STRONG REGULARITY OF SMASH PRODUCTS ASSOCIATED WITH G-SET GRADINGS

GABRIELA OLTEANU

Abstract. For a group G, a G-graded ring R and a finite left G-set A, we study the strong regularity of the smash product R#A. MSC 2010. 16E50, 16D90, 16W50. Key words. Strongly regular ring, smash product, G-set grading.

1. INTRODUCTION

One of the most important classical concepts in ring theory has been that of regular ring in the sense of J. von Neumann [9]. A ring R is called (von Neumann) regular if for every $a \in R$, there exists $b \in R$ such that a = aba. Strongly regular rings have been introduced by R.F. Arens and I. Kaplansky [1] as a relevant specialization of (von Neumann) regular rings. A ring R is called strongly regular if for every $a \in R$, there exists $b \in R$ such that $a = a^2b$ (equivalently, $a = ba^2$). It is well known that a ring R is strongly regular if and only if R is (von Neumann) regular and abelian (i.e., every idempotent of R is central).

Both notions have been generalized to modules by G. Lee. S.T. Rizvi and C. Roman [6], but also to abelian categories by S. Dăscălescu, C. Năstăsescu, A. Tudorache and L. Dăuş [4] and S. Crivei, A. Kör and G. Olteanu [2, 3] respectively. In particular, such results are applicable to (graded) module categories. For instance, L. Dăuş, C. Năstăsescu and M. Năstăsescu have studied von Neumann regularity of smash products associated with G-set gradings [5], and we have studied strong regularity of modules under excellent extensions of rings [8]. In this paper we investigate strong regularity of smash products associated with G-set gradings.

2. MODULES GRADED BY G-SETS

For a multiplicative group G, recall that a ring R with identity is called G-graded if there is a direct sum decomposition $R = \bigoplus_{\sigma \in G} R_{\sigma}$ of additive subgroups such that $R_{\sigma}R_{\tau} \subseteq R_{\sigma\tau}$ for every $\sigma, \tau \in G$. For every $\sigma \in G$, R_{σ} is called the σ -homogeneous component of R. For a G-graded ring R and a non-empty subset X of G, denote $R_X = \bigoplus_{x \in X} R_x$. For a subgroup H of G, R_H is a subring of R, which is an H-graded ring.

DOI: 10.24193/mathcluj.2021.2.14

G. Olteanu

For a group G with identity e, a non-empty set A is called a *left G-set* if there is a left action of G on A, say $G \times A \to A$ given by $(\sigma, x) \mapsto \sigma x$ such that ex = x for every $x \in A$ and $(\sigma \tau)x = \sigma(\tau x)$ for every $\sigma, \tau \in G$ and $x \in A$.

Let $R = \bigoplus_{\sigma \in G} R_{\sigma}$ be a *G*-graded ring and let *A* be a finite left *G*-set. Following [7], the smash product R#A is the free left *R*-module with basis $\{p_x \mid x \in A\}$ and multiplication given by $(r_{\sigma}p_x)(s_{\tau}p_y) = (r_{\sigma}s_{\tau})p_y$ if $\tau y = x$ and zero otherwise, for every $r_{\sigma} \in R_{\sigma}, s_{\tau} \in R_{\tau}, x, y \in A$. Thus R#A is a ring with identity $\sum_{x \in A} p_x$, and the ring *R* embeds into the smash product R#A. Moreover, R#A is a *G*-graded ring with its σ -homogeneous component $(R#A)_{\sigma} = \sum_{x \in A} R_{\sigma}p_x$.

Let R be a G-graded ring and let A be a left G-set. Following [7], a graded left R-module of type A is a left R-module M which has a direct-sum decomposition $M = \bigoplus_{x \in A} M_x$ as additive subgroups such that $R_{\sigma}M_x \subseteq M_{\sigma x}$ for every $\sigma \in G$ and $x \in A$. A morphism of graded left R-modules of type A is a morphism $f: M \to N$ of left R-modules such that $f(M_x) \subseteq N_x$ for every $x \in A$. We denote by (G, A, R)-gr the category of graded left R-modules of type A and corresponding morphisms.

For every $x \in A$, the x-suspension R(x) of R is the object of (G, A, R)-gr which equals R as an R-module and whose grading is given by

$$R(x)_y = \bigoplus_{\sigma \in G} \{ R_\sigma \mid \sigma \in G, \sigma x = y \}$$

for every $y \in A$. Since A is a left G-set, $(R(x))_{x \in A}$ is a family of finitely generated generators, and $V = \bigoplus_{x \in A} R(x)$ is a projective generator of the abelian category (G, A, R)-gr [7].

For every $x, y \in A$, denote $G_{x,y} = \{\sigma \in G \mid \sigma x = y\}$. Note that $G_x = G_{x,x}$ is the stabilizer of x. According to [5, Lemma 4.5], for every $x, y \in A$, there exist a group isomorphism

$$\operatorname{Hom}_{(G,A,R)-qr}(R(x),R(y)) \cong R_{G_{y,x}}$$

and a ring isomorphism

$$\operatorname{End}_{(G,A,R)-gr}(R(x)) \cong R_{G_x}.$$

3. STRONGLY RELATIVE REGULAR MODULES

The concept of strongly regular ring was generalized to strongly regular objects in abelian categories by using fully (co)invariant (co)kernels. Recall that a kernel $k: K \to M$ in an abelian category \mathcal{A} is called *fully invariant* if for every $h \in \operatorname{End}_{\mathcal{A}}(M)$, there is a morphism $\alpha \in \operatorname{End}_{\mathcal{A}}(K)$ such that $hk = k\alpha$ [3]. The notion of *fully coinvariant cokernel* is defined dually.

DEFINITION 3.1 ([3]). Let M and N be objects of an abelian category \mathcal{A} . Then N is called *strongly* M-regular if for every morphism $f: M \to N$, ker(f) is a fully invariant section and coker(f) is a fully coinvariant retraction. Also, N is called *strongly self-regular* if N is strongly N-regular. PROPOSITION 3.2 ([3]). Let M be an object of an abelian category \mathcal{A} . Then M is strongly self-regular if and only if its endomorphism ring $\operatorname{End}_{\mathcal{A}}(M)$ is strongly regular.

We now give a general key result on strongly relative regular objects in abelian categories, which will be useful throughout the paper.

THEOREM 3.3. Let $(M_i)_{i \in I}$ be a family of objects of an abelian category \mathcal{A} . Then the following are equivalent:

(1) For every $i, j \in I$, M_j is strongly M_i -regular.

(2) For every $i, j \in I$, M_j is M_i -regular and the ring $\operatorname{End}_{\mathcal{A}}(M_i)$ is abelian.

Proof. (1) \Longrightarrow (2) Let $i, j \in I$. By hypothesis, M_j is clearly M_i -regular and $\operatorname{End}_{\mathcal{A}}(M_i)$ is abelian by [3, Propositions 2.4 and 2.5].

 $(2) \Longrightarrow (1)$ Let $i, j \in I$, and let $f : M_i \to M_j$ be a morphism in \mathcal{A} with kernel $k : K \to M_i$ and cokernel $c : M_j \to C$. Since M_j is M_i -regular, k is a section and c is a retraction, and thus there are morphisms $p : M_i \to K$ and $q : C \to M_j$ such that $pk = 1_K$ and $cq = 1_C$. We need to show that k is a fully invariant kernel, and c is a fully coinvariant cokernel. We only prove the former, because the latter follows by duality. Let $h \in \text{End}_{\mathcal{A}}(M_i)$. By hypothesis, the ring $\text{End}_{\mathcal{A}}(M_i)$ is abelian, which implies that the idempotent $e = kp : M_i \to M_i$ is central. Then hkp = he = eh = kph implies that hk = kphk, which shows that k is a fully invariant kernel. Finally, since c is a fully coinvariant cokernel, it follows that M_j is strongly M_i -regular.

4. STRONG REGULARITY OF SMASH PRODUCTS

The next result relates regularity and strong regularity of smash products.

THEOREM 4.1. Let $R = \bigoplus_{\sigma \in G} R_{\sigma}$ be a G-graded ring and let A be a finite left G-set. Then the following are equivalent:

- (1) R#A is a strongly regular ring.
- (2) For every $x, y \in A$, R(x) is a strongly R(y)-regular module.
- (3) R#A is a regular ring and, for every $x \in A$, the ring R_{G_x} is abelian.

Proof. $(1) \Longrightarrow (2)$ Using the ring isomorphism

$$(R \# A)^{\operatorname{op}} \cong \operatorname{End}_{(G,A,R)-qr}(V)$$

[7, Theorem 2.14], where $V = \bigoplus_{x \in A} R(x)$, we deduce that $\operatorname{End}_{(G,A,R)-gr}(V)$ is a strongly regular ring. Then V is a strongly self-regular module [3, Proposition 2.5], and thus R(x) is a strongly R(y)-regular module for every $x, y \in A$ by [3, Theorem 3.1].

 $(2) \Longrightarrow (1)$ By hypothesis and [3, Theorem 3.1], $V = \bigoplus_{x \in A} R(x)$ is a strongly R(y)-regular module for every $y \in A$. Again by [3, Theorem 3.1], it follows that V is strongly self-regular. Then $\operatorname{End}_{(G,A,R)-gr}(V)$ is a strongly regular ring by [3, Proposition 2.5], and thus R # A is a strongly regular ring by the ring isomorphism from the above implication.

 $(2) \Longrightarrow (3)$ Let $x, y \in A$. Since R(x) is an R(y)-regular module, R # A is a regular ring by [5, Theorem 4.7]. Since R(x) is a strongly self-regular module, $\operatorname{End}_{(G,A,R)-gr}(R(x))$ is a strongly regular ring by [3, Proposition 2.5], and thus it is abelian. By [5, Remark 4.6], there is a ring isomorphism $R_{G_x} \cong \operatorname{End}_{(G,A,R)-gr}(R(x))$. Hence the ring R_{G_x} is abelian.

(3) \Longrightarrow (2) Let $x, y \in A$. Then R(x) is an R(y)-regular module by [5, Theorem 4.7]. Using again the ring isomorphism $R_{G_x} \cong \operatorname{End}_{(G,A,R)-gr}(R(x))$, it follows that the ring $\operatorname{End}_{(G,A,R)-gr}(R(x))$ is abelian. Now R(x) is a strongly R(y)-regular module by Theorem 3.3.

For a group G and a left G-set A, denote by $\operatorname{Fix}_G(A)$ the union of all trivial G-orbits, that is,

$$\operatorname{Fix}_G(A) = \{ x \in A \mid \{ \sigma x \mid \sigma \in G \} = \{ x \} \}.$$

THEOREM 4.2. Let G be a group, let A be a finite left G-set and let $R = \bigoplus_{\sigma \in G} R_{\sigma}$ be a G-graded ring.

- (1) If R is a strongly regular ring, then so is R#A.
- (2) If R#A is a strongly regular ring, then so is R_{G_x} for every $x \in A$.
- (3) If $\operatorname{Fix}_G(A) \neq \emptyset$ and R # A is a strongly regular ring, then so is R.
- (4) If G is a p-group, (|A|, p) = 1 and R # A is a strongly regular ring, then so is R.

Proof. (1) If R is a strongly regular ring, then R#A is a regular ring by [5, Corollary 4.8]. Also, since R is abelian, so is its subring R_{G_x} for every $x \in A$. Then R#A is a strongly regular ring by Theorem 4.1.

(2) Let $x \in A$. If R # A is a strongly regular ring, then the ring R_{G_x} is regular by [5, Theorem 4.7] and abelian by Theorem 4.1. Hence R_{G_x} is a strongly regular ring.

(3) If $a \in \operatorname{Fix}_G(A)$, then $\{a\}$ is a left *G*-set and the inclusion $i : \{a\} \to A$ is a morphism of *G*-sets. But the induced morphism $R\#i : R\#A \to R\#\{a\} \cong R$ is an epimorphism by [5, Corollary 3.3]. Since the ring R#A is strongly regular, clearly so is its homomorphic image R.

(4) If G is a p-group, (|A|, p) = 1, then $\operatorname{Fix}_G(A) \neq \emptyset$ [5, Remark 2.4]. Hence R is a strongly regular ring by (3).

THEOREM 4.3. Let $R = \bigoplus_{\sigma \in G} R_{\sigma}$ be a *G*-graded ring, and let *A*, *B* be finite left *G*-sets. If either R#A or R#B is a strongly regular ring, then so is $(R#A)#B \cong R#(A \times B)$.

Proof. We assume that R#A is a strongly regular ring. Then $R#(A \times B)$ is a regular ring by [5, Proposition 4.11]. For every $(x, y) \in A \times B$, $R_{G_{(x,y)}}$ is a strongly regular ring by Theorem 4.2 (2), and so it is abelian. Then $R#(A \times B)$ is a regular ring by Theorem 4.1. For the isomorphism, see [5, Corollary 3.2].

5. SOME APPLICATIONS TO SUBGROUPS

PROPOSITION 5.1. Let H be a subgroup of finite index of a group G and let $R = \bigoplus_{\sigma \in G} R_{\sigma}$ be a G-graded ring. If R # G/H is a strongly regular ring, then so is $R_{\sigma H \sigma^{-1}}$ for every $\sigma \in G$.

Proof. As noted in [5, p. 52], if H is a subgroup of a group G, then $G/H = \{\sigma H \mid \sigma \in G\}$ is a left G-set, where the G-action is defined by $\tau(\sigma H) = \tau \sigma H$ for every $\tau, \sigma \in G$. Also, the stabilizer of the element $\sigma H \in G/H$ is $G_{\sigma H} = \sigma H \sigma^{-1}$. Now use Theorem 4.2 (2).

PROPOSITION 5.2. Let H be a subgroup of a group G and let $R = \bigoplus_{\sigma \in G} R_{\sigma}$ be a G-graded ring.

- (1) If R is a strongly regular ring, then so is R_H .
- (2) If A is a finite left G-set and R#A is a strongly regular ring, then so is $R_H#A$.

Proof. (1) If R is a strongly regular ring, then R_H is a regular ring [5, Lemma 4.1]. Also, since R is abelian, so is its subring R_H . Hence R_H is a strongly regular ring.

(2) Note that
$$R_H \# A = (R \# A)_H$$
 and use (1).

Let R be a ring with automorphism group $\operatorname{Aut}(R)$, and let G be a finite group that acts as automorphisms on R, in the sense that there exists a group morphism $\psi: G \to \operatorname{Aut}(R)$. We denote by

$$R^G = \{r \in R \mid \psi(g)(r) = r \text{ for every } g \in G\}$$

the fixed subring of R under G.

LEMMA 5.3. Let G be a finite group and let R be a ring such that G acts as automorphisms on R and $|G|^{-1} \in R$. If R is a strongly regular ring, then so is R^G .

Proof. If the ring R is strongly regular, then the ring R^G is regular by [5, Lemma 4.16]. But R is also abelian, which implies that so is its subring R^G . Hence the ring R^G is strongly regular.

PROPOSITION 5.4. Let G be a finite group, let R be a G-graded ring and let H be a subgroup of G such that $|H|^{-1} \in \mathbb{R}$. If R # G is a strongly regular ring, then so is R # G/H.

Proof. This follows by using the isomorphism $(R#G)^H \cong R#G/H$ [5, p. 56] and Lemma 5.3.

REFERENCES

- R.F. Arens and I. Kaplansky, *Topological representations of algebras*, Trans. Amer. Math. Soc., 63 (1948), 457–481.
- [2] S. Crivei and A. Kör, Rickart and dual Rickart objects in abelian categories, Appl. Categor. Struct., 24 (2016), 797–824.

302	G. Olteanu		6
		4 7.	

- [3] S. Crivei and G. Olteanu, Strongly Rickart objects in abelian categories. Applications to strongly regular and strongly Baer objects, Comm. Algebra, 46 (2018), 4426-4447.
- [4] S. Dăscălescu, C. Năstăsescu, A. Tudorache and L. Dăuş, Relative regular objects in categories, Appl. Categ. Struct., 14 (2006), 567-577.
- [5] L. Dăuş, C. Năstăsescu and M. Năstăsescu, Von Neumann regularity of smash products associated with G-set gradings, J. Algebra, 331 (2011), 46–57.
- [6] G. Lee, S.T. Rizvi and C. Roman, Modules whose endomorphism rings are von Neumann regular, Comm. Algebra, 41 (2013), 4066–4088.
- [7] C. Năstăsescu, Ş. Raianu and F. Van Oystaeyen, Modules graded by G-sets, Math. Z., **203** (1990), 605–627.
- [8] G. Olteanu, Strongly relative regular modules and excellent extensions of rings, Mathematica, **59 (82)** (2017), 76-80.

[9] J. von Neumann, On regular rings, Proc. Natl. Acad. Sci. USA, 22 (1936), 707-712.

Received February 8, 2020	Babeş-Bolyai University
Accepted June 10, 2020	Department of Statistics-Forecasts-Mathematics
	Str. T. Mihali 58-60
	400591 Cluj-Napoca, Romania
	<i>E-mail:</i> gabriela.olteanu@econ.ubbcluj.ro