab ∈ I ∩ J = (0). Namely, ab = 0. However, a ̸= 0 then
b = 0. This proves that J = (0). thus, R is uniform. □

Lemma 2.5. Let M be an R-module, S be the set of nonzero submodules of
M and X = {n ∈ N | (∃(Nk)1≤k≤n ⊂ S), N1 +N2 + ...+Nn is a direct sum}.
Then, Gdim(M) = supX.

Proof. If Gdim(M) is infinite, then there exist an infinite family (Nk)k∈N of
nonzero uniform submodules of M such that

∑
k∈NNk is a direct sum. Then,

supX is infinite.
Suppose now that Gdim(M) = n for an integer n. Then, there exists a

family (Nk)1≤k≤n of nonzero uniform submodules of M such that
∑n

k=1Nk is
a direct sum. It follows that supX ≥ n.

Suppose that there exists a family (N ′
k)1≤k≤n+1 of nonzero submodules of

M such that
∑n+1

k=1 N
′
k is a direct sum. Since any nonzero R-module contains

a nonzero uniform submodule, Gdim(M) ≥ n + 1 which is a contradiction.
Then, supX = n. □

Lemma 2.6. Let m be an integer. Then, Gdim(Z/mZ) = n where n is the
number of prime divisors of m.

Proof. Let m = pv11 .pv22 ...pvnn be the prime factorization of the integer m.
Put qi =

m
pi

for each i and N = q1Z/mZ+ q2Z/mZ+ ...+ qnZ/mZ.
Notice that

q2Z/mZ+ q3Z/mZ+ ...+ qnZ/mZ = gcd(q2, q3, ..., qn)Z/mZ ⊆ pv11 Z/mZ

and

q1Z/mZ ∩ pv11 Z/mZ = lcm(q1, p
v1
1 )Z/mZ = mZ/mZ = (0).

Likewise, we see that q1Z/mZ+ q2Z/mZ+ ...+ qnZ/mZ is a direct sum.
Moreover, for each i, if kqiZ/mZ ∩ hqiZ/mZ = (0) for some integers k and

h then lcm(k, h)qiZ/mZ = (0). Namely, pi divides lcm(k, h). It follows that
either pi divides k or pi divides h, then either kqiZ/mZ = (0) or hqiZ/mZ =
(0). This proves that qiZ/mZ is uniform.

It suffices now to prove that N is essential in Z/mZ. Let k be an integer
such that kZ/mZ ∩N = (0). Notice that

N = gcd(q1, q2, ..., qn)Z/mZ = pv1−1
1 .pv2−1

2 ...pvn−1
n Z/mZ

then

kZ/mZ ∩N = lcm(k, pv1−1
1 .pv2−1

2 ...pvn−1
n )Z/mZ = (0).
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Therefore, m divides lcm(k, pv1−1
1 .pv2−1

2 ...pvn−1
n ), it follows that m divides k.

Hence kZ/mZ = (0). This proves that N is a direct sum of n nonzero uniform
submodules of Z/mZ which is essential. As well as, Gdim(Z/mZ) = n. □

Recall that a q.f.d. R-module is an R-module whose every quotient has
finite Goldie dimension.

Lemma 2.7 ([6]). An R-module M is q.f.d. if and only if every submodule N
of M contains a finitely generated submodule T such that N/T has no maximal
submodules.

3. MAIN RESULTS

Recall that an ideal I of R is said to be irreducible, if I = J1 ∩ J2 implies
that either J1 = I or J2 = I (see for example [4]).

Theorem 3.1. Let M be a finitely generated locally cyclic R-module. Then,
the following statements are equivalent:

(i) M is uniform.
(ii) R/AnnR(M) is uniform.
(iii) AnnR(M) is irreducible.

Proof. (i) ⇒ (ii). Assume that M is uniform. Let I and J be two ideals in
R such that AnnR(M) ⊆ I ∩ J .

Suppose (I/AnnR(M)) ∩ (J/AnnR(M)) = (0). Then, (I ∩ J)/AnnR(M) =
(0). Namely, I ∩ J ⊆ AnnR(M). Let N1 = I.M and N2 = J.M . Since M has
weak cancellation, I+AnnR(M) = [N1 : M ]+AnnR(M) and J+AnnR(M) =
[N2 : M ] + AnnR(M). It follows that [N1 : M ]/AnnR(M) = I/AnnR(M) and
[N2 : M ]/AnnR(M) = J/AnnR(M), then ([N1 : M ] ∩ [N2 : M ])/AnnR(M) =
(I ∩ J)/AnnR(M). However, I ∩ J ⊆ AnnR(M), then ([N1 : M ] ∩ [N2 :
M ])/AnnR(M) = (0) and [N1 : M ] ∩ [N2 : M ] ⊆ AnnR(M).

By Lemma 2.3 N1 ∩ N2 = ([N1 : M ] ∩ [N2 : M ]).M , then N1 ∩ N2 = (0).
Since M is uniform, either N1 = (0) or N2 = (0). Namely, either [N1 :
M ] ⊆ AnnR(M) or [N2 : M ] ⊆ AnnR(M). As well as, either I ⊆ AnnR(M)
or J ⊆ AnnR(M) since I + AnnR(M) = [N1 : M ] + AnnR(M) and J +
AnnR(M) = [N2 : M ] + AnnR(M). Therefore, either I/AnnR(M) = (0) or
J/AnnR(M) = (0). This proves that R/AnnR(M) is uniform.

(ii) ⇒ (i). Suppose R/AnnR(M) is uniform. Let N1 and N2 be two sub-
modules of M such that N1 ∩N2 = (0).

By Lemma 2.3, [N1 : M ] ∩ [N2 : M ] ⊆ AnnR(M), then

([N1 : M ] + AnnR(M))/AnnR(M) ∩ ([N2 : M ] + AnnR(M))/AnnR(M) = (0)

in R/AnnR(M), which is uniform.
It follows that either ([N1 : M ] + AnnR(M))/AnnR(M) = (0) or ([N2 :

M ] + AnnR(M))/AnnR(M) = (0). Namely, either [N1 : M ] ⊆ AnnR(M) or
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[N2 : M ] ⊆ AnnR(M). Thus, either N1 = [N1 : M ].M = (0) or N2 = [N2 :
M ].M = (0). This proves that M is uniform.

(ii) ⇒ (iii). Suppose R/AnnR(M) is uniform. Let I and J be two ideals
of R such that AnnR(M) = I ∩ J . Then, I/AnnR(M) ∩ J/AnnR(M) = (0).
Since R/AnnR(M) is uniform, either I/AnnR(M) = (0) or J/AnnR(M) = (0).
It follows that either I = AnnR(M) or J = AnnR(M). Thus AnnR(M) is
irreducible.

(iii) ⇒ (ii). Suppose AnnR(M) is irreducible. Let

I/AnnR(M) ∩ J/AnnR(M) = (0)

for some ideals I and J in R. Then, I ∩ J = AnnR(M). However AnnR(M)
is irreducible, then either I = AnnR(M) or J = AnnR(M). Namely, either
I/AnnR(M) = (0) or J/AnnR(M) = (0). Hence R/AnnR(M) is uniform. □

Corollary 3.2. Let M be a finitely generated R-module, Γ be the set of
ideals I of R such that AnnR(M) ⊊ I. Suppose that R/AnnR(M) is Artinian.
Then, the following statements are equivalent:

(i) M is uniform.
(ii) Γ has a unique minimal element by inclusion.

Proof. By Theorem 3.1, it is enough to prove that R/AnnR(M) is uni-
form if and only if Γ has a unique minimal element by inclusion. Sup-
pose that R/AnnR(M) is uniform. Let Γ′ be the set of nonzero ideals of
R/AnnR(M). Since R/AnnR(M) is Artinian, every chain in Γ′ is finite and
has a minimal element. Then, by Zorn’s lemma Γ′ has a minimal element.
If I/AnnR(M) ̸= (0) and J/AnnR(M) ̸= 0 are two minimal elements in Γ′

then either (I ∩ J)/AnnR(M) = I/AnnR(M) or (I ∩ J)/AnnR(M) = (0).
However, R/AnnR(M) is uniform, then (I ∩ J)/AnnR(M) ̸= (0). Then, (I ∩
J)/AnnR(M) = I/AnnR(M) which proves that I/AnnR(M) = J/AnnR(M).
So that Γ′ has a unique minimal element I/AnnR(M). Set the map:

φ : Γ′ → Γ, J/AnnR(M) 7→ J.

φ is a one-to-one correspondence verifying J1/AnnR(M) ⊂ J2/AnnR(M) if
and only if φ(J1/AnnR(M)) ⊂ φ(J2/AnnR(M)). Then, φ(I/AnnR(M)) = I
is the unique minimal element in Γ.

Conversely, assume that Γ has a unique minimal element I. Consider
J1/AnnR(M) and J2/AnnR(M) to be two nonzero ideals in R/AnnR(M).
Then

I ⊆ φ(J1/AnnR(M)) = J1 and I ⊆ φ(J2/AnnR(M)) = J2.

Namely, I ⊆ J1 ∩ J2. As well as, (0) ̸= I/AnnR(M) ⊆ (J1/AnnR(M)) ∩
(J2/AnnR(M)). This proves that R/AnnR(M) is uniform. □

Corollary 3.3. Let M be a finitely generated locally cyclic R-module. If
AnnR(M) is a prime ideal of R then, M is uniform.
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Proof. Since AnnR(M) is prime, R/AnnR(M) is integral. By Lemma 2.4,
R/AnnR(M) is uniform. As well as, by Theorem 3.1 M is uniform. □

Theorem 3.4. Let M be a finitely generated locally cyclic R-module. Then,
Gdim(M) = Gdim(R/AnnR(M)).

Proof. Step 1. Let N1 and N2 be two nonzero submodules of M such
that N1 ∩ N2 = (0). By Lemma 2.3, [N1 : M ] ∩ [N2 : M ] ⊆ AnnR(M).
Then, [N1 : M ]/AnnR(M) ∩ [N2 : M ]/AnnR(M) = (0). This proves that
[N1 : M ]/AnnR(M) + [N2 : M ]/AnnR(M) is a direct sum of nonzero ideals of
R/AnnR(M).

Suppose that if N1+N2+ ...+Nn is a direct sum of nonzero submodules of
M then [N1 : M ]/AnnR(M)+[N2 : M ]/AnnR(M)+...+[Nn : M ]/AnnR(M) is
a direct sum of nonzero ideals of R/AnnR(M) for an integer n. Let N1+N2+
...+Nn+1 be a direct sum of nonzero submodules ofM . In particular, N1+N2+
...+Nn is a direct sum of nonzero submodules ofM , then [N1 : M ]/AnnR(M)+
[N2 : M ]/AnnR(M)+...+[Nn : M ]/AnnR(M) is a direct sum of nonzero ideals
of R/AnnR(M). Set N = N1 + N2 + ... + Nn, we have that N + Nn+1 is a
direct sum of nonzero submodules of M , then [N : M ]/AnnR(M) + [Nn+1 :
M ]/AnnR(M) is a direct sum of nonzero ideals of R/AnnR(M). Since [N1 :
M ] + [N2 : M ] + ...+ [Nn : M ] ⊆ [N : M ], the sum [N1 : M ]/AnnR(M)+ [N2 :
M ]/AnnR(M) + ... + [Nn+1 : M ]/AnnR(M) is a direct sum in R/AnnR(M).
By induction, we see that any direct sum of n nonzero submodules of M gives
a direct sum of n nonzero ideals of R/AnnR(M). By Lemma 2.5, this proves
that Gdim(M) ≤ Gdim(R/AnnR(M)).

Step 2. Consider I1/AnnR(M) and I2/AnnR(M) to be two nonzero ideals
of R/AnnR(M) such that I1/AnnR(M)∩ I2/AnnR(M) = (0). Then, I1 ∩ I2 =
AnnR(M). Put N1 = I1.M = [N1 : M ].M and N2 = I2.M = [N2 : M ].M .
Since M has weak cancellation, I1 + AnnR(M) = [N1 : M ] + AnnR(M) and
I2 + AnnR(M) = [N2 : M ] + AnnR(M). However, AnnR(M) ⊆ I1 ∩ I2 and
AnnR(M) ⊆ [N1 : M ]∩ [N2 : M ] then I1 = [N1 : M ] and I2 = [N2 : M ]. Then,
N1 ∩N2 = (I1 ∩ I2).M = (0) since I1 ∩ I2 ⊆ AnnR(M).

Suppose that for an integer n, if

I1/AnnR(M) + I2/AnnR(M) + ...+ In/AnnR(M)

is a direct sum of nonzero ideals of R/AnnR(M) then N1 + N2 + ... + Nn is
a direct sum of nonzero submodules of M where Nk = Ik.M for each k. Let
I1/AnnR(M) + I2/AnnR(M) + ...+ In+1/AnnR(M) be a direct sum of n+ 1
nonzero ideals of R/AnnR(M). Then, I1/AnnR(M) + I2/AnnR(M) + ... +
In/AnnR(M) is a direct sum of n nonzero ideals of R/AnnR(M). It follows
that N1+N2+...+Nn is a direct sum of nonzero submodules ofM , where Nk =
Ik.M for each k. Let I = I1+I2+ ...+In, then I/AnnR(M)+ In+1/AnnR(M)
is a direct sum of two nonzero ideals of R/AnnR(M). Therefore, N+Nn+1 is a
direct sum of nonzero submodules of M where N = I.M = N1+N2+ ...+Nn
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and Nn+1 = In+1.M . Namely, N1+N2+ ...+Nn+1 is a direct sum of nonzero
submodules of M .

By induction, we see that any direct sum of n nonzero ideals of R/AnnR(M)
gives a direct sum of n nonzero submodules of M . By Lemma 2.5, this proves
that Gdim(R/AnnR(M)) = Gdim(M). □

Corollary 3.5. Let M be a finitely generated locally cyclic Z-module.
Then, there are two possible cases:

(i) If M is faithful, then Gdim(M) = 1.
(ii) If M is not faithful, then Gdim(M) = n where n is the number of prime

divisors of |Z/AnnR(M)|.

Proof. If M is faithful then, AnnR(M) = (0) and Z/AnnR(M) = Z which
is integral. By Lemma 2.4, Z is uniform and by Theorem 3.1 M is uniform.
Thus, Gdim(M) = 1.

If M is not faithful then, AnnR(M) = mZ for a nonzero integer m. By
Theorem 3.4 Gdim(M) = Gdim(Z/mZ) and by Lemma 2.6 Gdim(M) = n
where n is the number of prime divisors of m = |Z/mZ|. □

Corollary 3.6. Every faithful finitely generated locally cyclic module has
finite Goldie dimension if and only if R has finite Goldie dimension.

Proof. Let M be a faithful finitely generated locally cyclic module. Then,
by Theorem 3.4, Gdim(M) = Gdim(R/AnnR(M)). However M is faithful,
then AnnR(M) = (0) and Gdim(M) = Gdim(R). Then, Gdim(M) is finite if
and only if Gdim(R) is finite. □

Al-Hazali et al. [2] studied the rings whose cyclics have finite Goldie dimen-
sion. In the following theorem we characterize also the rings whose finitely
generated locally cyclics have finite Goldie dimension.

Theorem 3.7. The following statements are equivalent:

(i) Every finitely generated locally cyclic R-module has finite Goldie dimen-
sion.

(ii) R is q.f.d.
(iii) Every ideal I of R contains a finitely generated ideal J such that I/J is

a simple R-module.

Proof. (i) ⇒ (ii). Let I be an ideal of R. Then, M = R/I is a finitely
generated locally cyclic R-module since it is cyclic. It follows that Gdim(M)
is finite. Thus, R is q.f.d.

(ii) ⇒ (i). LetM be a finitely generated locally cyclicR-module. By Lemma
2.1, M is a finitely generated multiplication R-module and by Theorem 3.4
Gdim(M) = Gdim(R/AnnR(M)). Since R is q.f.d., Gdim(R/AnnR(M)) is
finite and Gdim(M) is finite.
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(ii) ⇔ (iii). Obtained from Lemma 2.7. It suffices to notice that for any
ideals I and J of R, the fact that I/J has no maximal ideals is equivalent to
saying that I/J is a simple R-module. □
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