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NONLINEAR FOURTH-ORDER DYNAMIC EQUATIONS
ON UNBOUNDED TIME SCALES

BILENDER P. ALLAHVERDIEV and HÜSEYIN TUNA

Abstract. In this paper, we investigate nonlinear fourth-order dynamic equa-
tions on unbounded time scales. The existence and uniqueness of the solutions
for these problems are obtained.
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1. INTRODUCTION

It is well known that the time scale calculus is a unification of continuous and
discrete calculus. It was introduced in [10]. The dynamic equations on time
scales have received in recent years a considerable attention see for instance
[4–7,11,12,15–17].

At present, there have been some studies on fourth-order dynamic equations
[6,7,11,12,15–17]. To the authors’ knowledge, there is no work on the existence
of solutions for singular fourth-order dynamic problems in the lim-4 case so our
problem is very different from the papers in the literature. A similar way was
employed earlier in the differential and difference operator cases in [1–3,9,18].

Let T be a time scale which is unbounded from above such that supT = ∞.
We will denote T also as [0,∞)T. Some preliminary definitions and theorems
on time scales can be found in [5].

The space L2
∆[a,∞)T is a Hilbert space consisting of all real-valued functions

y such that ∫ ∞

0
|y(x)|2∆ξ <∞

with the inner product

⟨f, g⟩ :=
∫ ∞

0
f (ξ) g (ξ)∆ξ, f, g ∈ L2

∆[0,∞)T.
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We consider the nonlinear fourth-order dynamic equation

(Υx) (ξ) := (p0x
△▽)▽△ (ξ)− (p1x

▽)△ (ξ) + p2 (ξ)x (ξ)(1)

= f (ξ, x (ξ)) , ξ ∈ [0,∞)T,

and assume that p0, p1 and p2 are real-valued; p−1
0 , p1 and p2 are locally

∆-integrable functions on [0,∞)T, and p0 > 0 on [0,∞)T.
Yardımcı and Ugurlu [18] have studied equation (1) for when T = [0,∞).
For simplicity of notations, we write

x[0] = x

x[1] = x∆

x[2] = p0x
∆∇

x[3] = p1x
∇ −

(
x[2]

)∇

x[4] = p2x−
(
x[3]

)∆

Then, Green’s formula for solutions x (.) and z (.) is given by∫ ∞

0
(Υx) (ξ) z (ξ)∆ξ −

∫ ∞

0
x (ξ) (Υz) (ξ)∆ξ = [x, z]∞ − [x, z]0,

where

[x, z]ξ := x[0](ξ)z[3](ξ)− x[3](ξ)z[0](ξ) + x[1](ξ)z[2](ξ)− x[2](ξ)z[1](ξ)

and

[x, z]∞ := lim
ξ→∞

[x, z]ξ

(see [4]). It is clear that [x, z]∞ exists and is finite.
Let

Dmax =

x ∈ L2
∆[0,∞)T :

the first three ∆ derivatives are
locally ∆-absolutely continuous in
[0,∞)T, and Υ (x) ∈ L2

∆[0,∞)T.

 ,

and

Dmin =

{
x ∈ Dmax :

x[0] (0) = x[1] (0) = x[2] (0) = x[3] (0) = 0,
[x, z]∞ = 0, ∀z ∈ Dmax.

}
.

Then, the maximal operator Γmax is defined on Dmax by the formula

Γmaxx = Υx.

If we restrict the operator Γmax to the set Dmin, then we obtain the minimal
operator Γmin. It is clear that Γ∗

min = Γmax, and Γmin is a closed symmetric
operator with deficiency indices (2,2), (3,3), (4,4) (see [8, 14]).
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We will assume that the following conditions are satisfied.
(A1) The lim-4 Case holds for Υx = 0 (see [8]).
(A2) f (ξ, ζ) is real-valued and continuous in (ξ, ζ) ∈ [0,∞)T ×R, and, for

all (ξ, ζ) in [0,∞)T × R, f (ξ, ζ) satisfies the following condition:

(2) |f (ξ, ζ)| ≤ g (ξ) + ϱ |ζ| ,

where g (ξ) ≥ 0, g ∈ L2
∆[0,∞)T, and ϱ > 0.

Let yi, 1 ≤ i ≤ 4, be the solutions of equation (1) subject to the following
normalization conditions:

p20 (t)W∆ (y1, y2, y3, y4) = 1

and

y
[0]
1 (0) = cosα, y

[1]
1 (0) = y

[2]
1 (0) = 0, y

[3]
1 (0) = − sinα,

y
[0]
2 (0) = 0, y

[1]
2 (0) = sinβ, y

[2]
2 (0) = − cosβ, y

[3]
2 (0) = 0,

y
[0]
3 (0) = sinα, y

[1]
3 (0) = y

[2]
3 (0) = 0, y

[3]
3 (0) = cosα,

y
[0]
4 (0) = 0, y

[1]
4 (0) = cosβ, y

[2]
4 (0) = sinβ y

[3]
4 (0) = 0,

where α, β ∈ R,
[y1, y1] [y2, y1] [y3, y1] [y4, y1]
[y1, y2] [y2, y2] [y3, y2] [y4, y2]
[y1, y3] [y2, y3] [y3, y3] [y4, y3]
[y1, y4] [y2, y4] [y3, y4] [y4, y4]

 =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 ,
and

W∆ (y1, y2, y3, y4) =

∣∣∣∣∣∣∣∣∣∣

y1 y2 y3 y4

y
[1]
1 y

[1]
2 y

[1]
3 y

[1]
4

y
[2]
1 y

[2]
2 y

[2]
3 y

[2]
4

y
[3]
1 y

[3]
2 y

[3]
3 y

[3]
4

∣∣∣∣∣∣∣∣∣∣
.

(see [4]).
Now, we will impose the following conditions

(3)

x[0] (0) sinα+ x[3] (0) cosα = 0,

x[1] (0) cosβ + x[2] (0) sinβ = 0,
[x, y3]∞ − d1 [x, y1]∞ = 0,
[x, y4]∞ − d2 [x, y2]∞ = 0,

where α, β, d1, d2 ∈ R.
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2. MAIN RESULTS

Let us consider the following problem

(4) (Υx)(ξ) = h (ξ) ,

where ξ ∈ (0,∞) and h ∈ L2
∆[0,∞)T.

Let

φ (ξ) =

(
y1 (ξ)
y2 (ξ)

)
and ψ (ξ) =

(
y3 (ξ)− d1y1 (ξ)
y4 (ξ)− d2y2 (ξ)

)
.

Then, the solution of the boundary-value problem (3), (4) is defined by the
formula

x (ξ) =

∫ ∞

0
G (ξ, t)h (t)∆t,

where ξ ∈ (0,∞) and

G (ξ, t) =

{
φT (ξ)ψ (t) , if t ≤ ξ,

φT (t)ψ (ξ) , if t > ξ,

where xT denotes the transpose of the vector x.
Thus, the problem (1), (3) is equivalent to the following equation

(5) x (ξ) =

∫ ∞

0
G (ξ, t) f (t, x (t))∆t.

From (A1), we infer that

(6)

∫ ∞

0

∫ ∞

0
|G (ξ, t)|2∆ξ∆t <∞.

Now, we can define an operator

T : L2
∆[0,∞)T → L2

∆[0,∞)T

as follows:

(7) (Tx) (ξ) =

∫ ∞

0
G (ξ, t) f (t, x (t))∆t, ξ ∈ (0,∞) ,

where x ∈ L2
∆[0,∞)T. Hence (5) can be written as x = Tx.

Theorem 2.1. Suppose that conditions (A1) and (A2) are satisfied. Fur-
ther, let f (ξ, y) satisfy the following Lipschitz condition: there exists a con-
stant K > 0 such that∫ ∞

0
|f (ξ, x (ξ))− f (ξ, z (ξ))|2∆ξ ≤ K2

∫ ∞

0
|x (ξ)− z (ξ)|2∆ξ

for all x, z ∈ L2
∆[0,∞)T. If

K

(∫ ∞

0

∫ ∞

0
|G (ξ, t)|2∆ξ∆t

)1/2

< 1,

then the problem (1), (3) has a unique solution in L2
∆[0,∞)T.



170 B. P. Allahverdiev and H. Tuna 5

Proof. For x, z ∈ L2
∆[0,∞)T, we see that

|(Tx) (ξ)− (Tz) (ξ)|2

=

∣∣∣∣∫ ∞

0
G (ξ, t) [f (t, x (t))− f (t, z (t))]∆t

∣∣∣∣2
≤

∫ ∞

0
|G (ξ, t)|2∆t

∫ ∞

0
|f (t, x (t))− f (t, z (t))|2∆t

≤ K2 ∥x− z∥2
∫ ∞

0
|G (ξ, t)|2∆t, ξ ∈ (a,∞) .

Thus, we get

∥Tx− Tz∥ ≤ α ∥x− z∥ ,

where

α = K

(∫ ∞

0

∫ ∞

0
|G (ξ, t)|2∆ξ∆t

)1/2

< 1. □

Theorem 2.2. Suppose that conditions (A1) and (A2) are satisfied. Fur-
ther, let us assume that the following condition holds: there exist constants
M, K > 0 such that∫ ∞

0
|f (ξ, x (ξ))− f (ξ, z (ξ))|2∆ξ ≤ K2

∫ ∞

0
|x (ξ)− z (ξ)|2∆ξ

for all x and z in

SM =
{
x ∈ L2

∆[0,∞)T : ∥x∥ ≤M
}
,

where K may depend on M. If(∫ ∞

0

∫ ∞

0
|G (ξ, t)|2∆ξ∆t

)1/2

sup
x∈SM

(∫ ∞

0
|f (t, x (t))|2∆t

)1/2

≤M

and

K

(∫ ∞

0

∫ ∞

0
|G (ξ, t)|2∆ξ∆t

)1/2

< 1,

then the problem (1), (3) has a unique solution satisfying∫ ∞

0
|x (ξ)|2∆ξ ≤M2.
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Proof. Since SM is a closed set of L2
∆[0,∞)T, we will show that T maps SM

into itself. For x ∈ SM we get

∥Tx∥ =

∥∥∥∥∫ ∞

0
G (., t) f (t, x (t))∆t

∥∥∥∥
≤

∥∥∥∥∫ ∞

0
G (., t) f (t, x (t))∆t

∥∥∥∥
≤

(∫ ∞

0

∫ ∞

0
|G (ξ, t)|2∆ξ∆t

)1/2

sup
x∈SM

{∫ ∞

0
|f (t, x (t))|2∆t

}1/2

≤M.

An analysis similar to that in the proof of Theorem 2.1 shows that

∥Tx− Tz∥ ≤ α ∥x− z∥ , where x, z ∈ SM .

From the Banach fixed point theorem, we get the desired result. □

Now, we show that nonlinear problems may have solutions without unique-
ness. In order to get this result, we will use the following Schauder fixed point
theorem.

Definition 2.3 ([9]). An operator acting in a Banach space is said to be
completely continuous if it is continuous and if it maps bounded sets into
relatively compact sets.

Theorem 2.4 ([9]). Let B be a Banach space and S a non-empty bounded,
convex, and closed subset of B. Assume A : B → B is a completely continuous
operator. If the operator A leaves the set S invariant, i.e., if A (S) ⊂ S, then
A has at least one fixed point in S.

Theorem 2.5. Suppose that conditions (A1) and (A2) are satisfied. Then
T defined by (7) is a completely continuous operator.

Proof. Let x0 ∈ L2
∆[0,∞)T. Then, we obtain

|(Tx) (ξ)− (Tx0) (ξ)|2

=

∣∣∣∣∫ ∞

0
G (ξ, t) [f (t, x (t))− f (t, x0 (t))]∆t

∣∣∣∣2
≤

∫ ∞

0
|G (ξ, t)|2∆t

∫ ∞

0
|f (t, x (t))− f (t, x0 (t))|2∆t.

Thus

(8) ∥Tx− Tx0∥2 ≤ K

∫ ∞

a
|f (t, x (t))− f (t, x0 (t))|2∆t,

where

K =

(∫ ∞

0

∫ ∞

0
|G (ξ, t)|2∆ξ∆t

)
.
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It is evident that an operator T defined by Tx (ξ) = f (ξ, x (ξ)) is continuous
in L2

∆[0,∞)T under the condition (A2) (see [13]). Hence, for the given ϵ > 0,
we can find a δ > 0 such that ∥x− x0∥ < δ implies∫ ∞

0
|f (t, x (t))− f (t, x0 (t))|2∆t <

ϵ2

K
.

From (8), we get

∥Tx− Tx0∥ < ϵ.

Let

Y =
{
x ∈ L2

∆[0,∞)T : ∥x∥ ≤ C
}
.

By (7), we have

∥Tx∥ ≤
{
K

∫ ∞

a
|f (t, x (t))|2∆t

}1/2

,

for all x ∈ Y. Furthermore, using (2), we get∫ ∞

0
|f (t, x (t))|2∆t ≤

∫ ∞

0
[g (t) + ϱ |x (t)|]2∆t

≤ 2

∫ ∞

0

[
g2 (t) + ϱ2 |x (t)|2

]
∆t

= 2
(
∥g∥2 + ϱ2 ∥x∥2

)
≤ 2

(
∥g∥2 + ϱ2C2

)
.

Therefore, for all x ∈ Y, we see that

∥Tx∥ ≤
[
2K

(
∥g∥2 + ϱ2C2

)]1/2
.

Further, for all x ∈ Y, we have∫ ∞

N
|Tx (ξ)|2∆ξ ≤ 2

(
∥g∥2 + ϱ2C2

)∫ ∞

N

∫ ∞

0
|G (ξ, t)|2∆ξ∆t.

So, from (6), we conclude that for given ϵ > 0 there exists a positive number
N , depending only on ϵ such that∫ ∞

N
|Tx (ξ)|2∆ξ < ϵ2,

for all x ∈ Y.
Hence T (Y ) is relatively compact in the space L2

∆[0,∞)T. □
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Theorem 2.6. Suppose that conditions (A1) and (A2) are satisfied. Fur-
ther, we assume that there exists constant M > 0 such that

(9)

(∫ ∞

0

∫ ∞

0
|G (ξ, t)|2∆ξ∆t

)1/2

sup
x∈SM

{∫ ∞

0
|f (t, x (t))|2∆t

}1/2

≤M,

where SM =
{
x ∈ L2

∆[a,∞)T : ∥x∥ ≤M
}
. Then the problem (1), (3) has at

least one solution with ∫ ∞

0
|x (ξ)|2∆ξ ≤M2.

Proof. Let T : L2
∆[0,∞)T → L2

∆[0,∞)T be the operator defined in (7). It
follows from Theorems 2.2, 2.5, and (9) that T maps the set SM into itself.
Moreover, the set SM is bounded, convex and closed. From the Schauder fixed
point theorem, we get the desired result. □
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