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ALMOST EVERYWHERE CONVERGENCE OF
VARYING-PARAMETER SETTING CESÁRO MEANS OF

FOURIER SERIES ON THE GROUP OF 2-ADIC INTEGERS

ANTENEH TILAHUN ADIMASU

Abstract. In this paper we prove that the maximal operator of Cesáro-means
for one-dimensional Fourier series on the group of 2-adic integers is of weak
type (L1, L1). Moreover, we prove the almost everywhere convergence of Cesáro
means of integrable functions, i.e. σαn

2n f −→ f, for every f ∈ L1(I) and for every
sequence α = (αn) with 0 < αn < 1.
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1. INTRODUCTION

The Fejér-Lebesgue theorem, i.e. that the almost everywhere convergence
σ1
nf → f holds for all integrable function f , was a question of Taibleson [14]

open for a long time.
In 1997 Gát [2] proved the almost everywhere convergence σ1

nf → f for
every integrable function f . Zheng [16] and Gát [3] generalized this result for
more general orthonormal systems.

The idea of Cesáro means with variable parameters of numerical sequences
is due to Kaplan [10]. In 2007, Akhobadez [1] introduced the notion of Cesáro
means of Trigonometric Fourier series with variable parameter setting. Anas
and Gát [8] proved for the varying parameter settings that (C,α) means for
one-dimensional Walsh-Paley system converges almost everywhere For two-
dimensional Walsh-Paley system this was proved by Anas and Gát [9] for the
case of (2n, 2n)(C,α) means. Maximal operators of Cesáro means with varying
parameters of Walsh-Fourier series were investigated by Gát and Goginava [5].
Cesáro and Riesz summability with varying parameters of multidimensional
Walsh-Fourier series was proved by Weisz [15]. The one-dimensional case for
this varying-parameter settings with respect to one-dimensional Vilenkin sys-
tem was proved by Gát and Anteneh [6]. Gát [4] proved the almost everywhere
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convergence of Cesáro means of Fourier series on the group of 2-adic integers
for a constant parameter. However, for the case of varying parameter, nothing
has been done yet. In this paper, we prove it for the case of Fourier series on
the group of 2-adic integers in the case of varying parameter setting.

Now, we introduce the basics by following the standard notions of dyadic
analysis introduced by F. Schipp, P. Simon, W. R. Wade (see e.g. [12, 13])
and others.

Denote by N := {0, 1, ...} ,P := N \ {0}, and I := [0, 1), the set of natural
numbers, the set of positive integers and the unit interval, respectively. Denote
by (B) = |B| the Lebesgue measure of the set B (B ⊂ I). Denote by Lp(I)
the usual Lebesgue spaces and ∥.∥p the corresponding norms (1 ≤ p ≤ ∞).
Set

τ :=

{[
p

2n
,
p+ 1

2n

)
: p, n ∈ N

}
,

the set of 2-adic intervals and for a given x ∈ I let In(x) denote the interval
In(x) ∈ τ of length 2−n which contains x (n ∈ N). Also use the notation
In := In(0) (n ∈ N). Let

x =

∞∑
n=0

xn2
−(n+1)

the 2-adic expansion of x ∈ I, where xn = 0 or 1 and if x is a dyadic rational
number (x ∈ p

2n : p, n ∈ N) we choose the expansion which terminates in 0’s.
The notion of the Hardy space H(I) is introduced in the following way [12].
A function a ∈ L∞(I) is called an atom, if either a = 1 or a has the following
properties:

(i) supp a ⊂ Ia
(ii) ∥a∥∞ ≤ |Ia|−1

(iii)
∫
I a = 0,

for some Ia ∈ I. We say that the function f belongs to H, if f can be repre-
sented as f =

∑∞
i=0 λiai, where ai’s are atoms and for the coefficients (λi) the

inequality
∑∞

i=0 |λi| < ∞ is true. It is known that H is a Banach space with
respect to the norm

∥f∥H := inf

∞∑
i=0

|λi| ,

where the infimum is taken over all decomposition f =
∑∞

i=0 λiai ∈ H. The

2-adic (or arithmetic) sum a + b :=
∑∞

n=0 rn2
−(n+1)(a, b ∈ I), where bits

qn, rn ∈ {0, 1} (n ∈ N) are defined recursively as follows: q−1 := 0, an + bn +
qn−1 = 2qn + rn for n ∈ N. Since qn, rn take only the values 0 or 1, these
equations uniquely determine the coefficients qn and rn. The group (I,+) is
called the group of 2-adic integers.

Set

ϵ(t) := exp(2πit), t ∈ R,
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where i = (1)−
1
2 . Set

v2n := ϵ

(
xn
2

+ ...+
xo

2n+1

)
(x ∈ I, n ∈ N)

and

vn :=

∞∏
i=0

vni

2i
,

where n =
∑∞

i=0 ni2
i (ni ∈ {0, 1} for i ∈ N), n ∈ N. It is known [7] that

the system (vn, n ∈ N) is the character system of (I,+). For more details on
the Fourier theory with respect to the character system of the group of 2-adic
integers see for instance [11]. Denote by

f̂(n) :=

∫
I
fv̄ndλ, Dn :=

n−1∑
k=0

vk, K1
n :=

1

n+ 1

n∑
k=0

Dk,

the Fourier coefficients, the Dirichlet and the Fejér or (C, 1) kernels, respec-
tively. It is also known that the Fejér or (C, 1) means of f is

σnf(y) :=
1

n+ 1

n∑
k=0

Skf(y) =

∫
I
f(x)K1

n(y − x)dλ(x)

=
1

n+ 1

∫
I
f(x)D1

k(y − x)dλ(x) (n ∈ N, y ∈ I)

It is known [2,11] that for n ∈ N, x ∈ I

D2n(x) =

{
0, if x ∈ In,

2n, if x /∈ In

and also that

Dn(x) = vn(x)

∞∑
k=0

D2k(x)nk(−1)xk .

Denote by Kα
n the kernel of the summability method (C,α), and call it the

(C,α) kernel, or the Cesáro kernel for α ∈ R \ {...,−3− 2,−1}

Kα
n =

1

Aα
n

n∑
v=0

Aα−1
n−vDv,

where

Aα
k =

(α+ 1)(α+ 2)...(α+ k)

k!
.
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The (C,α) means of the integrable function f are

σα
nf(y) =

1

Aα
n

n∑
k=0

Aα−1
n−kSkf(y) =

∫
I
f(x)Kα

n (y − x)dλ(x),

σα
nf(y) =

1

Aα
n

n∑
k=0

Aα−1
n−k

∫
I
f(x)Dk(y − x)dλ(x).

It is well-known [17] that

Aα
n =

n∑
k=0

Aα−1
n−k, Aα

n −Aα
n−1 = Aα−1

n , Aα
n ≈ nα

Basically, in order to prove Theorem 3.6 we verify that the maximal oper-
ator σα

∗,q is of weak type (L1, L1). In order to do this, we investigate kernel
functions, and its maximal function on the unit interval I by making a hole
around zero. To obtain the proof of Theorem 3.7, we follow the standard way
of using the fact that σα

∗,q is of weak type (L1, L1). We need several lemmas.
The following notations as well as definitions of functions and operators are

used through the proofs of this paper.
For a, s, n ∈ N, let n(s) :=

∑s−1
j=0 ni2

i, that is, n(0) = 0, n(1) = n0 and for

2B ≤ n < 2B+1, |n| := B, n(B+1) = n.

Define a two variable function P (n, α) :=
∑∞

i=0 ni(2
i)α, for n ∈ N, α ∈ R

[8]. For example P (n, 1) = n. Besides, set for a sequence α = (αn) and a
positive real number q, the subset of natural numbers

Nα,q :=

{
n ∈ N :

P (n, αn)

nαn
≤ q

}
.

For a sequence α such that 0 < α0 ≤ αn < 1 we have Nα, q = N for some
q depending only on α0. We remark that 2n ∈ Nα, q for every α = (αn), 0 <
αn < 1 and q ≥ 1. In this paper, C denotes an absolute constant and Cq

another one which may depend only on q. Define the following kernel function
and operator.

Tα
n :=

1

Aα
n

2B−1∑
k=0

Aαa−1
n−k Dk,

tαnf(y) :=

∫
I
f(x)Tα

n (y − x)dµ(x).

For f ∈ L1(I) and for all real numbers αn ̸= −1,−2,−3, ..., define the kernel
of (C,αn) summability method as follows

(1) Kαn
n :=

1

Aαn
n

n∑
t=0

Aαn−1
n−t Dt,
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where Aαn
k is defined in [1] for the case where α = (αn). Besides, introduce

the following kernel functions and operators where 0 < αn < 1:

K̃αn
n :=

∣∣∣Tαn
n

∣∣∣+ B∑
l=0

Aαn
n(l−1)

Aαn
n

D2l +
B∑
l=0

Aαn
n(l−1)

Aαn
n

|Tαn
n(l−1)

|,

σ̃αn
n f(y) :=

∫
I
f(x)K̃αn

n (y − x)dµ(x).

2. PRELIMINARY LEMMAS

Lemma 2.1 ([4]). For j, n ∈ N, j < 2n we have D2n−j = D2n − v2n−1D̄j.

Lemma 2.2 ([4]).
∫
I\Ik(u) supn≥2k |Tα

n | ≤ C, where C depends only on α.

Lemma 2.3 ([4]).
∫
I\Ik(u) supn≥2A |Tα

n | ≤ C(k − A), where C depends only
on α.

3. MAIN RESULT

The following lemma plays a central role in the proof of next lemmas and
the main theorem too.

Lemma 3.1. Let 0 < αn < 1, n ∈ N, 2B ≤ n < 2B+1, |n| = B. Then,

|Kαn
n | ≤ K̃αn

n .

Proof. By definition, we have

Kαn
n =

1

Aαn
n

n−1∑
j=0

Aαn−1
n−j Dj

=
1

Aαn
n

2B−1∑
j=0

Aαn−1
n−j Dj +

1

Aαn
n

n−1∑
j=2B

Aαn−1
n−j Dj

= Tαn
n +

1

Aαn
n

2B+n(B)−1∑
j=2B

Aαn−1
n(B)+2B−j

Dj .

By Lemma 2.1 we have

1

Aαn
n

2B+n(B)−1∑
j=2B

Aαn−1
n(B)+2B−j

Dj

=
1

Aαn
n

n−1∑
t=0

Aαn−1
n−t Dt+2B
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=
1

Aαn
n

n(B)−1∑
t=0

Aαn−1
n−t

(
D2B + v2B−1Dt

)

=
D2B

Aαn
n

n(B)−1∑
t=0

Aαn−1
n−t +

v2B−1

Aαn
n

n(B)−1∑
t=0

Aαn−1
n−t Dt

=
Aαn

n(B)

Aαn
n

(
D2B + v2B−1K

αn
n(B)

)
.

Then,

Kαn
n = Tαn

n +
Aαn

n(B)

Aαn
n

(
D2B + v2B−1K

αn
n(B)

)
.

In general, for j = 1, ..., B + 1, we get

Kαn
n(j)

= Tαn
n(j)

+
Aαn

n(j−1)

Aαn
n(j)

(
D2(j−1) + v2(j−1)−1K

αn
n(j−1)

)
.

Recursively applying this formula and considering that

n(−1) = 0, Tαn
0 = Kαn

0 = 0, Aαn
0 = 1,

we get

|Kαn
n | ≤ |Tαn

n |+
B∑
l=0

(
B∏
j=l

Aαn
n(j−1)

Aαn
n(j)

D2l +

B∏
j=l

Aαn
n(j−1)

Aαn
n(j)

|Tαn
n(l−1)

|

)
= K̃αn

n .

Hence, the lemma follows. □

We prove Lemma 3.2 below, which means that the maximal operator tα∗ :=
supn, a∈N |tαn| is quasi-local.

Lemma 3.2. The maximal operator tα∗ is quasi-local.

Proof. By the definition of quasi-locality, let 1 > α > 0, f ∈ L1(I) such that
suppf ⊂ Ik(u),

∫
Ik(u)

fdµ(x) = 0 for some 2-adic interval Ik(u). We can easily

show that for n < 2k and x ∈ Ik(u), y ∈ Īk(u) we have T
α
n (y−x) = Tα

n (y−u).
Then, ∫

Ik(u)
f(x)Tα

n (y − x)dµ(x) = Tα
n (y − u)

∫
Ik(u)

f(x)dµ(x) = 0.

Consequently, ∫
Īk(u)

sup
n∈N

∣∣∣tαnf ∣∣∣dµ =

∫
Īk(u)

sup
n≥2k

∣∣∣tαnf ∣∣∣dµ.
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By the shift invariance of the Haar measure it can be assumed that u = 0.
That is, Ik(u) = Ik. Thus,∫

Īk(u)
sup
n≥2k

|tαnf |dµ =

∫
Īk

sup
n≥2k

∣∣∣∣∣
∫
Ik

Tα
n (y − x)f(x)dµ(x)

∣∣∣∣∣dµ(y).
By Lemma 2.2 we have,∫

Īk

sup
n≥2k

∣∣∣∣∣
∫
Ik

Tα
n (y − x)f(x)dµ(x)

∣∣∣∣∣dµ(y)
=

∫
Ik

|f(x)|

∣∣∣∣∣
∫
Īk

sup
n≥2k

Tα
n (y − x)dµ(x)

∣∣∣∣∣dµ(y)
≤ C ∥f∥1

□

In the following corollary, it is also proved that operators tαn are of type
(L1, L1) and (L∞, L∞) uniformly in n.

Corollary 3.3. Let 1 > α > 0, a ∈ N. Then, we have

∥Tα
n ∥1 ≤ C, ∥tαnf∥1 ≤ C∥f∥1 and ∥tαa

n g∥∞ ≤ C∥g∥∞,

for all natural numbers n and where C is some absolute constant and f ∈
L1(I), g ∈ L∞(I). That is, operator tαn is of type (L1, L1) and (L∞, L∞)
uniformly in n.

Proof. The proof is a direct consequence of Lemma 3.1, Lemma 3.2 and
since ∥D2k∥1, ∥Kj∥1 ≤ C. □

In the next lemma we prove that the maximal operator

σ̃α
∗, q := sup

n∈Nα, q

|σ̃αn
n |

is quasi-local. We get this by the investigation of kernel functions and its
maximal function on the 2-adic group by making a hole around zero.

Lemma 3.4. Let 0 < αn < 1, f ∈ L1(I) such that suppf ⊂ Ik(u) and∫
Ik(u)

fdµ = 0 for some 2-adic interval Ik(u). Then we have∫
I\Ik(u)

σα
∗, qfdµ ≤ Cq∥f∥1.

Where the constants Cq can depend only on q.

Proof. From the formula of kernel function K̃αn
n we have

K̃αn
n =

∣∣∣Tαn
n

∣∣∣+ B∑
l=0

Aαn
n(l−1)

Aαn
n

D2l +

B∑
l=0

Aαn
n(l−1)

Aαn
n

|Tαn
n(l−1)

| =: N1 +N2 +N3.
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The integral,∫
I\Ik(u)

sup
n∈N

∣∣∣∣∣
∫
Ik(u)

f(x)

(
N2(y − x)

)
dµ(x)

∣∣∣∣∣dµ(y) = 0

since f ∗ D2l = 0, for l < s ≤ k because of the Ak measurablity of D2l and∫
f = 0. Besides, D2l(y − x) = 0, for s > k, y − x /∈ Ik.
Since it is known from [1] we have

Aαn
n(l−1)

Aαn
n

≤
(n(l−1))

αn

nαn
≤ C

(2l)αn

nαn
.

Besides, by the help of Lemma 3.2 and by the fact that n ∈ Nα, q implies

B∑
l=0

Aαn
n(l−1)

Aαn
n

≤ C
B∑
l=0

(2l)αn

nαn
≤ Cq

we get ∫
I\Ik(u)

sup
n∈Nα, q

∣∣∣∣∣
∫
Ik(u)

f(x)

(
N1(y − x) +N3(y − x)

)
dµ(x)

∣∣∣∣∣dµ(y)
≤
∫
I\Ik(u)

sup
n∈Nα, q

∣∣∣∣∣
∫
Ik(u)

f(x)

(∣∣∣Tαn
n (y − x)

∣∣∣
+

B∑
l=0

Aαn
n(l−1)

Aαn
n

∣∣∣Tαa
n(l−1)

(y − x)
∣∣∣)dµ(x)∣∣∣∣∣dµ(y)

≤ Cq

∫
I\Ik(u)

sup
n∈Nα, q

∣∣∣∣∣
∫
Ik(u)

f(x)
∣∣∣Tαn

n (y − x)
∣∣∣dµ(x)∣∣∣∣∣dµ(y)

≤ Cq∥f∥1.

Hence, the lemma follows. □

For the general case of n ∈ Nα,q. Define (C,αn) mean as follows

(2) σαn
n f(x) :=

1

Aα
n

n∑
k=0

Aα−1
n−kSk(x) =

∫
I
f(y)Kαn

n (x− y)dµ(y),

where Kαn
n is the kernel function defined in (1).

Considering the definition in (2), we define maximal operators as follows:

σα
∗, qf := sup

n∈Nα, q

|σαn
n f |.
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Lemma 3.5. The operator σα
∗, q is of type (L∞, L∞) and weak type (L1, L1).

Proof. Using Lemma 3.1 and Corollary 3.3 we get

∥Kαn
n ∥1 ≤ ∥Tαn

n ∥1 +
B∑
l=0

Aαn
n(l−1)

Aαn
n

∥D2l∥1 +
B∑
l=0

Aαn
n(l−1)

Aαn
n

∥Tαn
n(l−1)

∥1

≤ C + C

B∑
l=0

Aαn
n(l−1)

Aαn
n

≤ Cq

since n ∈ Nα, q. Thus, σ
α
∗, q is of type (L∞, L∞).

To prove the weak type (L1, L1) case we apply the Calderon-Zygmund
decomposition lemma [3].

Let f ∈ L1(I) and ∥f∥1 < δ. Then there is a decomposition:

f = f0 +
∞∑
j=1

fj

such that

∥f0∥∞ ≤ Cδ, ∥f0∥1 ≤ C∥f∥1
and Ij = Ikj (u

j) are disjoint 2-adic intervals, for which

suppfj ⊂ Ij ,

∫
Ij
fjdµ = 0, |F | ≤ C∥f∥1

δ

(uj ∈ I, kj ∈ N, j ∈ P), where F =
⋃∞

i=1 I
j .

By the σ-sublinearity of the maximal operator with an appropriate constant
Cq we have

µ(σα
∗, qf > 2Cqδ) ≤ µ(σα

∗, qf0 > Cqδ) + µ(σα
∗, q

∞∑
j=1

fj > Cqδ) =: W +M.

Since σα
∗, q is of type (L∞, L∞), we have that

∥σ∗, qf0∥∞ ≤ Cq∥f0∥∞ ≤ Cqδ.

Then we have W = 0 . The situation for M becomes,

M = µ(σα
∗, q

∞∑
j=1

fj > Cqδ) ≤ |F |+ µ(F̄ ∩ [σα
∗, q

∞∑
j=1

fj > Cqδ])

≤ C∥f∥1
δ

+
Cq

δ

∞∑
j=1

∫
I\Ij

σα
∗, qfjdµ =:

C∥f∥1
δ

+
Cq

δ

∞∑
j=1

Nj ,

in which

Nj =

∫
I\Ij

σα
∗, qfjdµ.
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By Lemma 3.4 we have

Nj ≤
∫
I\Ikj (u

j)
sup

n∈Nα, q

∣∣∣∣∣
∫
Ikj (u

j)
fj(x)K

αn
n (y − x)dµ(x)

∣∣∣∣∣dµ(y) ≤ Cq∥fj∥1.

Thus,

µ(σα
∗, qf > 2Cqδ) ≤ Cq

∥f∥1
δ

.

We conclude that the maximal operator σα
∗, q is of weak type (L1, L1).

Hence, the lemma follows. □

Following the proofs of the lemmas and corollaries above, the almost every-
where convergence of the (C,αn) means is proved in the following theorem.

Theorem 3.6. Let 0 < αn < 1 and f ∈ L1(I). Then σαn
n f −→ f almost

everywhere if n −→ ∞, n ∈ Nα, q.

Proof. Let us consider a polynomial P with respect to the character system

of the group of 2-adic integers such that P (x) =
∑2k−1

i=0 civi(x). Then for all

natural number n ≥ 2k, n ∈ Nα, q we have that SnP ≡ P. Thus, the statement
σαn
n P −→ P holds everywhere which is not only for n ∈ Nα, q, but for arbitrary

n → ∞.
Now, let ϵ, δ > 0, f ∈ L1(I). Let P be a polynomial such that ∥f−P∥1 < δ.

Then,

µ

(
lim

n∈Nα, q

|σαn
n f − f | > ϵ

)

≤ µ

(
lim

n∈Nα, q

|σαn
n (f − P )| > ϵ

3

)
+ µ

(
lim

n∈Nα, q

|σαn
n P − P | > ϵ

3

)
+ µ

(
lim

n∈Nα, q

|P − f | > ϵ

3

)

≤ µ

(
lim

n∈Nα, q

|σαn
n (f − P )| > ϵ

3

)
+ 0 +

3

ϵ
∥P − f∥1

≤ Cq∥P − f∥1
3

ϵ
≤ Cq

ϵ
δ

since (from Lemma 3.5) σα
∗, q is of weak type (L1, L1) with any fixed q > 0.

This holds for all δ > 0. That is, for an arbitrary ϵ > 0

µ

(
lim

n∈Nα, q

|σαn
n f − f | > ϵ

)
= 0

and as a result we also have

µ

(
lim

n∈Nα, q

|σαn
n f − f | > 0

)
= 0.
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This finally gives

lim
n∈Nα, q

|σαn
n f − f | = 0 almost everywhere

Consequently,

σαn
n f −→ f almost everywhere as n −→ ∞, n ∈ Nα, q.

Hence, the theorem follows. □

Theorem 3.7. Let f ⊂ H(I). Then we have
∥∥σα

∗, qf
∥∥
H

≤ Cq,α ∥f∥H . More-

over, the operator σα
∗, q is of type (Lp, Lp), for all 1 < p ≤ ∞. That is,∥∥σα

∗, qf
∥∥
p
≤ Cq,p,α ∥f∥p, for all 1 < p ≤ ∞, where the constants Cq,α and

Cq,p,α depends on the constants q, p, α.

Proof. By the Marcinkiewicz interpolation theorem of [12] and by using
Corollary 3.3 and Lemma 3.5 we have that the operator σα

∗, q is of type (L
p, Lp),

for all 1 < p ≤ ∞. Assume a ̸= 1 is an atom, Ia := Ik(x), ∥a∥∞ ≤ 2k for

some k ∈ N and x ∈ I. Then, n < 2k implies Sna = 0. As a result, we have
σα
∗, qa = supn≥2k |σα

na|.
Using Lemma 3.4, we have∫

I\Ia
σα
∗ adλ =

∫
I\Ik(x)

sup
n≥2k

∣∣∣∣∣
∫
Ik(x)

a(y)Kα
n (z − y)dλ(y)

∣∣∣∣∣λ(z)
≤
∫
Ik(x)

|a(y)|
∫
I\Ik(x)

sup
n≥2k

|Kα
n (z − y)| dλ(z)dλ(y)

≤
∫
Ik(x)

|a(y)|
∫
I\Ik(x)

sup
n≥2k

[∣∣∣Tαn
n (z − y)

∣∣∣
+

B∑
l=0

Aαn
n(l−1)

Aαn
n

D2l(z − y) +
B∑
l=0

Aαn
n(l−1)

Aαn
n

∣∣∣Tαn
n(l−1)

(z − y)
∣∣∣ ]

≤
∫
Ik(x)

|a(y)|

{∫
I\Ik(x)

sup
n≥2k

∣∣∣Tαn
n (z − y)

∣∣∣
+

∫
I\Ik(x)

sup
n≥2k

B∑
l=0

Aαn
n(l−1)

Aαn
n

D2l(z − y)

+

∫
I\Ik(x)

sup
n≥2k

B∑
l=0

Aαn
n(l−1)

Aαn
n

∣∣∣Tαn
n(l−1)

(z − y)
∣∣∣}

≤
∫
Ik(x)

|a(y)|
∫
I\Ik(x)

sup
n≥2k

∣∣∣Tαn
n (z − y)

∣∣∣
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+

∫
Ik(x)

|a(y)|
∫
I\Ik(x)

sup
n≥2k

B∑
l=0

Aαn
n(l−1)

Aαn
n

D2l(z − y)

+

∫
Ik(x)

|a(y)|
∫
I\Ik(x)

sup
n≥2k

B∑
l=0

Aαn
n(l−1)

Aαn
n

∣∣∣Tαn
n(l−1)

(z − y)
∣∣∣

:= Ψ1 +Ψ2 +Ψ3.

By Lemma 2.2, the situation for Ψ1 becomes

Ψ1 =

∫
Ik(x)

|a(y)|
∫
I\Ik(x)

sup
n≥2k

∣∣∣Tαn
n (z − y)

∣∣∣ ≤ C

∫
Ik(x)

|a(y)| ≤ C.

For z − y ∈ Ik and l ≥ k we have D2l(z − y) = 0. Thus, the situation for
Ψ2 becomes

Ψ2 =

∫
Ik(x)

|a(y)|
∫
I\Ik(x)

sup
n≥2k, l≤k

B∑
l=0

Aαn
n(l−1)

Aαn
n

D2l(z − y)

=

k−1∑
t=0

∫
It\It+1

sup
n≥2k, l≤t

B∑
l=0

Aαn
n(l−1)

Aαn
n

2l
∫
Ik(x)

|a(y)| ≤ Cq

∫
Ik(x)

|a(y)| ≤ Cq.

Similarly, using Lemma 3.1 and Lemma 3.2, we have the situation for

Ψ3 =

∫
Ik(x)

|a(y)|
∫
I\Ik(x)

sup
n≥2k

B∑
l=0

Aαn
n(l−1)

Aαn
n

∣∣∣Tαn
n(l−1)

(z − y)
∣∣∣ ≤ Cq.

We have that the operator σα
∗, q is of type (L2, L2) (i.e.

∥∥σα
∗, qf

∥∥
2
≤ C ∥f∥2 for

all f ∈ L2(I)), then∥∥σα
∗, qa

∥∥
1

=

∫
I\Ia

Ta+

∫
Ia

σα
∗, qa ≤ C + |Ia|

1
2 ∥σ∗, qa∥α

≤ C + Cq2
−k
2 ∥a∥2 ≤ C + Cq2

−k
2 2

k
2 ≤ Cq.

That is,
∥∥σα

∗, qa
∥∥
1
≤ Cq. Hence, by the sublinearity of σα

∗, q, we have

∥∥σα
∗, qf

∥∥
1
≤

∞∑
i=0

|λi|
∥∥σα

∗, qai
∥∥
1
≤ Cq

∞∑
i=0

|λi| ≤ Cq ∥f∥H ,

for all f =
∑∞

i=0 λiai ∈ H. Therefore, the operator σα
∗, q is of type (H,L).

Hence, the theorem follows. □
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