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INTEGRAL SOLUTION OF A CONFORMABLE
FRACTIONAL INTEGRO-DIFFERENTIAL EQUATION

WITH NONLOCAL CONDITION

MOHAMED BOUAOUID

Abstract. This paper deals with the existence and uniqueness of the integral
solution of a nondense integro-differential equation with nonlocal condition in
the frame of conformable fractional derivative. The main results are obtained by
using some fixed point theorems combined with a integrated semigroup approach.
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1. INTRODUCTION

The so-called conformable fractional derivative has been introduced in [24].
In short time, the better effect of this new fractional derivative attracts many
researchers in several areas of applications [1, 4–12, 16, 18–20, 22, 26, 38–41].
For more details about fractional calculus, we refer to works [25,27,30,33,35].
On the other hand, the nonlocal condition introduced in [14] is crucial in the
description of dynamical processes with unknown initial behaviors in various
areas of modeling [17, 31]. For more details about the better effects of non
local conditions in differential equations theory, we refer to [13,15,29,36] and
references therein. In this present work, we study a class of integro-differential
equation with conformable fractional derivative and nonlocal condition. Pre-
cisely, we consider the following fractional Cauchy problem with nonlocal con-
dition: 

dαx(t)
dtα = Ax(t) + f(t, x(t))

+

∫ t

0
a(t− σ)φ(σ, x(σ))dσ, t ∈ [0, τ ], 0 < α ≤ 1,

x(0) = x0 + g(x),

(1)
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where dα(.)
dtα presents the conformable fractional derivative [24] and x(0) =

x0 + g(x) is the nonlocal condition [14, 17, 31]. Concerning the linear part A,
it is well known that many concrete applications prove that the density of its
domain D(A) is a very harsh condition to be imposed [2,3,21,23,28,34,37]. So,
we assume that the linear part (A,D(A)) is closed and satisfying the Hille-
Yosida property without assuming the density of D(A) in a Banach space
(X, ∥.∥). The functions f : [0, τ ]×X → X, φ : [0, τ ]×X → X, a : [0, τ ] → R,
g : C → D(A) satisfied some assumptions and x0 is an element of D(A), where
C is the Banach space of continuous functions from [0, τ ] into X with the
norm |x|c = sup

t∈[0,τ ]
∥x(t)∥. We also denote by |.| the norm in the space L(X)

of bounded operators defined from X into itself.
Our purpose in this paper is to establish the existence and uniqueness of the
integral solution of equation (1) based on the following Duhamel formula:

x(t) = Ṡ

(
tα

α

)
[x0 + g(x)]

+ lim
λ→+∞

∫ t

0
sα−1Ṡ

(
tα − sα

α

)
λ(λ−A)−1[f(s, x(s)) + k(s, x(s))]ds,

(2)

where (S(t))t≥0 is the integrated semigroup generated by the operator A (see
[3, 21,23]) and k(s, x(s)) is the convolution operator given as follows:

k(s, x(s)) =

∫ s

0
a(s− σ)φ(σ, x(σ))dσ.(3)

The rest of this work is organized as follows. In Section 2, we recall some pre-
liminary facts on the conformable fractional calculus and integrated semigroup
theory. Section 3 is devoted to prove the main results.

2. PRELIMINARIES

In this section, we introduce some preliminaries concerning the conformable
fractional derivative and integrated semigroup theory.

Definition 2.1 ([24]). For α ∈]0, 1], the conformable fractional derivative
of order α of a function x(.) is defined as

dαx(t)

dtα
= lim

ε→0

x(t+ εt1−α)− x(t)

ε
, t > 0,

dαx(0)

dtα
= lim

t→0+

dαx(t)

dtα
.

The conformable fractional integral Iα(.) associated with the conformable
fractional derivative is defined as follows

Iα(x)(t) =

∫ t

0
sα−1x(s)ds.
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Theorem 2.2 ([24]). If x(.) is a continuous function in the domain of Iα(.),
then we have

dα(Iα(x)(t))

dtα
= x(t).

Definition 2.3 ([1]). The conformable fractional Laplace transform of or-
der α ∈]0, 1] of a function x(.) is defined as follows

Lα(x(t))(λ) =

∫ +∞

0
tα−1e−

λtα

α x(t)dt, λ > 0.

The following proposition gives us the actions of the conformable fractional
integral and the conformable fractional Laplace transform on the conformable
fractional derivative, respectively.

Proposition 2.4 ([1]). If x(.) is a differentiable function, then we have the
following results

Iα
(
dαx(.)

dtα

)
(t) = x(t)− x(0),

Lα

(
dαx(t)

dtα

)
(λ) = λLα(x(t))(λ)− x(0).

According to [6], we have the following remark.

Remark 2.5. For two functions x(.) and y(.), we have

Lα

(
x

(
tα

α

))
(λ) = L1(x(t))(λ),

Lα

(∫ t

0
sα−1x

(
tα − sα

α

)
y(s)ds

)
(λ) = L1(x(t))(λ)Lα(y(t))(λ),

provided that the both terms of each equality exist.

Now, we recall some definitions and results on the integrated semigroup
theory.

Definition 2.6 ([3, 23]). An integrated semigroup is a family (S(t))t≥0

of bounded linear operators S(t) on a Banach space X with the following
properties:

(1) S(0) = 0,
(2) t 7−→ S(t) is strongly continuous,

(3) S(s)S(t) =

∫ s

0
(S(t+ τ)− S(τ))dτ for all t, s ≥ 0.

Definition 2.7 ([23]). Let (S(t))t≥0 be an integrated semigroup.

(1) (S(t))t≥0 is called exponentially bounded, if there exist constants M ≥
0 and ω ∈ R such that |S(t)| ≤ Meωt for all t ≥ 0.

(2) (S(t))t≥0 is called non-degenerate for all t ≥ 0, if S(t)x = 0 implies
x = 0.
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(3) (S(t))t≥0 is called locally Lipschitz continuous if for all b > 0 there
exists a constant L such that |S(t)− S(s)| ≤ L |t− s|, for all s, t ∈
[0, b].

Definition 2.8 ([23]). An operator A is called an infinitesimal generator of
an integrated semigroup, if there exists ω ∈ R such that ]ω,+∞[⊂ ρ(A) and
there exists a strongly continuous exponentially bounded family (S(t))t≥0 of
bounded operators such that

(1) S(0) = 0,

(2) (λI −A)−1 = λ

∫ +∞

0
e−λtS(t)dt, for all λ > ω.

Proposition 2.9 ([3]). Let A be the infinitesimal generator of an integrated
semigroup (S(t))t≥0. Then the following properties hold.

(1)

∫ t

0
S(s)xds ∈ D(A), for all x ∈ X and t > 0.

(2) S(t)y ∈ D(A), for all y ∈ D(A) and t > 0.

(3) S(t)x = A

∫ t

0
S(s)xds+ tx, for all x ∈ X and t > 0.

(4) AS(t)y = S(t)Ay, for all y ∈ D(A) and t > 0.

(5) S(t)y =

∫ t

0
S(s)Ayds+ ty, for all y ∈ D(A) and t > 0.

If x ∈ D(A) then the function t 7−→ S(t)x is continuously differentiable and

Ṡ (t) becomes a semigroup on D(A).

Definition 2.10 ([2]). A linear operator A is called a Hille-Yosida operator
if there exist constants M ≥ 0 and ω ∈ R such that

(1) ]ω,+∞[⊂ ρ(A), (ρ(A): is the resolvent set of A),
(2) (∀n ∈ N) (∀λ > ω), |R(λ,A)n| ≤ M

(λ−ω)n , (R(λ,A) := (λ−A)−1).

Theorem 2.11 ([23]). The following assertions are equivalent.

(1) A is a Hille-Yosida operator.
(2) A is the generator of a locally Lipschitz continuous integrated semi-

group (S(t))t≥0.

We end these preliminaries by the following remark.

Remark 2.12 ([32]). We have lim
λ→+∞

λ(λ−A)−1x = x, for all x ∈ D(A)

3. MAIN RESULTS

Motivated by the works [21,28], we introduce the following definition.

Definition 3.1. A function x ∈ C is called an integral solution of equation
(1) if ∫ t

0
sα−1x(s)ds ∈ D(A), t ∈ [0, τ ],(4)
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x(t) = x0 + g(x) +A

∫ t

0
sα−1x(s)ds+∫ t

0
sα−1[f(s, x(s)) + k(s, x(s))]ds, t ∈ [0, τ ].

(5)

Remark 3.2 ([6]). We have the following equality

x(t) = lim
ε→0

1

ε

∫ t+εt1−α

t
sα−1x(s)ds ∈ D(A).

Lemma 3.3. Each integral solution of equation (1) satisfies the following
Duhamel formula

x(t) = Ṡ

(
tα

α

)
[x0 + g(x)]

+ lim
λ→+∞

∫ t

0
sα−1Ṡ

(
tα − sα

α

)
λ(λ−A)−1[f(s, x(s)) + k(s, x(s))]ds,

where (S(t))t≥0 is the integrated semigroup generated by the operator A.

Proof. Applying the conformable fractional Laplace transform in equation
(5) and using Remark 2.5, we get

Lα(x(t))(λ)

=
1

λ
(x0 + g(x)) +

1

λ
ALα(x(t))(λ) +

1

λ
Lα([f(t, x(t)) + k(t, x(t))])(λ)

=
1

λ
[x0 + g(x) +ALα(x(t))(λ) + Lα([f(t, x(t)) + k(t, x(t))])(λ)].

Then one has

(λ−A)Lα(x(t))(λ) = x0 + g(x) + Lα([f(t, x(t)) + k(t, x(t))])(λ).

Consequently, we get

Lα(x(t))(λ) = (λ−A)−1[x0 + g(x)] + (λ−A)−1Lα([f(t, x(t)) + k(t, x(t))])(λ).

Since [x0+g(x)] ∈ D(A), the expression (λ−A)−1[x0+g(x)] can be rewritten
as

(λ−A)−1[x0 + g(x)] = Lα

(
Ṡ

(
tα

α

)
[x0 + g(x)]

)
(λ).

Also, by using a simple calculus and Remark 2.5, the expression

(λ−A)−1Lα([f(t, x(t)) + k(t, x(t))])(λ)

can be rewritten as

(λ−A)−1Lα([f(t, x(t)) + k(t, x(t))])(λ)

= λ

[
1

λ
(λ−A)−1Lα([f(t, x(t)) + k(t, x(t))])(λ)

]
= λL1(S(t))(λ)Lα([f(t, x(t)) + k(t, x(t))])(λ)
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= λLα

(∫ t

0
sα−1S

(
tα − sα

α

)
[f(s, x(s)) + k(s, x(s))]ds

)
(λ)

= Lα

(
dα

dtα

∫ t

0
sα−1S

(
tα − sα

α

)
[f(s, x(s)) + k(s, x(s))]ds

)
(λ).

Then one has

Lα(x(t))(λ) = (λ−A)−1[x0 + g(x)]

+ (λ−A)−1Lα([f(t, x(t)) + k(t, x(t))])(λ)

= Lα

(
Ṡ

(
tα

α

)
[x0 + g(x)]

)
(λ)

+ Lα

(
dα

dtα

∫ t

0
sα−1S

(
tα − sα

α

)
[f(s, x(s)) + k(s, x(s))]ds

)
(λ).

Thus

Lα(x(t))(λ) = Lα

(
Ṡ

(
tα

α

)
[x0 + g(x)]

+
dα

dtα

∫ t

0
sα−1S

(
tα − sα

α

)
[f(s, x(s)) + k(s, x(s))]ds

)
(λ).

Now taking the inverse conformable fractional Laplace transform in the last
equation, we get

x(t) = Ṡ

(
tα

α

)
[x0 + g(x)]

+
dα

dtα

∫ t

0
sα−1S

(
tα − sα

α

)
[f(s, x(s)) + k(s, x(s))]ds.

According to first point of Proposition 2.9, we have∫ t

0
sα−1S

(
tα − sα

α

)
[f(s, x(s)) + k(s, x(s))]ds ∈ D(A).

Then, by using Remark 2.9, we get

lim
λ→+∞

λ(λ−A)−1

∫ t

0
sα−1S

(
tα − sα

α

)
[f(s, x(s)) + k(s, x(s))]

=

∫ t

0
sα−1S

(
tα − sα

α

)
[f(s, x(s)) + k(s, x(s))].

Therefore we obtain

x(t) = Ṡ

(
tα

α

)
[x0 + g(x)]

+ lim
λ→+∞

dα

dtα

∫ t

0
sα−1S

(
tα − sα

α

)
λ(λ−A)−1[f(s, x(s)) + k(s, x(s))]ds
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= Ṡ

(
tα

α

)
[x0 + g(x)]

+ lim
λ→+∞

∫ t

0
sα−1Ṡ

(
tα − sα

α

)
λ(λ−A)−1[f(s, x(s)) + k(s, x(s))]ds.

Finally, we have the following Duhamel formula

x(t) = Ṡ

(
tα

α

)
[x0 + g(x)]

+ lim
λ→+∞

∫ t

0
sα−1Ṡ

(
tα − sα

α

)
λ(λ−A)−1[f(s, x(s)) + k(s, x(s))]ds.

□

Before proving the existence results of the integral solution, we introduce
the following assumptions.

(H1) There exists a constant L1 > 0 such that
∥f(t, y)− f(t, x)∥ ≤ L1∥y − x∥, for all x, y ∈ X and t ∈ [0, τ ].

(H2) The function f(., x) : [0, τ ] −→ X is continuous for all x ∈ X.
(H3) The function a(.) : [0, τ ] −→ R is continuous and there exists a con-

stant a0 > 0 such that sup
t∈[0,τ ]

|a(t)| ≤ a0.

(H4) There exists a constant L2 > 0 such that
∥φ(t, y)− φ(t, x)∥ ≤ L2∥y − x∥, for all x, y ∈ X and t ∈ [0, τ ].

(H5) The function φ(., x) : [0, τ ] −→ X is continuous for all x ∈ X.
(H6) There exists a constant L3 > 0 such that

∥g(y)− g(x)∥ ≤ L3 |y − x|c, for all x, y ∈ C.

Lemma 3.4. If the assumptions (H3) and (H4) hold, then, for the convo-
lution operator k defined in (3), we have the following inequalities, for all
x, y ∈ C.

(1) ∥k(s, y(s))− k(s, x(s))∥ ≤ a0L2

[
s sup
σ∈[0,s]

∥y(σ)− x(σ)∥

]
(2)

∫ t

0
sα−1∥k(s, y(s))− k(s, x(s))∥ds ≤ a0L2

τα+1

α+ 1
|y − x|c

(3)

∫ t

0
sα−1∥k(s, x(s))∥ds ≤ a0

τα+1

α+ 1

[
L2 |x|c + sup

t∈[0,τ ]
∥φ(t, 0)∥

]
Theorem 3.5. Assume that (H1) − (H6) hold, then equation (1) has an

unique integral solution, provided that(
L3 +M

τα

α
L1 + a0M

τα+1

α+ 1
L2

)
sup

t∈[0,τ ]

∣∣∣∣Ṡ (
tα

α

)∣∣∣∣ < 1.
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Proof. Define the operator Γ : C −→ C by:

Γ(x)(t) = Ṡ

(
tα

α

)
[x0 + g(x)]

+ lim
λ→+∞

∫ t

0
sα−1Ṡ

(
tα − sα

α

)
λ(λ−A)−1[f(s, x(s)) + k(s, x(s))]ds.

For x, y ∈ C, we have

Γ(y)(t)− Γ(x)(t) = Ṡ

(
tα

α

)
[g(y)− g(x)]

+ lim
λ→+∞

∫ t

0
sα−1Ṡ

(
tα − sα

α

)
λ(λ−A)−1[f(s, y(s))− f(s, x(s))]ds

+ lim
λ→+∞

∫ t

0
sα−1Ṡ

(
tα − sα

α

)
λ(λ−A)−1[k(s, y(s))− k(s, x(s))]ds.

The second point of Definition 2.10, for n = 1, proves that

lim
λ→+∞

∣∣λ(λ−A)−1
∣∣ ≤ M.

Accordingly, we obtain

∥Γ(y)(t)− Γ(x)(t)∥ ≤ sup
t∈[0,τ ]

∣∣∣∣Ṡ (
tα

α

)∣∣∣∣ ∥g(y)− g(x)∥

+ sup
t∈[0,τ ]

∣∣∣∣Ṡ (
tα

α

)∣∣∣∣M ∫ t

0
sα−1∥f(s, y(s))− f(s, x(s))∥ds

+ sup
t∈[0,τ ]

∣∣∣∣Ṡ (
tα

α

)∣∣∣∣M ∫ t

0
sα−1∥k(s, y(s))− k(s, x(s))∥ds.

According to assumptions (H1), (H6) and the second point of Lemma 3.4, we
conclude that

∥Γ(y)(t)− Γ(x)(t)∥

≤
(
L3 +M

τα

α
L1 +Ma0

τα+1

α+ 1
L2

)
sup

t∈[0,τ ]

∣∣∣∣Ṡ (
tα

α

)∣∣∣∣ |y − x|c .

Taking the supremum, we get

|Γ(y)− Γ(x)|c ≤
(
L3 +M

τα

α
L1 +Ma0

τα+1

α+ 1
L2

)
sup

t∈[0,τ ]

∣∣∣∣Ṡ (
tα

α

)∣∣∣∣ |y − x|c .

Since
(
L3 +M τα

α L1 +Ma0
τα+1

α+1 L2

)
sup

t∈[0,τ ]

∣∣∣∣Ṡ (
tα

α

)∣∣∣∣ < 1, the operator Γ has

an unique fixed point in C, which is the integral solution of equation (1). □
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Notice that in several concrete applications the semigroup (Ṡ(t))t>0 is com-
pact and in this case we can dispense with the strong Lipschitz condition
imposed in hypothesis (H1). Precisely, we can replace hypothesis (H1) by the
following weak assumption:

(H7) The function f(t, .) : X −→ X is continuous and there exists a function
µ ∈ L∞([0, τ ],R+) such that ∥f(t, x)∥ ≤ µ(t), for all t ∈ [0, τ ].

Theorem 3.6. If the semigroup (Ṡ(t))t>0 is compact and (H2)− (H7) are
satisfied, then equation (1) has at least one integral solution, provided only that(

L3 +Ma0
τα+1

α+ 1
L2

)
sup

t∈[0,τ ]

∣∣∣∣Ṡ (
tα

α

)∣∣∣∣ < 1.

Proof. Let Br = {x ∈ C, |x|c ≤ r}, where r is bigger or equal than

sup
t∈[0,τ ]

∣∣∣∣Ṡ (
tα

α

)∣∣∣∣
[
∥x0∥+ ∥g(0)∥+Ma0

τα+1

α+ 1
sup

t∈[0,τ ]

∥φ(t, 0)∥+M
τα

α
|µ|L∞([0,τ ],R+)

]

1−
(
L3 +Ma0

τα+1

α+ 1
L2

)
sup

t∈[0,τ ]

∣∣∣∣Ṡ (
tα

α

)∣∣∣∣
In order to use the Krasnoselskii fixed-point theorem, we define the opera-

tors Γ1 and Γ2, for x ∈ Br and t ∈ [0, τ ], as follows

Γ1(x)(t) = Ṡ

(
tα

α

)
[x0 + g(x)]

+ lim
λ→+∞

∫ t

0
sα−1Ṡ

(
tα − sα

α

)
λ(λ−A)−1k(s, x(s))ds,

Γ2(x)(t) = lim
λ→+∞

∫ t

0
sα−1Ṡ

(
tα − sα

α

)
λ(λ−A)−1f(s, x(s))ds.

The proof will be given in four steps.

Step 1: Prove that Γ1(x) + Γ2(y) ∈ Br whenever x, y ∈ Br.

Let x, y ∈ Br, we have

Γ1(x)(t) + Γ2(y)(t) = Ṡ

(
tα

α

)
[x0 + g(x)]

+ lim
λ→+∞

∫ t

0
sα−1Ṡ

(
tα − sα

α

)
λ(λ−A)−1k(s, x(s))ds

+ lim
λ→+∞

∫ t

0
sα−1Ṡ

(
tα − sα

α

)
λ(λ−A)−1f(s, y(s))ds.

Then, we obtain

∥Γ1(x)(t) + Γ2(y)(t)∥ ≤ sup
t∈[0,τ ]

∣∣∣∣Ṡ (
tα

α

)∣∣∣∣ [∥x0∥+ ∥g(0)∥+ ∥g(x)− g(0)∥]
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+ sup
t∈[0,τ ]

∣∣∣∣Ṡ (
tα

α

)∣∣∣∣M ∫ t

0
sα−1∥k(s, x(s))∥ds

+ sup
t∈[0,τ ]

∣∣∣∣Ṡ (
tα

α

)∣∣∣∣M ∫ t

0
sα−1∥f(s, y(s))∥ds.

According to assumptions (H6), (H7) and the third point of Lemma 3.4, we
conclude that

∥Γ1(x)(t) + Γ2(y)(t)∥ ≤ sup
t∈[0,τ ]

∣∣∣∣Ṡ (
tα

α

)∣∣∣∣ [∥x0∥+ ∥g(0)∥+ L3 |x|c]

+ sup
t∈[0,τ ]

∣∣∣∣Ṡ (
tα

α

)∣∣∣∣Ma0
τα+1

α+ 1
[L2 |x|c + sup

t∈[0,τ ]
∥φ(t, 0)∥]

+ sup
t∈[0,τ ]

∣∣∣∣Ṡ (
tα

α

)∣∣∣∣ |µ|L∞([0,τ ],R+)M
τα

α
.

Using the fact that x, y ∈ Br, we conclude that

∥Γ1(x)(t) + Γ2(y)(t)∥ ≤ sup
t∈[0,τ ]

∣∣∣∣Ṡ (
tα

α

)∣∣∣∣ [∥x0∥+ ∥g(0)∥+ L3r]

+ sup
t∈[0,τ ]

∣∣∣∣Ṡ (
tα

α

)∣∣∣∣Ma0
τα+1

α+ 1

[
L2r + sup

t∈[0,τ ]
∥φ(t, 0)∥

]

+ sup
t∈[0,τ ]

∣∣∣∣Ṡ (
tα

α

)∣∣∣∣ |µ|L∞([0,τ ],R+)M
τα

α
.

Taking the supremum, we get

|Γ1(x) + Γ2(y)|c ≤ sup
t∈[0,τ ]

∣∣∣∣Ṡ (
tα

α

)∣∣∣∣ [∥x0∥+ ∥g(0)∥+ L3r]

+ sup
t∈[0,τ ]

∣∣∣∣Ṡ (
tα

α

)∣∣∣∣Ma0
τα+1

α+ 1

[
L2r + sup

t∈[0,τ ]
∥φ(t, 0)∥

]

+ sup
t∈[0,τ ]

∣∣∣∣Ṡ (
tα

α

)∣∣∣∣ |µ|L∞([0,τ ],R+)M
τα

α

≤ r.

Hence, we conclude that Γ1(x) + Γ2(y) ∈ Br, for all x, y ∈ Br.

Step 2: Prove that Γ1 is a contraction operator on Br.

For x, y ∈ C, we have

Γ1(y)(t)− Γ1(x)(t) = Ṡ

(
tα

α

)
[g(y)− g(x)]
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+ lim
λ→+∞

∫ t

0
sα−1Ṡ

(
tα − sα

α

)
λ(λ−A)−1[k(s, y(s))− k(s, x(s))]ds.

Using the fact that lim
λ→+∞

∣∣λ(λ−A)−1
∣∣ ≤ M , we get

∥Γ1(y)(t)− Γ1(x)(t)∥ ≤ sup
t∈[0,τ ]

∣∣∣∣Ṡ (
tα

α

)∣∣∣∣ ∥g(y)− g(x)∥

+ sup
t∈[0,τ ]

∣∣∣∣Ṡ (
tα

α

)∣∣∣∣M ∫ t

0
sα−1∥k(s, y(s))− k(s, x(s))∥ds.

According to assumptions (H3), (H4), (H6) and Lemma 3.4, we obtain

∥Γ1(y)(t)− Γ1(x)(t)∥ ≤ (L3 +Ma0
τα+1

α+ 1
L2) sup

t∈[0,τ ]

∣∣∣∣Ṡ (
tα

α

)∣∣∣∣ |y − x|c .

Taking the supremum, we get

|Γ1(y)− Γ1(x)|c ≤
(
L3 +Ma0

τα+1

α+ 1
L2

)
sup

t∈[0,τ ]

∣∣∣∣Ṡ (
tα

α

)∣∣∣∣ |y − x|c .

Since (L3 +Ma0
τα+1

α+1 L2) sup
t∈[0,τ ]

∣∣∣∣Ṡ (
tα

α

)∣∣∣∣ < 1, the operator Γ1 is a contraction

operator on Br.

Step 3: Prove that Γ2 is continuous on Br.

Let (xn) ⊂ Br such that xn −→ x in Br. We have

Γ2(xn)(t)− Γ2(x)(t)

= lim
λ→+∞

∫ t

0
sα−1Ṡ

(
tα − sα

α

)
λ(λ−A)−1[f(s, xn(s))− f(s, x(s))]ds.

By using a simple computation, we obtain

|Γ2(xn)− Γ2(x)|c ≤ M sup
t∈[0,τ ]

∣∣∣∣Ṡ (
tα

α

)∣∣∣∣ ∫ τ

0
sα−1∥f(s, xn(s))− f(s, x(s))∥ds.

According to assumption (H7), we get∥∥sα−1[f(s, xn(s))− f(s, x(s))]
∥∥ ≤ 2µ(s)sα−1

and

f(s, xn(s)) −→ f(s, x(s)) as n −→ +∞.

Hence the Lebesgue dominated convergence theorem proves that

lim
n→+∞

|Γ2(xn)− Γ2(x)|c = 0.
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Step 4: Prove that Γ2 is compact.

Claim 1: Prove that Γ2(Br) is uniformly bounded.

For x ∈ Br, we have

∥Γ2(x)(t)∥ ≤ sup
t∈[0,τ ]

∣∣∣∣Ṡ (
tα

α

)∣∣∣∣ |µ|L∞([0,τ ],R+)M
τα

α
.

Then Γ2(Br) is uniformly bounded.

Claim 2: Prove that the set {Γ2(x)(t), x ∈ Br} is relatively compact in X.

To do so, for some fixed t ∈]0, τ [ and x ∈ Br, we define the operator Γε
2 by

Γε
2(x)(t) = lim

λ→+∞

∫ (tα−εα)
1
α

0
sα−1Ṡ

(
tα − sα

α

)
λ(λ−A)−1f(s, x(s))ds,

where ε ∈]0, t[. We can write Γε
2 as follows

Γε
2(x)(t)

= Ṡ

(
εα

α

)
lim

λ→+∞

∫ (tα−εα)
1
α

0
sα−1Ṡ

(
tα − sα − εα

α

)
λ(λ−A)−1f(s, x(s))ds.

Since the compactness of (Ṡ(t))t>0, the set {Γε
2(x)(t), x ∈ Br} is relatively

compact in X. By using a simple computation combined with assumption
(H7), we get

∥Γε
2(x)(t)− Γ2(x)(t)∥ ≤ M |µ|L∞([0,τ ],R+) sup

t∈[0,τ ]

∣∣∣∣Ṡ (
tα

α

)∣∣∣∣ εαα .

This last inequality proves that the set {Γ2(x)(t), x ∈ Br} is relatively com-
pact in X. For t = 0, the set {Γ2(x)(0), x ∈ Br} is compact. Hence, the set
{Γ2(x)(t), x ∈ Br} is relatively compact in X for all t ∈ [0, τ ].

Claim 3: We prove that Γ2(Br) is equicontinuous.

For t1, t2 ∈ [0, τ ] such that t1 < t2, we have

Γ2(x)(t2)− Γ2(x)(t1)

= lim
λ→+∞

∫ t1

0
sα−1

[
Ṡ

(
tα2 − sα

α

)
− Ṡ

(
tα1 − sα

α

)]
λ(λ−A)−1f(s, x(s))ds

+ lim
λ→+∞

∫ t2

t1

sα−1Ṡ

(
tα2 − sα

α

)
λ(λ−A)−1f(s, x(s))ds

=

[
Ṡ

(
tα2 − tα1

α

)
− I)

]
lim

λ→+∞

∫ t1

0
sα−1Ṡ

(
tα1 − sα

α

)
λ(λ−A)−1f(s, x(s))ds

+ lim
λ→+∞

∫ t2

t1

sα−1Ṡ

(
tα2 − sα

α

)
λ(λ−A)−1f(s, x(s))ds.
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By using a simple computation and assumption (H7), we get

∥Γ2(x)(t2)− Γ2(x)(t1)∥

≤
M sup

t∈[0,τ ]

∣∣∣∣Ṡ (
tα

α

)∣∣∣∣ |µ|L∞([0,τ ],R+)

α

[
(tα2 − tα1 ) + τα

∣∣∣∣Ṡ (
tα2 − tα1

α

)
− I

∣∣∣∣] .
This implies that Γ2(x), x ∈ Br are equicontinuous at t ∈ [0, τ ]. Hence, the
Arzela-Ascoli theorem proves that the operator Γ2 is compact. Finally, by
using the Krasnoselskii fixed-point theorem, we conclude that the operator
Γ1 + Γ2 has at least one fixed point in C, which is an integral solution of
equation (1). □
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