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NONLINEAR FOURTH-ORDER DYNAMIC EQUATIONS
ON UNBOUNDED TIME SCALES

BILENDER P. ALLAHVERDIEV and HUSEYIN TUNA

Abstract. In this paper, we investigate nonlinear fourth-order dynamic equa-
tions on unbounded time scales. The existence and uniqueness of the solutions
for these problems are obtained.
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1. INTRODUCTION

It is well known that the time scale calculus is a unification of continuous and
discrete calculus. It was introduced in [10]. The dynamic equations on time
scales have received in recent years a considerable attention see for instance
[4H7|11,/12|15417].

At present, there have been some studies on fourth-order dynamic equations
[647,11,/1215H17]. To the authors’ knowledge, there is no work on the existence
of solutions for singular fourth-order dynamic problems in the lim-4 case so our
problem is very different from the papers in the literature. A similar way was
employed earlier in the differential and difference operator cases in [1H3}9L[18].

Let T be a time scale which is unbounded from above such that sup T = oc.
We will denote T also as [0,00)r. Some preliminary definitions and theorems
on time scales can be found in [5].

The space L2A [a, 00)T is a Hilbert space consisting of all real-valued functions
y such that

/0 y(@)2A¢ < oo

with the inner product

(f,q) = /0 T H©9(© AL fog € IR0, 000
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We consider the nonlinear fourth-order dynamic equation

(1) (Y2) (&) 1= (poa™ V)V (&) = (m1a¥) > (&) + 2 () (&)
= [ (&x(9), £€ 0,00,

and assume that pg, p1 and py are real-valued; p, 1 p1 and py are locally
A-integrable functions on [0, c0)r, and pp > 0 on [0, c0)T.
Yardimcer and Ugurlu [18] have studied equation (1)) for when T = [0, c0).
For simplicity of notations, we write

20—y
22 = pozY

MO (mm])V

2 = po — <x[3])A
(.

Then, Green’s formula for solutions z (.) and z (.) is given by

/MORMSNQAﬁ—/mw@(UNSAfzw%m—wﬂh
0 0
where

[, 2]g == 21(€)2P(€) — 2P)(£)21(¢) + 21 ()P (¢) — 2l (€)M (¢)

and

= i
[, 2]oo 1= lim [z, 2]
(see |4]). Tt is clear that [z, 2]~ exists and is finite.
Let

the first three A derivatives are
Dyax = { © € L4[0,00)7 : locally A-absolutely continuous in
[0,00)T, and Y (z) € L%[0, 00)T.

)

and

_ ' 210] (0) = 2] (0) = 2] (0) = 2[3] (0) =0,
Dimin = {x € Dimax : [z,2], =0, V2 € Dpax. } '

Then, the maximal operator I'y,ax is defined on Dy.x by the formula
Thaxe = Y.

If we restrict the operator I'y.x to the set Dy, then we obtain the minimal

operator I'min. It is clear that I}, = I'max, and I'yip is a closed symmetric

operator with deficiency indices (2,2), (3,3), (4,4) (see [8,/14]).
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We will assume that the following conditions are satisfied.

(A1) The lim-4 Case holds for Tz = 0 (see [§]).

(A2) f (&, Q) is real-valued and continuous in (&,¢) € [0, 00)r X R, and, for
all (£,¢) in [0,00)T X R, f (&, () satisfies the following condition:

(2) £ (&I < g(&) +eldl,

where g (£) >0, g € L4[0,00)T, and ¢ > 0.
Let y;,1 <1 < 4, be the solutions of equation subject to the following
normalization conditions:

Pe () Wa (y1,92, Y3, y4) = 1

and
y(0) = cosa, 41 (0) =412 (0) =0, 4 (0) = —sina,
w1 0) =0, Y1 (0) =sin B, ¥ (0) = —cos B, ¥ (0) =0,
¥ (0) = sina, ¥i7(0) = 417 (0) = 0, 417 (0) = cosa,
i (0) =0, y{ (0) = cos B, ¥ (0) =sin B ¢ (0) = 0,

i, y1) [y2, ] [ys,v1]  [va, 1] 00 -1 0
Wi y2] [y2, 2] [yssye] [yaswe]| _ [0 0 0 -1
i, y3] [v2,us] [y3,y3] [y, 93] 10 0 0}
Wi,yal [v2,va] [y3,ya]  [Ya,ya4] 01 0 0
and
un Y2 Ys Y4
1 1 1 1
yg] H ;L,} yz[;]
Wa (ylv Y2,Y3, y4) = 2] [2} 2] [2]
Y- Yoo Yz Yy
B
(see [4]).

Now, we will impose the following conditions

sina 4 2% (0) cosa = 0,

(3) cos 8 + z12 (0)sin g =0,

where «, 8,dq,ds € R.
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2. MAIN RESULTS
Let us consider the following problem

(4) (Tz)(§) = h (&),
where ¢ € (0,00) and h € L4][0, 00)r.

Let
y1 (§) ) < y3 (&) — diya (§) )
2 () < () ) YO =€) - dun (§
Then, the solution of the boundary-value problem , is defined by the
formula

r©= [ Glennmar

0

where £ € (0,00) and

el (v (t), ift<¢,
el ()Y (§), ift >,

where 27 denotes the transpose of the vector z.
Thus, the problem , is equivalent to the following equation

G(fﬂf)Z{

(5) O = [ GEnfesmar
From (A1), we infer that
o0 o0 2
(6) /0 /0 G (6,0 AEAL < oo,

Now, we can define an operator
T : L4[0,00)r — LA[0, 00)T

as follows:
(7) (Tz) (¢) = /O TGt (b (t) At £ (0.00),

where x € L4 [0, 00)7. Hence can be written as z = T'z.

THEOREM 2.1. Suppose that conditions (A1) and (A2) are satisfied. Fur-
ther, let f (&, y) satisfy the following Lipschitz condition: there exists a con-
stant K > 0 such that

/Oo\f(i,x(@)—f(ﬁ,Z(é))IQAS<K2/wlw(§)—Z(£)l2A£
0 0

for all z, 2 € LA [0, 00)r.

If

S 1/2
K( / |G(§,t)|2A§At> <1,

0 0

then the problem , has a unique solution in L% [0, 00)r.
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Proof. For x,z € L4[0, 00), we see that

(T2) (€) — (T2) (€)
/Gst (£, (5) — f (2 ()] At
</0 G (€ At/o (b () — (62 () At

< K? |x—z||2/°°|a<s,t>|2m, € € (a,00).
0

2

Thus, we get

[Tz =Tz < afz - 2],

=i ([ [ |Aw)”<1. .

THEOREM 2.2. Suppose that conditions (A1) and (A2) are satisfied. Fur-
ther, let us assume that the following condition holds: there exist constants
M, K > 0 such that

where

/Oo\f(&x(ﬁ))—f(£,z(£))l2A£§K2/OOI$(£)—Z(£)I2A£
0 0

for all x and z in
S = {z € LA[0,00)r : o] < M},

where K may depend on M. If

([ [ioeoracad)” s ([Cirwemra)” <u
k([ [Teeor A&At)m <1,

then the problem , has a unique solution satisfying

and

/0 T le () At < M2,
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Proof. Since Sy is a closed set of LQA[O, oo)T, we will show that T' maps Sy,
into itself. For x € Sy we get

/OOOG(.,t) f (t,x(t))AtH

f(t,x(t))AtH

([ [ ses) s {[ v}

An analysis similar to that in the proof of Theorem 2.1 shows that

T = \

Tz —Tz|| < al|x—z|, where z,z € Sy.
From the Banach fixed point theorem, we get the desired result. O
Now, we show that nonlinear problems may have solutions without unique-

ness. In order to get this result, we will use the following Schauder fixed point
theorem.

DEFINITION 2.3 ([9]). An operator acting in a Banach space is said to be
completely continuous if it is continuous and if it maps bounded sets into
relatively compact sets.

THEOREM 2.4 ([9]). Let B be a Banach space and S a non-empty bounded,
convex, and closed subset of B. Assume A : B — B is a completely continuous
operator. If the operator A leaves the set S invariant, i.e., if A(S) C S, then
A has at least one fized point in S.

THEOREM 2.5. Suppose that conditions (A1) and (A2) are satisfied. Then
T defined by is a completely continuous operator.

Proof. Let mg € L4[0,00)r. Then, we obtain
(T) (€) — (Tzo) (€)I”

/Gst (t,2 (£) — [ (t 20 ()] At

2

< [Tietorar [T17 o) - 7o)l o
Thus
(®) 7o~ Taol? < K [ 1f (0 (2) — £ (0o (1))

T ([ eenra)
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It is evident that an operator T" defined by Tz (§) = f (&, x (§)) is continuous
in L3 [0, 00)7 under the condition (A2) (see [13]). Hence, for the given € > 0,
we can find a 0 > 0 such that ||z — z¢| < ¢ implies

62

| i) - Faa P an< G

From , we get
Tz — Txo| <e.

Let
Y={ze LA[0,00)r : ||z < C}.

By , we have

M%HS{KlmU@w@DPA*Ua

for all z € Y. Furthermore, using , we get
[T ee@rars [T+ el ar
<2 [ [7 0+ Pl A
0
=2 (llgl* + ¢* ll=I1*)
<2 (|lgl” + 0*c?).
Therefore, for all z € Y, we see that
1/2
IT2] < |25 (gl + 0*c?)| .

Further, for all z € Y, we have

/NOO T (6)]* AE < 2 <||g||2 + 9202) /NOO /Ooo G (€, 1)2 AEAL.

So, from @, we conclude that for given € > 0 there exists a positive number
N, depending only on € such that

l/WWx@WAa<¥,
N

forall x € Y.
Hence T (Y) is relatively compact in the space L3 [0, 00)r. O
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THEOREM 2.6. Suppose that conditions (A1) and (A2) are satisfied. Fur-
ther, we assume that there exists constant M > 0 such that

9) ( I |G<s,t>|2AfAt>1/:s€%gw { A |f<t,x<t>>2m}l/2 <

where Sy = {x € L4 [a,00)r : ||| < M} . Then the problem , has at

least one solution with

/0 T le©)P Af < M2

Proof. Let T : L4[0,00)T — L4[0,00)r be the operator defined in (7)). It
follows from Theorems and @ that T maps the set Sy into itself.
Moreover, the set Sy is bounded, convex and closed. From the Schauder fixed
point theorem, we get the desired result. O
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