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DYNAMICS ANALYSIS OF THE WEIBULL MODEL

CHABANE BEDJGUELEL, HACENE GHAROUT, and BAKIR FARHI

Abstract. In this work, we study the dynamics of the Weibull model in di-
mension one, represented by the Weibull function with three parameters. The
positive fixed points have been studied and implicitly expressed in terms of the
Lambert W function as well as the existence and stability conditions. We deduce
that this Weibull function defines an Allee function for certain parameter values.
Numerical simulations have been presented to illustrate the theoretical results.
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1. INTRODUCTION

Weibull’s law covers a whole family of laws (exponential law, normal law,
etc.); it is used in several scientific fields in pure and applied mathematics [10],
in the fields of life and survival analysis, and in the reliability of mechatronic
systems [7], in the measurement of the life span of electronic components
[6], and in wind turbines to estimate the theoretical amount of wind energy
available on a given site [1, 4]. In this work, we study the Weibull function
defined by

(1) f : R+ −→ R+, f(x) = rxp−1e−qxp
.

The aim of this paper is to investigate and compare the stability analysis of
fixed points. We first give the following property, which can be easily verified:

Property 1.1. If f : R+ −→ R+ is the function defined by (1), then the
following holds:

(i) f is continuous for p > 1, and f(x) > 0 for all x > 0.
(ii) If p > 1, then f is unimodal, with a unique critical point

c = p

√
p− 1

pq
,

where f attains its global maximum, lim
x→0

f(x) = 0, and lim
x→+∞

f(x) = 0.
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(iii) The Schwarz derivative of f is negative for all x ∈ R+\{c} and p > 2.
(iv) If p = 1, then f is strictly decreasing,

lim
x→0

f(x) = r, and lim
x→+∞

f(x) = 0.

2. FIXED POINT OF THE WEIBULL FUNCTION

In this section, we study the positive fixed points of the Weibull function
defined by (1).

We are only interested in real values with x ∈ R+ and the parameters r, p,
q under the following conditions:

Ω0 = {(r, p, q) ∈ R3 : r, p, q > 0 and p ≥ 1}.
The fixed points of f (i.e., the roots of the equation f(x) = x) satisfy x = 0

or rxp−2e−qxp − 1 = 0.
At x = 0 (the trivial fixed point), the derivative of the Weibull function is

discontinuous and verifies:

(2)


lim
x→0

f ′(x) = ∞, if 1 < p < 2,

lim
x→0

f ′(x) = r, if p = 2,

lim
x→0

f ′(x) = 0, if p > 2.

It is clear that x = 0 is always a fixed point of f . In the following proposi-
tion, we study non-trivial fixed points. The existence and the number of fixed
points always depend on the parameter p. The fixed points are implicitly
expressed in terms of the Lambert W function.

Recall that the Lambert W function is defined as the multivalued inverse
of the function w −→ wew. Thus, we have for any complex numbers z and w:

z = wew, i.e, w = W (z).

For x, y ∈ R, the equation yey = x can be solved in y only if x > −1
e .

Precisely, for x ≥ 0, we have a unique solution y = W0(x), and for −1
e < x < 0,

we have two: y = W0(x) and y = W−1(x) (see Figure 2.1).
Throughout this paper, we will use the expression X(r, p, q) (r, p, q > 0)

to denote the expression X(r, p, q) = pq
2−pr

p
2−p ; xf to denote the first positive

fixed point and xs the second fixed point.

Proposition 2.1. Let f : R+ −→ R+ be the Weibull function, defined by
(1) in the parameter space Ω0.

(I) If 1 < p < 2, then the Weibull function has one non-zero fixed point,
given by:

xf = p

√
2− p

pq
W0(X(r, p, q)).

(II) If p > 2, then the number of fixed point of f depends on the values of
the parameter r. We have precisely:
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(i) If X(r, p, q) > −1
e , then f has two positive fixed points given by

xf = p

√
2− p

pq
W−1(X(r, p, q)), xs =

p

√
2− p

pq
W0(X(r, p, q)).

(ii) If X(r, p, q) = −1
e , then f has one positive fixed point given by

xf = p

√
2− p

pq
W−1(X(r, p, q)).

(iii) If X(r, p, q) < −1
e , then f has no positive fixed points.

Proof. For x > 0, the equation of the fixed point f(x) = x, corresponds to:

rxp−1e−qxp
= x.

This allows us to have

xe

q

2− p
xp

= r

1

2− p .

By raising both sides to the power p and multiplying by pq
2−p , we get the

equation as:

yey = z,

where y = pq
2−px

p and z = pq
2−pr

p
2−p . Since the solution of the last equation is

y = W (z) = W
(

pq
2−pr

p
2−p

)
, we finally obtain:

x = p

√
2− p

pq
W

(
pq

2− p
r

p
2−p

)
.

(I) If 1 < p < 2, we have X(r, p, q) > 0, then the equation has only one
solution as follows

xf = p

√
2− p

pq
W0(X(r, p, q)).

(II) If p > 2, we haveX(r, p, q) < 0. In this case, we distinguish three cases.
In the first case, if X(r, p, q) > −1

e , the equation has two solutions as
follows

xf = p

√
2− p

pq
W−1(X(r, p, q)) and xs =

p

√
2− p

pq
W0(X(r, p, q)).

In the second case, if X(r, p, q) = −1
e , the equation has one solution,

as follows

xf = p

√
2− p

pq
W−1 (X(r, p, q))).

In the third case, if X(r, p, q) < −1
e , the equation has no solutions.

□
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Remark 2.2. When p > 2, the comparison between X(r, p, q) and r is
equivalent to the comparison between r and ϕ(p, q). A graphical analysis
of the function f1(x) = rxp−2e−qxp

reveals that the Weibull function has a
single positive fixed point when r = ϕ(p, q), two positive fixed points when
r > ϕ(p, q), and no positive fixed points when r < ϕ(p, q), where

ϕ(p, q) =
p

√(
p− 2

pq

)2−p

ep−2.

Indeed, the function f1 is differentiable and has only one critical point,

c = p

√
p− 2

pq
.

It is strictly increasing on [0, c[ and strictly decreasing on ]c,+∞]. Moreover,
when x tends to 0 or +∞, f1 tends to 0. Thus, the critical point c represents
the maximum of f1.

The condition f1(c) < 1 is equivalent to r < ϕ(p, q) and implies that f1 can
never have the value 1. Therefore, x = 0 is the only fixed point of f .

If f1(c) = 1, then f1 passes through the value 1 only once, so the Weibull
function has a single positive fixed point.

For r > ϕ(p, q), the condition f1(c) > 1 implies that f1 passes through the
value 1 twice, so the Weibull function has two positive fixed points.

Fig. 2.1 – The Lambert W function graph is composed of two branches: the principal branch
W0 (colored blue) and the secondary branch W1 (colored red). The curve is obtained through
the symmetry of the graph of the function xex (colored green) with respect to the y = x

axis.
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3. STABILITY OF THE FIXED POINT

We recall that if a fixed point xp satisfies: |f ′(xp)| < 1, then it is asymp-
totically stable, and if it satisfies |f ′(xp)| > 1, then it is unstable.

Proposition 3.1. Assume that p ∈]1, 2[. Then the Weibull function has
one positive fixed point:

xf = p

√
2− p

pq
W0 (X(r, p, q)),

which is globally asymptotically stable if only if r < r∗, with

r∗ = e p
√
qp−2.

Proof. Let p ∈]1, 2[ from Proposition 2.1, which tells us that f has a unique

positive fixed point xf = p

√
2−p
pq W0 (X(r, p, q)). Recall that the fixed point

equation at a positive fixed point xf satisfies the following condition:

(3) rxp−2e−qxp
= 1 or equivalently rxp−2 = eqx

p
.

On the other hand, consider the expression of the first derivative of the Weibull
function

(4) f ′(x) = rxp−2e−qxp
(p− 1− pqxp) .

From (3) and (4) it follows that f ′(x) = p − 1 − pqxp, and thus f ′′(x) =
−p2qxp−1 < 0, for any x > 0. By the monotonicity of f ′, we find that
f ′(xf ) < f ′(c) = 0. Clearly, we have f ′(xf ) < 1. To show that xf is stable, it
is sufficient to solve the following system:{

f(xf ) = xf ,

f ′(xf ) > −1.

This is equivalent to

(5)


r = x2−p

f eqx
p
,

xf < p

√
1

q
.

As the function Ψ(x) = x2−peqx
p
is increasing for p ∈]1, 2[, then

Ψ(xf ) < Ψ

(
p

√
1

q

)
, i.e., r < Ψ

(
p

√
1

q

)
= r∗ (see Figure 3.2).

To prove that xf is attractive, we use Theorem 3.2, and we find that the
equation f2(x) = x has no solution different than xf . We define g(x) = f2(x),
and we proceed to a graphical analysis of this function. □
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Fig. 3.2 – The graph of f when p = 3, q = 0.5, and r = 1.58 shows that for any initial
point in R+, one approaches the positive fixed point, which illustrates the result obtained in

Proposition 3.1

Theorem 3.2 ([2, Theorem 2.6, page 48]). Assume that f : R+ −→ R+ is
continuous, has a unique fixed point xp, and is bounded on the interval ]0, xp[.
Furthermore, suppose that there exist x1, x2, with 0 < x1 < xp < x2, such
that f(x1) > x1 and f(x2) < x2. Then, xp is a global attractor of f in R+ if
and only if there is no fixed point of f2 distinct from xp.

Proposition 3.3. Let p > 2, then the number and stability of fixed points
of f depend on the values of X(r, p, q). We have precisely:

(i) If X(r, p, q) < −1
e , then the Weibull function has x = 0, a single fixed

point that represents a global attractor, i.e.,

lim
n→+∞

fn(x) = 0, for all x ∈ R+.

(ii) If X(r, p, q) = −1
e , then the Weibull function has exactly two fixed

points, the trivial fixed point x = 0 and

xf = p

√
2− p

pq
W−1(X(r, p, q)),

which is 0, is stable with a basin of attraction [0, xf [, and it is verified
that

lim
n→+∞

fn(x) = 0, for all x ∈ R+\[xf , x∗f ],

and

lim
n→+∞

fn(x) = xf , for all x ∈ [xf , x
∗
f ].

(iii) If X(r, p, q) < −1
e , then the Weibull function has three fixed points:

x = 0, xs, which are asymptotically stable, and xf is unstable. More-
over, the basin of attraction of xs is ]xf ,+∞)[, and the basin of at-
traction of 0 is ]0, xf [.
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Proof. Let p > 2 and X(r, p, q) < −1
e . From Proposition 2.1, it follows that

the Weibull function f has a single fixed point, x = 0. According to (2), the
trivial fixed point is stable. Furthermore, we have f(x) < x for all x ∈ R+ (see
Figure 3.3). Thus, the sequence fn(x) is decreasing and bounded below by 0.
As f is continuous, fn(x) converges to the only fixed point x = 0. Therefore,
we conclude that limn→+∞ fn(x) = 0 for all x ∈ R+.

Fig. 3.3 – The graph of f when p = 3, q = 0.5, and r = 1.58 corresponds to f with one fixed
point, all orbits converging to zero.

If p > 2 and X(r, p, q) < −1
e , by Proposition 2.1, f has two fixed points

x = 0 and xf . From (2), x = 0 is stable. Moreover, from the unimodality and
monotonicity of the function f , we conclude the following inequalities:

0 < xf < c < x∗f , f ′(x) > 0, for all x ∈ [0, xf [

and

f ′(x) < 0 for all x ∈ [x∗f ,+∞[,

(see Figure 3.4), i.e., f(x) > xf , for all x ∈ [xf , x
∗
f ]. Hence, f

n(x) is a decreas-

ing sequence that converges to the attractor x = 0 for any x ∈ [0,+∞[\[xf , x∗f ].
Consequently, lim

n→+∞
fn(x) = 0 for all x ∈ R+\[xf , x∗f ].

Let x ∈ [xf , x
∗
f ]. From the monotonicity and unimodality of f , we have:

xf < c < x∗f , f ′(x) > 0, for all x ∈ [xf , c[

and

f ′(x) < 0, for all x ∈ [c, x∗f [.

In addition,

xf < f(x) < f(c), for all x ∈ [xf , x
∗
f ].
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Fig. 3.4 – The graph of f when p = 3, q = 0.5, and r = 1.6 corresponds to f with a fixed
point; all orbits in R+ \ [xf , x

∗
f ] converge to the fixed point zero, and all orbits in the interval

[xf , x
∗
f ] converge to the fixed point xf .

Consequently, xf is the only fixed point in the interval [xf , x
∗
f ]. As f(x) <

x, for all x ∈ [xf , x
∗
f ], then we conclude that fn(x) is a monotonically de-

creasing sequence and is bounded below by xf . Continuity of the function f
implies that the sequence fn(x) converges to the only fixed point xf . Thus,
we conclude for xf that

lim
n→+∞

fn(x) = xf , for all x ∈ [xf , x
∗
f ].

We recall that the equation at the non-trivial fixed point f(x) = x corre-
sponds to:

rxp−1e−qxp
= x.

For x > 0, the equation of the fixed point becomes rxp−2e−qxp
= 1. Let

h(x) = rxp−2 and g(x) = e−qxp
. The equation has one positive fixed point if

and only if the fixed point satisfies the following systems:{
g(x) = h(x),

g′(x) = h′(x).

This is equivalent to

(6)

{
rxp−2 = eqx

p
,

r(p− 2)xp−3 = pqxp−1eqx
p
.

Solving the system (6) gives

x∗ = p

√
p− 2

pq
and r1 =

p

√(
p− 2

pq

)2−p

ep−2.



192 C. Bedjguelel, H. Gharout, and B. Farhi 9

Thus, we conclude the following inequality

xf < x∗ < xs.

From (4) we get

f ′(xf ) = p− 1− pqxpf > p− 1− pqx∗p = 1 > p− 1− pqxps = f ′(xs).

Hence, the first fixed point xf is unstable, and the second fixed point xs is
stable only if f(xs) > −1 (see Figure 3.5). According to (5), we have

r < r∗ = e p
√
qp−2.

Fig. 3.5 – The graph of f when p = 3, q = 0.5, and r = 3.3 illustrates the result obtained in
Proposition 3.3 when f admits three fixed points. All orbits in the interval [0, xf [ approach

zero, and all orbits in the interval ]xf ,+∞[ approach the second fixed point xs.

□

Corollary 3.4. If p = 1, then the Weibull function has a single positive
fixed point given by W (qr), which is stable for r, q ∈ Λr,q with

Λr,q = {r, q ∈ R+ : W (qr) > ln(r) + ln(q)} .

When p = 2, the existence and stability of the fixed points of the Weibull
function depend on the parameter r:

(i) If 0 < r < 1, then the trivial fixed point x = 0 is stable, while if r > 1,
it is unstable.

(ii) For 1 < r < e, the second fixed point x =
√

log(r)
q , which corresponds

to the case r ≥ 1, is stable, and if r > e, it is unstable.
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Proof. Let p = 1 and consider the fixed point equation f(x) = x, which
means that re−qx = x, which is equivalent to qxeqx = qr. So x = W (qr).
Let’s show the stability of the fixed point. We know that the derivative of f
at the fixed point is given by

f ′(W (qr)) = −rqe−W (qr).

It is clear that f(−W (qr)) < 1.
To demonstrate the stability of the fixed point, all we need to do is check

that f ′(−W (qr)) > −1. To do this, assume that −rqe−W (qr) > −1. This
implies that

W (qr) > ln(r) + ln(q), (see Figure 3.6).

For p = 2, we have

f(x) = x is equivalent to


x = 0

or

x =
√

log(r)
q , for r ≥ 1

To prove the stability of the fixed point, it suffices to study the first deriv-
ative of f at the fixed points.

Fig. 3.6 – The graph of f when p = 1, q = 1, and r = 2 shows that the one fixed point is
asymptotically stable.

□
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4. ALLEE FUNCTION

In this section, we give the conditions for the Weibull function to belong to
the class of Allee functions defined in [8,9]. We first define the Allee functions
as follows:

Definition 4.1. A function f : R+ −→ R+ is an Allee function if it has
three fixed points: x = 0, x1, and x2, where x = 0 and x2 are asymptotically
stable but x1 is unstable and satisfies the following systems:

(i) 0 < x1 < c < x2 < +∞, where c is the only critical point of f .
(ii) For all x ∈ [0, x1[∪]x2,+∞[ we have f(x) < x.
(iii) For all x ∈]x1, x2[ we have f(x) > x.

Remark 4.2. Taking into account Proposition 2.1 and Remark 2.2, we
can affirm that the Weibull function is an Allee function when p > 2 and
ϕ(p, q) < r. Then, we define

Γ0 = {r, p, q,∈ R+ : p > 2 and ϕ(p, q) < r < r∗} ,

the set on which f defines an Allee function.

Definition 4.3. Let f : R+ −→ R+ be the Weibull function in the Γ0 pa-
rameter space. The Allee effect region, denoted by RAE , is defined as follows:

RAE =
{
(r, p, q) ∈ Γ0 : f

2(c) < xf
}
,

where xf is the first fixed point and c = p

√
p−1
pq is the critical point of f .

Proposition 4.4. Let f : R+ −→ R+ be the Weibull function in the pa-
rameter space Γ0. Consider the values:

a = max{f−1(x∗f )}, b = min{f−1(x∗f )},

such that I =]a, b[⊂]x∗f , xf [. If (r, p, q) ∈ RAE, then lim
n→+∞

fn(x) = 0 for all

x ∈ I.

Proof. Let (r, p, q) ∈ RAE , then f2(c) < xf ; note that this last inequality is
equivalent to f(c) > x∗f , where x∗f = max{f−1(xf )}. Using the unimodality
of f , we deduce the following inequality:

xf < a < c < b < x∗f , (see Figure 4.7).

In addition, from the monotonicity of f , we have f ′(x) > 0 for all x ∈ [0, c[
and f ′(x) < 0 for all x ∈]c,+∞[. On the other hand, considering condition
(c) of Definition 4.1, it follows that

f(x) > x for all x ∈]a, b[.

Moreover, we have x∗f < f(x). Using the monotonicity of f , we find that:

0 < f2(x) < xf for all x ∈]a, b[.
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In this region, (]0, xf [), f
n(x) is a monotonous descending sequence that is

delimited below by 0. By the continuity of f , we deduce that the sequence
fn(x) converges to inf

x∈R+
{fn(x)} = 0. Therefore,

lim
x→+∞

fn(x) = 0 for all x ∈]a, b[ (see Fig.4.7).

□

Fig. 4.7 – The graph of f when f2(c) < xf (p = 3, q = 0.5, r = 3.3), shows that for any
initial x0 point located in the interval ]a, b[, its orbit approaches the zero fixed point.

5. CONCLUSION

In this paper, the dynamics of a three-parameter Weibull function are stud-
ied. The fixed points are obtained in terms of the Lambert function for differ-
ent parameter values. Stability analysis of the fixed points has been presented.
The results are illustrated by numerical examples. Finally, we have defined a
parameter space for the Weibull function to present an Allee function.
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