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INTEGRAL SOLUTION OF A CONFORMABLE
FRACTIONAL INTEGRO-DIFFERENTIAL EQUATION
WITH NONLOCAL CONDITION

MOHAMED BOUAOUID

Abstract. This paper deals with the existence and uniqueness of the integral
solution of a nondense integro-differential equation with nonlocal condition in
the frame of conformable fractional derivative. The main results are obtained by
using some fixed point theorems combined with a integrated semigroup approach.
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1. INTRODUCTION

The so-called conformable fractional derivative has been introduced in [24].
In short time, the better effect of this new fractional derivative attracts many
researchers in several areas of applications [1}4H12,/16,/18-20, 22,26 38-41].
For more details about fractional calculus, we refer to works [25,27.30.33,35].
On the other hand, the nonlocal condition introduced in [14] is crucial in the
description of dynamical processes with unknown initial behaviors in various
areas of modeling [17,[31]. For more details about the better effects of non
local conditions in differential equations theory, we refer to [13,[15,2936] and
references therein. In this present work, we study a class of integro-differential
equation with conformable fractional derivative and nonlocal condition. Pre-
cisely, we consider the following fractional Cauchy problem with nonlocal con-
dition:

G = Ax(t) + f(ta(0)
/O a(t — 0)p(o,2(o))do, t € 0,7], 0 < a < 1,
r(0) = x0+g(x),

(1)
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where d;(a’) presents the conformable fractional derivative [24] and z(0) =
xo + g(z) is the nonlocal condition [14}/17,31]. Concerning the linear part A,
it is well known that many concrete applications prove that the density of its
domain D(A) is a very harsh condition to be imposed [2}3,21},23/,28,134,[37]. So,
we assume that the linear part (A, D(A)) is closed and satisfying the Hille-
Yosida property without assuming the density of D(A) in a Banach space
(X, ||.]l)- The functions f:[0,7] x X = X, ¢ :[0,7] x X = X, a:[0,7] = R,
g : C — D(A) satisfied some assumptions and g is an element of D(A), where
C is the Banach space of continuous functions from [0, 7] into X with the
norm |z|. = sup [|z(t)||. We also denote by |.| the norm in the space £(X)
te(0,7]
of bounded operators defined from X into itself.
Our purpose in this paper is to establish the existence and uniqueness of the

integral solution of equation based on the following Duhamel formula:

z(t) =8 <tj> [v0 + g()]

(2)

©lim sals(’f“Sa)m—fn1[f<s,:c<s>>+k<s,x<s>>lda
0

A—+00 (0}

where (S(t))>0 is the integrated semigroup generated by the operator A (see
[3,21,23]) and k(s,z(s)) is the convolution operator given as follows:

(3) k(s, a(s)) = /0 " a(s — o)plo, 5(0))do.

The rest of this work is organized as follows. In Section |2 we recall some pre-
liminary facts on the conformable fractional calculus and integrated semigroup
theory. Section [3]is devoted to prove the main results.

2. PRELIMINARIES

In this section, we introduce some preliminaries concerning the conformable
fractional derivative and integrated semigroup theory.

DEFINITION 2.1 (]24]). For a €]0, 1], the conformable fractional derivative
of order « of a function z(.) is defined as

o 1—ay _
dvx(t)  im x(t+et' ™) $(1§)7 >0,
dte e—0 e
d“z(0) . d%x(t)
=1
dto ~ isor dee

The conformable fractional integral I¢(.) associated with the conformable
fractional derivative is defined as follows

1o (2)(t) = /0 1y (s)ds.
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THEOREM 2.2 ([24]). If z(.) is a continuous function in the domain of I1*(.),

then we have o e
d*(I*(z)(1))
dte

DEFINITION 2.3 ([1]). The conformable fractional Laplace transform of or-
der a €]0, 1] of a function z(.) is defined as follows

= x(t).

The following proposition gives us the actions of the conformable fractional
integral and the conformable fractional Laplace transform on the conformable
fractional derivative, respectively.

PropoSITION 2.4 ([1]). If z(.) is a differentiable function, then we have the
following results

(S 0 =0 - w00)

Lo () 09 = ALalal)N) - 2(0),

According to [6], we have the following remark.

REMARK 2.5. For two functions z(.) and y(.), we have

c. (x (t)) (V) = La(@ ()N,

(67

o ([ 50 (B2 wohas ) 00 = 1)) Lo N

provided that the both terms of each equality exist.

Now, we recall some definitions and results on the integrated semigroup
theory.

DEFINITION 2.6 ([3,123]). An integrated semigroup is a family (S(t))i>0
of bounded linear operators S(¢) on a Banach space X with the following
properties:

(1) 5(0) =0,
(2) t —> S(t) is strongly continuous,

(3) S(s)S(t) = /0 (S(t+7) — S(r))dr for all £,5 > 0.

DEFINITION 2.7 ([23]). Let (S(t))i>0 be an integrated semigroup.
(1) (S(t))¢>0 is called exponentially bounded, if there exist constants M >
0 and w € R such that |S(¢)| < Me“! for all ¢ > 0.
(2) (S(t))t>0 is called non-degenerate for all ¢ > 0, if S(¢)z = 0 implies
z=0.
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(3) (S(t))e>0 is called locally Lipschitz continuous if for all b > 0 there
exists a constant L such that |S(¢t) — S(s)| < LIt — s|, for all s,t €
[0, b].

DEFINITION 2.8 ([23]). An operator A is called an infinitesimal generator of
an integrated semigroup, if there exists w € R such that Jw, +o0o[C p(A) and
there exists a strongly continuous exponentially bounded family (S(t))¢>0 of
bounded operators such that

(1) 5(0) =0,
+o00
(2) M- A)~ L= )\/ e MS(t)dt, for all X > w.
0

PROPOSITION 2.9 ([3]). Let A be the infinitesimal generator of an integrated
semigroup (S(t))t>0. Then the following properties hold.

(1) /tS(s)xds € D(A), forallz € X andt > 0.

(2) SO(t)y € D(A), for ally € D(A) and t > 0.

(3) S(t)x = A/tS(s)xds +tx, for allz € X and t > 0.
(4) AS(t)yy = S%t)Ay, for ally € D(A) and t > 0.

(5) Sty = /OtS(s)Ayds +ty, for ally € D(A) and t > 0.

If z € D(A) then the function t — S(¢)x is continuously differentiable and

S (t) becomes a semigroup on D(A).
DEFINITION 2.10 ([2]). A linear operator A is called a Hille-Yosida operator
if there exist constants M > 0 and w € R such that
(1) Jw,+oo[C p(A), (p(A): is the resolvent set of A),
(2) (vn € N) (VA >w), RO\ A)"] < 255w, (RO A) = (A= A)7).
THEOREM 2.11 ([23]). The following assertions are equivalent.
(1) A is a Hille-Yosida operator.
(2) A is the generator of a locally Lipschitz continuous integrated semi-
group (S(t))ezo-
We end these preliminaries by the following remark.

REMARK 2.12 ([32]). We have

AETOOA()\ — A)7lz =z, for all z € D(A)

3. MAIN RESULTS
Motivated by the works [21,[28], we introduce the following definition.
DEFINITION 3.1. A function x € C is called an integral solution of equation

([ if
t a=ly(5)ds T
(4) /0 (s)ds € D(A), t € [0, 7],
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x(t) = x0+ g(x) + A/t s tx(s)ds+
(5) : ’
/0 s f (s, 2(s)) + k(s, z(s))]ds, t € [0,7].

REMARK 3.2 ([6]). We have the following equality

1 [ttet!™
z(t) = lim — s 12(s)ds € D(A).
e=0¢ Jy
LEMMA 3.3. Each integral solution of equation satisfies the following
Duhamel formula

(e}

z(t) =8 <ta> [z0 + g()]

© lim sals<t“‘sa)A<A—A>1[f<s,a:<s>>+k<s7x<s>>]ds7
0

A——+00 o

where (S(t))t>0 is the integrated semigroup generated by the operator A.

Proof. Applying the conformable fractional Laplace transform in equation
(5) and using Remark we get

La(2(t))(A)
1

= 10+ 9(2) + T AL ()N + 3 Lallf(E2(0) + Kt (BN

= %[»’Uo +9(@) + ALa((t))(A) + Lal[f €, 2(t)) + E(E, ()] (V)]

Then one has
(A= A)La(x(t))(A) = w0 + g(@) + La([f(t,2()) + k(t, z())])(A).
Consequently, we get

La(z(t))(A) = (A —i‘l[wo +g(@)] + (A= A) T La([f (¢, 2(2)) + k(t,z(t)])) (V).

Since [zo + g(z)] € D(A), the expression (A — A)~![xg + g(x)] can be rewritten

as
lot

=) oo+ g(0)] = £a (3 (5 )+ 9] ) 0
Also, by using a simple calculus and Remark the expression
A=A La([f(t,2() + k(t,z(t))])(N)

can be rewritten as

(A = A) T La(lf (8, 2(t)) + k(t, 2(£))(V)

—A |+ - A) T La([f(t 2(1) + K2, x(t))])(k)}

A
= ALL(S@)) M) La(lf (E; () + k(L 2(1)])(A)
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_ AL, (/Ot so-1g <ta - Sa) (s, 2(5)) + k(s,x(s))]ds) )

«

(%

=L, <§; /Ot 59718 (ta — Sa> [f(s,z(s)) + k(s,x(s))]ds) (N).
Then one has
La(z(t))(A) = (A = A) " [zo + g(2)]
+ (A= A) T La([f(t (1) + Kt 2 ()] (V)

~ 0 (3(5) o+ o)

+ Lo <§; /Ot s1g (ta - Sa) [F(s,2(5)) + k(s,x(s))]ds) (\).

(07

Thus

(67

Lala®)) = £a (3 (% ) 100 + o)

LY P () (o) + ksl ) O,

dt> 0 o
Now taking the inverse conformable fractional Laplace transform in the last
equation, we get

z(t) = S<taa> [z + g(z)]
. > Ot st () (oo 4 (s o)

According to first point of Proposition [2.9] we have

[ (B2 0t + s a(o)las € D)

«

Then, by using Remark we get

i A0 4)" [ Cgeig (’f“ - ) (5, 2(5)) + (s, 2(5))]

A—400 o

-/ ‘g (t”‘ - ) [F(5,2(5)) + (s, 2(5))].

«

Therefore we obtain
(07

z(t) =S <a> [zo + g()]

A—4oo dt® [0

. di tsafl t* — 5% — -1 S, x(s S, x(S S
¢ lim /0 s( )A(A A)7H (s, 2(5)) + k(s 2(5))]d
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=55 o+ 900

(0}

© lim sa—ls(’f“‘sa)A(A—A>-1[f<s,a:<s>>+k<s,x<s>>]ds.
0

A——+00 «

Finally, we have the following Duhamel formula

z(t) =S <i> [z + g(z)]
1o — 5

(%

t
+ lim s* 18 <
0

A—400

) A= A7 f(s,2(5)) + k(s,2(s))]ds.
i

Before proving the existence results of the integral solution, we introduce
the following assumptions.

(H1) There exists a constant L; > 0 such that

\f(t,y) — f(t,2)|| < Lilly — z||, for all z,y € X and t € [0, 7].
(H2) The function f(.,x) : [0,7] — X is continuous for all z € X.
(Hs) The function a(.) : [0,7] — R is continuous and there exists a con-

stant ag > 0 such that sup |a(t)| < ao.

te[0,7]

(H4) There exists a constant Ly > 0 such that

lo(t,y) — p(t, x)|| < La|ly — ||, for all z,y € X and t € [0, 7].
(Hs) The function ¢(.,z) : [0,7] — X is continuous for all x € X.
(Hg) There exists a constant Ls > 0 such that

l9(y) — g9(@)|| < L3 |y — =, for all z,y € C.

LEMMA 3.4. If the assumptions (H3z) and (Ha4) hold, then, for the convo-
lution operator k defined in , we have the following inequalities, for all
x,y €C.

(1) ks, y(s)) — k(s 2(s))[| < aoLa [8 Sét[lop]\ly(a) - :B(U)H]

Ta+1

2) /O 5@ k(s,y(s)) — k(s,2(s))ds < apLs

o ly — |,
t 1 7_01+1
(3) /Sa_ |k(s, z(s))[|ds < ag Ly |z|, + sup |¢(t,0)]
0 a+1 t€[0,7]

THEOREM 3.5. Assume that (Hy) — (Hg) hold, then equation has an
unique integral solution, provided that
e
S <>‘ <1
Q@

To Ta+1
<L3 +M—0Ly 4+ agM L2> sup
« a+1 te(0,7]
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Proof. Define the operator I' : C — C by:

(e}

@0 = (5 ) oo+ o(0)]

© ol sals*<ta_8a)/\(>\—f1)1[f(57$(8))+k‘(879«“(8))1d5-

A—4o00 0 «

For z,y € C, we have

I()(t) — T(@)(t) = & (t) l9(y) — g(@)

(67

© lim sa—ls(t“sa)A(A—Arl[f(s,y(s))—f(w(s))]ds
0

A——+00 «

© lim sa—ls(t“sa)A(A—Arl[k(s,y(s))—k(m(s))}ds.
0

A—+00 o
The second point of Definition for n = 1, proves that
lim [A(A—A)7! < M.
A——+00

t
5 (5 1t - st

Accordingly, we obtain

IT(y) (@) = T(z) D) < up

awls(5)
+t:%pﬂs(ta>] ‘“Ilf(s y(5)) — F(s,(5))]ds
+t§%€]s(;>] alnk(s y(5)) — (s, 2(s)) |ds.

According to assumptions (H;), (Hg) and the second point of Lemma we

conclude that
. [te
(2.
«

IT(y)(t) — T'(@) (D)
T Ta—l—l
< (L3 + M—Ly + Mag L2> sup
G a+1 te(0,7]
L[t
e
S <>‘ < 1, the operator I' has

Taking the supremum, we get

T Ta—f—l
I'(y) —T'(x)],. < (L3+ML1+MCL0 Lg) sup
P(y) ~ (@) & k) s

Since (Lg + M%Ll + MaO%IQ) t:l[ép]
sT
an unique fixed point in C, which is the integral solution of equation (1. O

(0%
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Notice that in several concrete applications the semigroup (S (t))¢>0 is com-
pact and in this case we can dispense with the strong Lipschitz condition
imposed in hypothesis (H7). Precisely, we can replace hypothesis (H;) by the
following weak assumption:

(H7) The function f(¢,.) : X — X is continuous and there exists a function
€ L®([0,7],R") such that || f(¢,z)| < u(t), for all t € [0, 7].

THEOREM 3.6. If the semigroup (S(t))i>o is compact and (Hy) — (Hy) are
satisfied, then equation has at least one integral solution, provided only that

. ta
5(%)
(0]
Proof. Let B, = {x € C, |z|, < r}, where r is bigger or equal than
. ta a+1
5 ()] ol + l(O)] + Mag " sup [lo(t,0)]+ M 1l
a a+1 g0,
5(%)
[0

In order to use the Krasnoselskii fixed-point theorem, we define the opera-
tors I'y and I'g, for x € B, and t € [0, 7], as follows

TaJrl
L M L 1.
(10t 12) s [3(2)] <

t€l0,7]

sup
te(0,7]

7_oz—‘,—l
— (L3 + Mag Lg) sup
a+1 tel0,7]

(e}

Ti@)(0) =5 (5 ) oo+ g(0)]

t a Lo
+ lim s2718 <t i ) M — A) 7 E(s, 2(s))ds,
0

A—400 «a

to _ g™

> ) AN — A)7Lf(s, 2(s))ds.

_ im tsa—l -
Ra)) = Jim [ s<

A——+00 o

The proof will be given in four steps.
Step 1: Prove that I'y(z) + I'y(y) € B, whenever z, y € B,.

Let x, y € B,, we have

(e}

L) (2)(8) + Do) (1) = (a) (70 + ()]
(=)
+ “S<ta )
)

(

+ lim 52718 A) k(s z(s))ds

A—400

(A=
(A= A) " F(s,y(s))ds.

Then, we obtain

IT1(2)(t) + D2 (y) (@) < up,

’ ol + llg(O) 1| + llg(z) — g(0)]

%
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S (tj) ' M/Ot sk (s, z(s))||ds

$(S)|ar [ istsatenias.

According to assumptions (Hg), (H7) and the third point of Lemma we
conclude that

+ sup
te[0,7]

+ sup
te[0,7]

IT1(2) () + Ta(y)(@)|| < sup

5 (5| ot + 1901+ Zajel,

te(0,7]
5 (1| Moo T 1 e, 0)]
+ sup S()'Mao Lo |z|.+ sup |[|¢(t,0
te0,7] o a+1 tef0,7]
. ta 7_04
+ sup |5 ()' I 100 (10~ M—.
Bl |1l oo 071,00y M

Using the fact that x, y € B,, we conclude that

IT1(2)(t) + T2 (y)(@)[| < sup

52 teol + oo + 2

te(0,7]
3 () ara0 Jo(t,0)]
+ sup <> ‘ Mag Lor + sup ||o(t,0
te[0,7] o a+1 te0,7]
. tOé 7_Oé
+ sup S<>‘],u] o ([0.7 M—.
tef0,7] o L0 RN T o

Taking the supremum, we get

5 (5| ol + o)+ 2ar

te(0,7]
. to Ta+1
+ sup |S ()‘Mag Lor + sup |lp(t,0)]]
te[0,7] o a+1 te[0,7]

.t s
+ sup |S <a)‘|“|L°°([O»TLR+)Ma

t€[0,7]

<r.

Hence, we conclude that 'y (x) + T2 (y) € By, for all x, y € B,.
Step 2: Prove that I'; is a contraction operator on B,.

For z,y € C, we have

In@xw—ru@ur=3(”>mw>—mm1

(07
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© lim sals<”‘”“>MA—A>WMayw»—kwww»m&
0

A—+00 o

Using the fact that lim })\()\ - A)_1’ < M, we get

A—~+00

IT1(y) () — Ti(x)(@)]| < S

(e
5 (5 lato) - oo
. te t
# s 18 () ar [ s i n(s) ~ b atelas.
t€[0,7] « 0
According to assumptions (H3), (Hy), (Hg) and Lemma we obtain
T
IT1(w)(#) = T1(z) (@) < (Ls + Mag Ly) sup

e
(5o
o+ te[0,7] &

. [te
() s
[0

.t
S <> ’ < 1, the operator I'; is a contraction
«

a+1

Taking the supremum, we get

Tu(y) = D1(@) ”“
Ti(y) —Ti(x)],. < <L3 + May L2> sup
¢ a+1 te(0,7]

Since (Ls + MCLO%LQ) sup
t€[0,7]

operator on B,.
Step 3: Prove that I's is continuous on B,.
Let (z,,) C B, such that z, — x in B,. We have
Lay(an)(t) — Ta(x)(t)

~ lim wls(”‘“jx@—AJWAa%@»—ﬂaM$mm
0

A——+o00 (&%

By using a simple computation, we obtain

Falin) = Tl < 3 sup (8 ()| s 201Gs,0(6) - S5 a(o)) .

tel0,7]

According to assumption (H7), we get

|57 F (s, 2a(5)) — f(s,2(5))]]| < 2u(s)s* ™
and
f(s,zn(s)) — f(s,z(s)) as n — +o0.

Hence the Lebesgue dominated convergence theorem proves that

lim |a(zy) —Ta(x)|, = 0.

n—-+o0o
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Step 4: Prove that I's is compact.
Claim 1: Prove that I'y(B,) is uniformly bounded.

For x € B,, we have

. ta 7.Oé
Ly(x)(@)|| < sup S<>‘ oo (0.7 M—
T2 () ()] S 19 |1l oo 0, 000 M —

Then I'y(B,) is uniformly bounded.
Claim 2: Prove that the set {I'2(z)(t), = € B, } is relatively compact in X.

To do so, for some fixed ¢ €]0,7[ and x € B,, we define the operator I'§ by

(to‘—sa)é . a L«
I5(x)(t) = )\ETOO ; s*718 <t " i ) A = A)7Lf(s,2(s))ds,

where ¢ €]0,t[. We can write I'§ as follows

I5(2)(t)
o (afsa)é a_ ga oo
=S <Ea> AEToo/O t 4718 <ta€> A = A) (s, 2(s))ds.

Since the compactness of (S(t))i>0, the set {I'5(z)(t), x € B,} is relatively
compact in X. By using a simple computation combined with assumption

(H7), we get
S <t )
a

This last inequality proves that the set {I'2(x)(t), € B, } is relatively com-
pact in X. For ¢t = 0, the set {I'2(x)(0), € B,} is compact. Hence, the set
{T2(z)(t), = € B,} is relatively compact in X for all ¢ € [0, 7].

80{

05 (2)(t) = Pa(@) ()| < M |ptl oo po,r r+) SUP -

te[0,7]

Claim 3: We prove that I'y(B,) is equicontinuous.

For t1,t9 € [0, 7] such that t; < 3, we have
Lo(x)(t2) — Ta(2)(t1)

~ lim Otl g0 [s (tg - sa> _$ (t? - Saﬂ MO — AL (s, 2(5))ds

A—+o00 o [0
o [ (B Ao - ) s a(s)d
A—+00 Jy, N « % ®18))08
L (18—t ) /tl a1 e [T —8* 1
= < = | -7 1 —A
[S( - > )] i ; s¢71S o A(A ) f(s,z(s))ds

to . te — g™
+ lim s*71s ( 2 > A = A)7Lf(s,2(s))ds.

A—~+o00 t1 [0
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By using a simple computation and assumption (H7), we get

IT2(z)(t2) — Ta(z)(t1) |l
M sup

. ta
Su S <a> ’ |14| Loo ([0,7],R+)
<ol A% 15 - 1)+ 70

{(357)4]

This implies that I's(x), © € B, are equicontinuous at t € [0,7]. Hence, the
Arzela-Ascoli theorem proves that the operator I's is compact. Finally, by
using the Krasnoselskii fixed-point theorem, we conclude that the operator
I'y + I's has at least one fixed point in C, which is an integral solution of

equation . O
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