WELL-POSEDNESS AND GENERAL ENERGY DECAY OF SOLUTIONS FOR A PETROVSKY EQUATION WITH A NONLINEAR STRONG DISSIPATION

TAYEB LAKROUMBE, MAMA ABDELLI, NAIMA LOUHIBI, and MOUNIR BAHLIL

Abstract

In this paper we consider a nonlinear Petrovsky equation in a bounded domain with a strong dissipation $$
u^{\prime \prime}+\Delta^{2} u-g\left(\Delta u^{\prime}\right)=0 .
$$ and prove the existence and the uniqueness of the solution using the energy method combined with the Faedo-Galerkin procedure under certain assumptions for g. Furthermore, we study the asymptotic behaviour of the solutions using a perturbed energy method. MSC 2010. 35B40, 35B45, 35L70. Key words. Well-posedness, general decay, multiplier method, convexity, Petrovsky equation.

1. INTRODUCTION

In this article, we consider the initial-boundary value problem for the nonlinear Petrovsky equation

$$
\left\{\begin{array}{lr}
u^{\prime \prime}+\Delta^{2} u-g\left(\Delta u^{\prime}\right)=0, & x \in \Omega \times[0,+\infty[, \tag{1}\\
u(0, t)=\Delta u(0, t)=0, & x \in \Gamma \times[0, \infty[, \\
u(x, 0)=u_{0}(x),, u_{t}(x, 0)=u_{1}(x) & x \in \Omega \times[0,+\infty[
\end{array}\right.
$$

where Ω is a bounded domain in \mathbb{R}^{n}, Γ is a smooth boundary, $\left(u_{0}, u_{1}\right)$ are the initial data in a suitable function space and g is real function satisfying some conditions to be specied later. In [6], Guesmia considered the following problem

$$
\left\{\begin{array}{lr}
u^{\prime \prime}+\Delta^{2} u+q(x) u(x, t)+g\left(u^{\prime}(x, t)\right)=0 & x \in \Omega \times(0,+\infty) \tag{2}\\
u(0, t)=\partial_{\nu} u=0 \text { in } & x \in \Gamma \times(0,+\infty) \\
u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=u_{1}(x), & x \in \Omega
\end{array}\right.
$$

where g is continuous, increasing, satisfying $g(0)=0$ and $q: \Omega \rightarrow \mathbb{R}_{+}$is a bounded under suitable growth conditions on g, decay results for weak,

The authors thank the referee for his helpful comments and suggestions.
DOI: 10.24193/mathcluj.2021.2.13
as well as strong, solutions. Precisely, he showed that the solution decays exponentially if g behaves like a linear function, whereas the decay is of a polynomial order otherwise. Also the system composed of the equation (2), with $u^{\prime}\left|u^{\prime}\right|^{m-2}-u|u|^{p-2}$ in the place of $q(x) u(x, t)+g\left(u^{\prime}(x, t)\right)$ has been treated by Messaoudi [9], he established an existence result and showed that the solution continues to exist globally if $m \geq p$, however, it blows up in finite time if $m<p$. Moreover, Komornik [4] treated the problem (1) for g having a polynomial growth near the origin, used semigroup to prove the existence and uniqueness of solutions and established energy decay results depending on g.

In this paper, we prove the global existence of weak solutions of the problem (1) by using the Galerkin method (see Lions [12]) we use some technique from [10] to establish an explicit and general decay result, depending on g. The proof is based on the multiplier method and makes use of some properties of convex functions, the general Young inequality and Jensen's inequality. These convexity arguments were introduced and developed by Lasiecka and co-workers ([8],[11]) and used, with appropriate modifications, by Liu and Zuazua [13], Alabau-Boussouira [2] and others.

The paper is organized as follows. In section 2 we present some assumptions and technical lemmas. In section 3 we prove the existence and the uniqueness of a global solution. In section 4 we prove the energy estimates.

2. NOTATION AND PRELIMINARIES

We begin by introducing some notation that will be used throughout this work.
Let us introduce three real Hilbert spaces \mathcal{H}, V and W by setting

$$
\mathcal{H}=H_{0}^{1}(\Omega), \quad\|v\|_{\mathcal{H}}^{2}=\int_{\Omega}|\nabla v|^{2} \mathrm{~d} x
$$

and

$$
\begin{gathered}
V=\left\{v \in H^{3}(\Omega) \mid v=\Delta v=0 \text { on } \Gamma\right\}, \quad\|v\|_{V}^{2}=\int_{\Omega}|\nabla \Delta v|^{2} \mathrm{~d} x \\
W=\left\{v \in H^{5}(\Omega) \mid v=\Delta v=\Delta^{2} v=0 \text { on } \Gamma\right\}, \quad\|v\|_{W}^{2}=\int_{\Omega}\left|\nabla \Delta^{2} v\right|^{2} \mathrm{~d} x
\end{gathered}
$$

Identifying H with its dual H^{\prime} we have

$$
W \subset V \subset \mathcal{H} \subset V^{\prime} \subset W^{\prime}
$$

with dense and compact imbedings. If $v \in L^{2}(\Omega)$, we denote $\|v\|_{L^{2}(\Omega)}^{2}=\|v\|^{2}$. We impose the following assumptions on $g: g: \mathbb{R} \rightarrow \mathbb{R}$ is a non-decreasing continuous function such that there exist constants $\varepsilon, c_{1}, c_{2}, \tau>0$ and a convex increasing function $G: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$of class $C^{1}\left(\mathbb{R}_{+}\right) \cap C^{2}\left(\mathbb{R}_{+}^{*}\right)$ satisfying G linear on $[0, \varepsilon]$ or $\left(G^{\prime}(0)=0\right.$ and $G^{\prime \prime}>0$ on $\left.] 0, \varepsilon\right]$, such that

$$
\begin{gather*}
c_{1}|s| \leqslant|g(s)| \leqslant c_{2}|s|, \text { if }|s|>\varepsilon \tag{3}\\
|s|^{2}+|g(s)|^{2} \leqslant G^{-1}(s g(s)), \text { if }|s| \leqslant \varepsilon \tag{4}
\end{gather*}
$$

$$
\begin{equation*}
\left|g^{\prime}(s)\right| \leq \tau \tag{5}
\end{equation*}
$$

Lemma 2.1. For all $u \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$, we have

$$
\begin{equation*}
\|\nabla u\| \leqslant c\|\Delta u\|_{H^{-1}(\Omega)} \leqslant c\|\Delta u\| \tag{6}
\end{equation*}
$$

where $H^{-1}(\Omega)=\left(H_{0}^{1}(\Omega)\right)^{\prime}$.
REmark 2.2. Let us denote by ϕ^{*} the conjugate function of the differentiable convex function ϕ, i.e.,

$$
\phi^{*}(s)=\sup _{t \in \mathbb{R}_{+}}(s t-\phi(t))
$$

Then ϕ^{*} is the Legendre transform of ϕ, which is given by (see Arnold [3, p. 61-62])

$$
\left.\left.\phi^{*}(s)=s\left(\phi^{\prime}\right)^{-1}(s)-\phi\left(\left(\phi^{\prime}\right)^{-1}(s)\right), \text { if } s \in\right] 0, \phi^{\prime}(r)\right]
$$

and ϕ^{*} satisfies the generalized Young inequality

$$
\begin{equation*}
\left.\left.\left.\left.S T \leq \phi^{*}(S)+\phi(T), \text { if } S \in\right] 0, \phi^{\prime}(r)\right], T \in\right] 0, r\right] \tag{7}
\end{equation*}
$$

3. WELL POSEDENESS AND REGULARITY

Theorem 3.1. Assume that $\left(u_{0}, u_{1}\right) \in W \times V$. Then the solution of the problem (1) satisfies $u^{\prime} \in L^{\infty}(0, T ; V), u^{\prime \prime} \in L^{\infty}(0, T ; \mathcal{H}), u \in L^{\infty}\left(0, T ; H^{4}(\Omega) \cap V\right)$, such that for any $T>0$

$$
\begin{gathered}
u^{\prime \prime}(x, t)+\Delta^{2} u(x, t)-g\left(\Delta u^{\prime}(x, t)\right)=0, \quad \text { in } \quad L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \\
u(0)=u_{0}, \quad u^{\prime}(0)=u_{1}, \quad \text { in } \Omega
\end{gathered}
$$

Proof. Step 1. Approximate solutions

We will use the Faedo-Galerkin method to prove the existence of a global solution. Let $T>0$ be fixed and let $\left\{w_{j}\right\}, j \in \mathbb{N}$ be a basis of \mathcal{H}, V and W, i.e. the space generated by $\mathcal{B}_{k}=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ is dense in \mathcal{H}, V and W. We construct approximate solutions $u_{k}, k=1,2,3, \ldots$, in the form

$$
u_{k}(t)=\sum_{j=1}^{k} c_{j k}(t) w_{j}(x)
$$

where $c_{j k}$ is determined by the ordinary differential equations.
For any v in $\mathcal{B}_{k}, u_{k}(t)$ satisfies the approximate equation

$$
\begin{equation*}
\int_{\Omega}\left(u_{k}^{\prime \prime}(t)+\Delta^{2} u_{k}-g\left(\Delta u_{k}^{\prime}\right)\right) v \mathrm{~d} x=0 \tag{8}
\end{equation*}
$$

with initial conditions

$$
\begin{equation*}
u_{k}(0)=u_{k}^{0}=\sum_{j=1}^{k}\left\langle u_{0}, w_{j}\right\rangle w_{j} \rightarrow u_{0}, \quad \text { in } W \text { as } k \rightarrow+\infty \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{k}^{\prime}(0)=u_{k}^{1}=\sum_{j=1}^{k}\left\langle u_{1}, w_{j}\right\rangle w_{j} \rightarrow u_{1}, \quad \text { in } V \text { as } k \rightarrow+\infty . \tag{10}
\end{equation*}
$$

The standard theory of ODE guarantees that the system (8)-(10) has an unique solution in $\left[0, t_{k}\right)$, with $0<t_{k}<T$, by Zorn lemma since the nonlinear terms in (8) are locally Lipschitz continuous.

Note that $u_{k}(t)$ is of class \mathcal{C}^{2}.
In the next step, we obtain a priori estimates for the solution of the system (8)-(10), so that it can be extended outside $\left[0, t_{k}\right)$ to obtain one solution defined for all $T>0$, using a standard compactness argument for the limiting procedure.

Step 2. The first estimate

Setting $v=-2 \Delta u_{k}^{\prime}$ in (8), we have

$$
\frac{d}{\mathrm{~d} t}\left[\left\|\nabla u_{k}^{\prime}\right\|^{2}+\left\|\nabla \Delta u_{k}\right\|^{2}\right]+2 \int_{\Omega} \Delta u_{k}^{\prime} g\left(\Delta u_{k}^{\prime}\right) \mathrm{d} x=0 .
$$

Integrating in $[0, t], t<t_{k}$ and using (9) and (10), we obtain

$$
\begin{align*}
\left\|\nabla u_{k}^{\prime}(t)\right\|^{2} & +\left\|\nabla \Delta u_{k}(t)\right\|^{2}+2 \int_{0}^{t} \int_{\Omega} \Delta u_{k}^{\prime}(s) g\left(\Delta u_{k}^{\prime}(s)\right) \mathrm{d} x \mathrm{~d} s \tag{11}\\
& \leq c\left(\left\|\nabla u_{k}^{1}\right\|^{2}+\left\|\nabla \Delta u_{k}^{0}\right\|^{2}\right) \leq C_{1}
\end{align*}
$$

and C_{1} is a positive constant depending only on $\left\|u_{1}\right\|_{V}$ and $\left\|u_{0}\right\|_{W}$.
This estimate implies that the solution u_{k} exists globally in $[0,+\infty)$. Estimate (42) yields that

$$
\begin{gather*}
u_{k} \text { is bounded in } L^{\infty}(0, T ; V), \tag{12}\\
u_{k}^{\prime} \text { is bounded in } L^{\infty}(0, T ; \mathcal{H}), \tag{13}\\
\Delta u_{k}^{\prime} g\left(\Delta u_{k}^{\prime}\right) \text { is bounded in } L^{1}(\Omega \times(0, T)) . \tag{14}
\end{gather*}
$$

From (3), (4) and (14), it follows that

$$
\begin{equation*}
g\left(\Delta u_{k}^{\prime}\right) \text { is bounded in } L^{2}(\Omega \times(0, T)) . \tag{15}
\end{equation*}
$$

Step 3. The second estimate

First, we estimate $u_{k}^{\prime \prime}(0)$. Differentiating (8) with respect to x, taking $v=$ $\nabla u_{k}^{\prime \prime}(t)$ and choosing $t=0$, we obtain that

$$
\left\|\nabla u_{k}^{\prime \prime}(0)\right\|^{2}+\left(\nabla u_{k}^{\prime \prime}(0), \nabla \Delta^{2} u_{k}^{0}-\nabla\left(g\left(\Delta u_{k}^{1}\right)\right)\right)=0 .
$$

Using Cauchy-Schwarz inequality and (5), we have

$$
\begin{align*}
\left\|\nabla u_{k}^{\prime \prime}(0)\right\| & \leq\left\|\nabla \Delta^{2} u_{k}^{0}\right\|+\left\|\nabla \Delta u_{k}^{1} g^{\prime}\left(\Delta u_{k}^{1}\right)\right\| \tag{16}\\
& \leq\left\|\nabla \Delta^{2} u_{k}^{0}\right\|+\tau\left\|\nabla \Delta u_{k}^{1}\right\| .
\end{align*}
$$

By (9) and (10) yields

$$
\begin{equation*}
u_{k}^{\prime \prime}(0) \text { is bounded in } \mathcal{H} . \tag{17}
\end{equation*}
$$

Step 4. The third estimate

Differentiating (8) with respect to t get

$$
\int_{\Omega}\left(u_{k}^{\prime \prime \prime}(t)+\Delta^{2} u_{k}^{\prime}\right) v \mathrm{~d} x-\int_{\Omega} \Delta u_{k}^{\prime \prime} g^{\prime}\left(\Delta u_{k}^{\prime}\right) v \mathrm{~d} x=0 .
$$

Taking $v=2 \Delta u_{k}^{\prime \prime}$, applying the Green formula, we obtain

$$
\frac{d}{\mathrm{~d} t}\left[\left\|\nabla u_{k}^{\prime \prime}\right\|^{2}+\left\|\nabla \Delta u_{k}^{\prime}\right\|^{2}\right]+2 \int_{\Omega}\left(\Delta u_{k}^{\prime \prime}\right)^{2} g^{\prime}\left(\Delta u_{k}^{\prime}\right) \mathrm{d} x=0 .
$$

By integrating it over $(0, t)$, we get

$$
\begin{align*}
\left\|\nabla u_{k}^{\prime \prime}(t)\right\|^{2}+\left\|\nabla \Delta u_{k}^{\prime}(t)\right\|^{2} & +2 \int_{0}^{t} \int_{\Omega}\left(\Delta u_{k}^{\prime \prime}(s)\right)^{2} g^{\prime}\left(\Delta u_{k}^{\prime}(s) \mathrm{d} x \mathrm{~d} s\right. \tag{18}\\
& =\left\|\nabla u_{k}^{\prime \prime}(0)\right\|^{2}+\left\|\nabla \Delta u_{k}^{1}\right\|^{2} .
\end{align*}
$$

By (9) and (17), we deduce that

$$
\begin{equation*}
u_{k}^{\prime} \text { is bounded in } L^{\infty}(0, T ; V) \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{k}^{\prime \prime} \text { is bounded in } L^{\infty}(0, T ; \mathcal{H}) \tag{20}
\end{equation*}
$$

By (19) we deduce that

$$
u_{k}^{\prime} \text { is bounded in } L^{2}(0, T ; V) .
$$

Applying Rellich compactenes theorem given in [12], we deduce that

$$
\begin{equation*}
u_{k}^{\prime} \text { is precompact in } L^{2}\left(0, T ; L^{2}(\Omega)\right) . \tag{21}
\end{equation*}
$$

Step 5. The fourth estimate

Setting $v=2 \Delta^{2} u_{k}^{\prime}$ in (8), we have

$$
2 \int_{\Omega} u_{k}^{\prime \prime} \Delta^{2} u_{k}^{\prime} \mathrm{d} x+\frac{d}{\mathrm{~d} t}\left[\left\|\Delta^{2} u_{k}\right\|^{2}\right]-2 \int_{\Omega} g\left(\Delta u_{k}^{\prime}\right) \cdot \Delta^{2} u_{k}^{\prime} \mathrm{d} x=0 .
$$

Therefore by using the Green's formula, we have

$$
\begin{aligned}
\frac{d}{\mathrm{~d} t}\left[\left\|\Delta^{2} u_{k}\right\|^{2}\right] & =-2 \int_{\Omega} \Delta u_{k}^{\prime \prime} \Delta u_{k}^{\prime} \mathrm{d} x-2 \int_{\Omega} g^{\prime}\left(\Delta u_{k}^{\prime}\right) \cdot\left(\nabla \Delta u_{k}^{\prime}\right)^{2} \mathrm{~d} x \\
& =-\frac{d}{\mathrm{~d} t}\left[\left\|\Delta u_{k}^{\prime}\right\|^{2}\right]-2 \int_{\Omega} g^{\prime}\left(\Delta u_{k}^{\prime}\right) \cdot\left(\nabla \Delta u_{k}^{\prime}\right)^{2} \mathrm{~d} x .
\end{aligned}
$$

Integrating it over $(0, t)$ we arrive at

$$
\begin{array}{rl}
\left\|\Delta^{2} u_{k}(t)\right\|^{2}+\left\|\Delta u_{k}^{\prime}(t)\right\|^{2}+2 \int_{0}^{t} \int_{\Omega} g^{\prime}\left(\Delta u_{k}^{\prime}\right) \cdot\left(\nabla \Delta u_{k}^{\prime}\right)^{2} & \mathrm{~d} x \mathrm{~d} s \\
& =\left\|\Delta^{2} u_{k}^{0}\right\|^{2}+\left\|\Delta u_{k}^{1}\right\|^{2}
\end{array}
$$

By using (5), (9) and (10), we deduce that

$$
\left\|\Delta^{2} u_{k}(t)\right\|^{2}+\left\|\Delta u_{k}^{\prime}(t)\right\|^{2}+2 \tau \int_{0}^{t} \int_{\Omega}\left(\nabla \Delta u_{k}^{\prime}\right)^{2} \mathrm{~d} x \mathrm{~d} s \leq\left\|\Delta^{2} u_{0}\right\|^{2}+\left\|\Delta u_{1}\right\|^{2}
$$

then

$$
\begin{equation*}
\Delta^{2} u_{k} \text { is bounded in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right) . \tag{22}
\end{equation*}
$$

Step 6. Passage to the limit.

Applying Dunford-Petit theorem we conclude from (12), (15), (19) and (20), replacing the sequence u_{k}, with a subsequence if needed, that

$$
\begin{gather*}
u_{k} \rightharpoonup u, \text { weak-star in } L^{\infty}\left(0, T ; V \cap H^{4}(\Omega)\right) \tag{23}\\
u_{k}^{\prime} \rightharpoonup u^{\prime}, \text { weak-star in } L^{\infty}(0, T ; V) \tag{24}\\
u_{k}^{\prime \prime} \rightharpoonup u^{\prime \prime}, \text { weak-star in } L^{\infty}(0, T ; \mathcal{H}) \tag{25}\\
u_{k}^{\prime} \rightarrow u^{\prime}, \text { almost everywhere in } \mathcal{A}, \tag{26}\\
g\left(\Delta u_{k}^{\prime}\right) \rightharpoonup \phi, \text { weak-star in } L^{2}(\mathcal{A}) \tag{27}
\end{gather*}
$$

where $\mathcal{A}=\Omega \times[0, T]$. It follows at once from (23) and (25) that for each fixed $v \in L^{2}\left([0, T] \times L^{2}(\Omega)\right)$

$$
\begin{align*}
& \int_{0}^{T} \int_{\Omega}\left(u_{k}^{\prime \prime}(x, t)+\Delta^{2} u_{k}(x, t)\right) v \mathrm{~d} x \mathrm{~d} t \tag{28}\\
& \rightarrow \int_{0}^{T} \int_{\Omega}\left(u^{\prime \prime}(x, t)+\Delta^{2} u(x, t)\right) v \mathrm{~d} x \mathrm{~d} t
\end{align*}
$$

As $\left(u_{k}^{\prime}\right)$ is bounded in $L^{\infty}(0, T ; V)$ and the injection of V in \mathcal{H} is compact, we have

$$
\begin{equation*}
u_{k}^{\prime} \rightarrow u^{\prime}, \text { strong in } L^{2}(\mathcal{A}) \tag{29}
\end{equation*}
$$

It remains to show that

$$
\int_{0}^{T} \int_{\Omega} g\left(\Delta u_{k}^{\prime}\right) v \mathrm{~d} x \mathrm{~d} t \rightarrow \int_{0}^{T} \int_{\Omega} g\left(\Delta u^{\prime}\right) v \mathrm{~d} x \mathrm{~d} t
$$

Lemma 3.2. For each $T>0, g\left(\Delta u^{\prime}\right) \in L^{1}(\mathcal{A}),\left\|g\left(\Delta u^{\prime}\right)\right\|_{L^{1}(\mathcal{A})} \leq K$, where K is a constant independent of t and $g\left(\Delta u_{k}^{\prime}\right) \rightarrow g\left(\Delta u^{\prime}\right)$ in $L^{1}(\mathcal{A})$.

Proof. We claim that

$$
g\left(\Delta u^{\prime}\right) \in L^{1}(\mathcal{A})
$$

Indeed, since g is continuous, we deduce from (26)

$$
\begin{align*}
g\left(\Delta u_{k}^{\prime}\right) & \rightarrow g\left(\Delta u^{\prime}\right) \quad \text { almost everywhere in } \mathcal{A} . \tag{30}\\
\Delta u_{k}^{\prime} g\left(\Delta u_{k}^{\prime}\right) & \rightarrow \Delta u^{\prime} g\left(\Delta u^{\prime}\right) \quad \text { almost everywhere in } \mathcal{A} .
\end{align*}
$$

Hence, by (14) and Fatou's Lemma, we have

$$
\begin{equation*}
\int_{0}^{T} \int_{\Omega} \Delta u^{\prime}(x, t) g\left(\Delta u^{\prime}(x, t)\right) \mathrm{d} x \mathrm{~d} t \leq K_{1}, \quad \text { for } T>0 \tag{31}
\end{equation*}
$$

Now, we can estimate $\int_{0}^{T} \int_{\Omega}\left|\Delta g\left(u^{\prime}(x, t)\right)\right| \mathrm{d} x \mathrm{~d} t$. By Cauchy-Schwarz inequality, we have

$$
\int_{0}^{T} \int_{\Omega}\left|\Delta g\left(u^{\prime}(x, t)\right)\right| \mathrm{d} x \mathrm{~d} t \leq c|\mathcal{A}|^{1 / 2}\left(\int_{0}^{T} \int_{\Omega}\left|\Delta g\left(u^{\prime}(x, t)\right)\right|^{2} \mathrm{~d} x \mathrm{~d} t\right)^{1 / 2}
$$

Using (3), (4) and (31), we obtain

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Omega}\left|\Delta g\left(u^{\prime}(x, t)\right)\right|^{2} \mathrm{~d} x \mathrm{~d} t \\
& \leq \int_{0}^{T} \int_{\left|\Delta u^{\prime}\right|>\varepsilon} \Delta u^{\prime} g\left(\Delta u^{\prime}\right) \mathrm{d} x \mathrm{~d} t+\int_{0}^{T} \int_{\left|\Delta u^{\prime}\right| \leq \varepsilon} G^{-1}\left(\Delta u^{\prime} g\left(\Delta u^{\prime}\right)\right) \mathrm{d} x \mathrm{~d} t \\
& \leq c \int_{0}^{T} \int_{\Omega} \Delta u^{\prime} g\left(\Delta u^{\prime}\right) \mathrm{d} x \mathrm{~d} t+c G^{-1}\left(\int_{\mathcal{A}} \Delta u^{\prime} g\left(\Delta u^{\prime}\right) \mathrm{d} x \mathrm{~d} t\right) \\
& \leq c \int_{0}^{T} \int_{\Omega} \Delta u^{\prime} g\left(\Delta u^{\prime}\right) \mathrm{d} x \mathrm{~d} t+c^{\prime} G^{*}(1)+c^{\prime \prime} \int_{\Omega} \Delta u^{\prime} g\left(\Delta u^{\prime}\right) \mathrm{d} x \mathrm{~d} t \\
& \leq c K_{1}+c^{\prime} G^{*}(1), \text { for } T>0
\end{aligned}
$$

Then $\int_{0}^{T} \int_{\mathcal{A}}\left|\Delta g\left(u^{\prime}(x, t)\right)\right| \mathrm{d} x d \leq K$, for $T>0$.
Let $E \subset \Omega \times[0, T]$ and set $E_{1}=\left\{(x, t) \in E:\left|g\left(\Delta u_{k}^{\prime}(x, t)\right)\right| \leq \frac{1}{\sqrt{|E|}}\right\}, E_{2}=$ $E \backslash E_{1}$, where $|E|$ is the measure of E. If $M(r)=\inf \{|s|: s \in \mathbb{R}$ and $|g(s)| \geq$ $r\}$, then

$$
\int_{E}\left|g\left(\Delta u_{k}^{\prime}\right)\right| \mathrm{d} x \mathrm{~d} t \leq c \sqrt{|E|}+\left(M\left(\frac{1}{\sqrt{|E|}}\right)\right)^{-1} \int_{E_{2}}\left|\Delta u_{k}^{\prime} g\left(\Delta u_{k}^{\prime}\right)\right| \mathrm{d} x \mathrm{~d} t
$$

By applying (14) we deduce that

$$
\sup _{k} \int_{E} g\left(\Delta u_{k}^{\prime}\right) \mathrm{d} x \mathrm{~d} t \rightarrow 0, \text { when }|E| \rightarrow 0
$$

From Vitali's convergence theorem we deduce that

$$
g\left(\Delta u_{k}^{\prime}\right) \rightarrow g\left(\Delta u^{\prime}\right) \quad \text { in } L^{1}(\mathcal{A})
$$

This completes the proof.

Then (27) implies that

$$
g\left(\Delta u_{k}^{\prime}\right) \rightharpoonup g\left(\Delta u^{\prime}\right), \text { weak-star in } L^{2}([0, T] \times \Omega)
$$

We deduce, for all $v \in L^{2}\left([0, T] \times L^{2}(\Omega)\right.$, that

$$
\int_{0}^{T} \int_{\Omega} g\left(\Delta u_{k}^{\prime}\right) v \mathrm{~d} x \mathrm{~d} t \rightarrow \int_{0}^{T} \int_{\Omega} g\left(\Delta u^{\prime}\right) v \mathrm{~d} x \mathrm{~d} t
$$

Finally we have shown that, for all $v \in L^{2}\left([0, T] \times L^{2}(\Omega)\right)$:

$$
\int_{0}^{T} \int_{\Omega}\left(u^{\prime \prime}(x, t)+\Delta^{2} u(x, t)-g\left(\Delta u^{\prime}\right)\right) v \mathrm{~d} x \mathrm{~d} t=0
$$

Therefore, u is a solution for problem (1).

Step 7. Proof of uniqueness

Let u_{1}, u_{2} be two solutions of (1) with the same initial data. It is straightforward to see that $z=u_{1}-u_{2}$ satisfies

$$
\left\|\nabla z^{\prime}\right\|^{2}+\|\nabla \Delta z\|^{2}+2 \int_{0}^{t} \int_{\Omega} \Delta z^{\prime}(s) g\left(\Delta z^{\prime}(s)\right) \mathrm{d} x \mathrm{~d} s=0
$$

Using the monotonicity of g, we conclude that

$$
\left\|\nabla z^{\prime}\right\|^{2}+\|\nabla \Delta z\|^{2} \leq 0
$$

which implies $z=0$. This finishes the proof of Theorem 3.1.

4. ASYMPTOTIC BEHAVIOR

Now we define the energy associated with the solution of the problem (1) by the following formula

$$
E(t)=\frac{1}{2}\left\|\nabla u^{\prime}\right\|^{2}+\frac{1}{2}\|\nabla \Delta u\|^{2} .
$$

Lemma 4.1. Let u be a solution to the problem (1). Then $E(t)$ is a nonincreasing function for all $t \in \mathbb{R}_{+}$.

Proof. Multiplying the first equation in (1) by $-\Delta u^{\prime}$ and integrating over Ω, we get

$$
\begin{gather*}
\frac{d}{\mathrm{~d} t}\left(\frac{1}{2}\left\|\nabla u^{\prime}\right\|^{2}+\frac{1}{2}\|\nabla \Delta u\|^{2}\right)=-\int_{\Omega} \Delta u^{\prime} g\left(\Delta u^{\prime}\right) \mathrm{d} x \\
E^{\prime}(t)=-\int_{\Omega} \Delta u^{\prime} g\left(\Delta u^{\prime}\right) \mathrm{d} x \leq 0 \tag{32}
\end{gather*}
$$

Lemma 4.2. We define the following functional F by

$$
\begin{equation*}
F(t)=M E(t)-\int_{\Omega} \Delta u u^{\prime} \mathrm{d} x \tag{33}
\end{equation*}
$$

where $M>0$ will be determined later. Then there exist positive constants λ_{1}, λ_{2} such that

$$
\begin{equation*}
\lambda_{1} E(t) \leq F(t) \leq \lambda_{2} E(t), \quad \forall t \in \mathbb{R}_{+} \tag{34}
\end{equation*}
$$

Proof. Using the obvious estimates

$$
\begin{equation*}
\left\|u^{\prime}\right\| \leq c_{3}\left\|\nabla u^{\prime}\right\| \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\Delta u\| \leq c_{4}\|\nabla \Delta u\| \tag{36}
\end{equation*}
$$

by Cauchy-Schwarz's inequality, we obtain

$$
-\int_{\Omega} \Delta u \cdot u^{\prime} \mathrm{d} x \leq \frac{c_{3}^{2}}{2}\|\nabla \Delta u\|^{2}+\frac{c_{4}^{2}}{2}\left\|\nabla u^{\prime}\right\|^{2} \leq \max \left(c_{3}^{2}, c_{4}^{2}\right) E(t)
$$

hence

$$
\left(M-\max \left(c_{3}^{2}, c_{4}^{2}\right)\right) E(t) \leq F(t) \leq\left(M+\max \left(c_{3}^{2}, c_{4}^{2}\right)\right) E(t)
$$

choosing $M>\max \left(c_{3}^{2}, c_{4}^{2}\right)$, and we obtain (34), where $\lambda_{1}=M-\max \left(c_{3}^{2}, c_{4}^{2}\right)$ and $\lambda_{2}=M+\max \left(c_{3}^{2}, c_{4}^{2}\right)$.

Lemma 4.3. We define the following functional L by

$$
\begin{equation*}
L(t)=F(t)+\lambda E(t) \tag{37}
\end{equation*}
$$

where λ will be chosen later. Then there exist positive constants μ_{1}, μ_{2} such that

$$
\begin{equation*}
\mu_{1} E(t) \leq L(t) \leq \mu_{2} E(t), \quad \forall t \in \mathbb{R}_{+} \tag{38}
\end{equation*}
$$

It is easy to see (38) holds, from Lemma 4.2 with $\mu_{1}=\lambda_{1}+\lambda$ and $\mu_{2}=\lambda_{2}+\lambda$.
Theorem 4.4. Assume that (3) and (4) hold. Then there exist positive constants k_{1}, k_{2}, k_{3} and ε_{0} such that the solution of problem (1) satisfies

$$
\begin{equation*}
E(t) \leq k_{3} G_{1}^{-1}\left(k_{1} t+k_{2}\right), \quad \forall t \in \mathbb{R}_{+} \tag{39}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{1}(t)=\int_{t}^{1} \frac{1}{s G_{2}^{\prime}\left(\varepsilon_{0} s\right)} \mathrm{d} s, \quad G_{2}(t)=t G^{\prime}\left(\varepsilon_{0} t\right) \tag{40}
\end{equation*}
$$

Here G_{1} is strictly decreasing and convex on $\left.] 0,1\right]$, with $\lim _{t \rightarrow 0} G_{1}(t)=+\infty$.
Proof. Let $\varepsilon_{1} \in(0, \varepsilon)$, we define two sets such that

$$
\Omega_{1}=\left\{x \in \Omega:\left|\Delta u^{\prime}\right| \leq \varepsilon_{1}\right\}, \Omega_{2}=\left\{x \in \Omega:\left|\Delta u^{\prime}\right|>\varepsilon_{1}\right\}
$$

Differentiating (33) with respect to t, using (6), (32), and the first equation of the problem (1), we get

$$
\begin{align*}
F^{\prime}(t) & =M E^{\prime}(t)+\int_{\Omega}\left|\nabla u_{t}\right|^{2} \mathrm{~d} x-\int_{\Omega}|\nabla \Delta u|^{2} \mathrm{~d} x-\int_{\Omega} \Delta u g\left(\Delta u^{\prime}\right) \mathrm{d} x \\
& \leq-2 E(t)+\int_{\Omega}\left[2\left|\nabla u^{\prime}\right|^{2}+\left|\Delta u g\left(\Delta u^{\prime}\right)\right|\right] \mathrm{d} x \tag{41}\\
& \leq-2 E(t)+2 \int_{\Omega}\left[\left|\nabla u^{\prime}\right|^{2}+\left|\Delta u g\left(\Delta u^{\prime}\right)\right|\right] \mathrm{d} x \\
& \leq-2 E(t)+C \int_{\Omega}\left[\left|\Delta u^{\prime}\right|^{2}+\left|\Delta u g\left(\Delta u^{\prime}\right)\right|\right] \mathrm{d} x .
\end{align*}
$$

Using Young's inequality, (36), we obtain

$$
\begin{align*}
\int_{\Omega_{1}}\left|\Delta u g\left(\Delta u^{\prime}\right)\right| \mathrm{d} x & \leq c_{4} \delta\|\nabla \Delta u\|^{2}+C_{\delta} \int_{\Omega_{1}}\left|g\left(\Delta u^{\prime}\right)\right|^{2} \mathrm{~d} x \\
& \leq c \delta E(t)+C_{\delta} \int_{\Omega_{1}}\left|g\left(\Delta u^{\prime}\right)\right|^{2} \mathrm{~d} x \tag{42}
\end{align*}
$$

By Hölder's inequality and (36), we obtain

$$
\begin{aligned}
\int_{\Omega_{2}}\left|\Delta u g\left(\Delta u^{\prime}\right)\right| \mathrm{d} x & \leq\left(\int_{\Omega_{2}}|\Delta u|^{2} \mathrm{~d} x\right)^{\frac{1}{2}}\left(\int_{\Omega_{2}}\left|g\left(\Delta u^{\prime}\right)\right|^{2} \mathrm{~d} x\right)^{\frac{1}{2}} \\
& \leq c_{4}\|\nabla \Delta u\|\left(\int_{\Omega_{2}}\left|g\left(\Delta u^{\prime}\right)\right|^{2} \mathrm{~d} x\right)^{\frac{1}{2}}
\end{aligned}
$$

Then, we use Young's inequality and (3), for any $\delta>0$ and we have

$$
\begin{align*}
& \int_{\Omega_{2}}\left[\left|\Delta u^{\prime}\right|^{2}+\left|\Delta u g\left(\Delta u^{\prime}\right)\right|\right] \mathrm{d} x \\
& \leq \int_{\Omega_{2}}\left|\Delta u^{\prime} g\left(\Delta u^{\prime}\right)\right| \mathrm{d} x+c_{4}\|\nabla \Delta u\|\left(\int_{\Omega_{2}}\left|\Delta u^{\prime} g\left(\Delta u^{\prime}\right)\right| \mathrm{d} x\right)^{\frac{1}{2}} \tag{43}\\
& \leq-c E^{\prime}(t)+c_{4} E^{\frac{1}{2}}(t)\left(-E^{\prime}(t)\right)^{\frac{1}{2}} \\
& \leq-c E^{\prime}(t)+c_{4} \delta E(t)+C_{\delta}\left(-E^{\prime}(t)\right) \\
& \leq c_{4} \delta E(t)-C_{\delta} E^{\prime}(t)
\end{align*}
$$

By (41), (42) and (44), for δ small enough, the function $L=F+C_{\delta} E$ satisfies

$$
\begin{align*}
L^{\prime}(t) & \leq\left(-2+c \delta+c_{4} \delta\right) E(t)+C \int_{\Omega_{1}}\left[\left|\Delta u_{t}\right|^{2} \mathrm{~d} x+C_{\delta} \int_{\Omega}\left|g\left(\Delta u^{\prime}\right)\right|^{2}\right] \mathrm{d} x \\
& \leq-d E(t)+c \int_{\Omega_{1}}\left[\left|\Delta u^{\prime}\right|^{2}+\int_{\Omega}\left|g\left(\Delta u^{\prime}\right)\right|^{2}\right] \mathrm{d} x \tag{44}
\end{align*}
$$

and $L(t) \sim E(t)$.

Case 1: G is linear on $[0, \varepsilon]$, using (4), we deduce that

$$
\begin{align*}
L^{\prime}(t) & \leq-d E(t)+c \int_{\Omega_{1}} G^{-1}\left(\Delta u^{\prime} g\left(\Delta u^{\prime}\right)\right) \mathrm{d} x \\
& \leq-d E(t)+c \int_{\Omega_{1}} \Delta u^{\prime} g\left(\Delta u^{\prime}\right) \mathrm{d} x \tag{45}\\
& \leq-d E(t)-c E^{\prime}(t)
\end{align*}
$$

we deduce that $(L(t)+c E(t))^{\prime} \leq-d E(t)$. Recalling that $L(t)+c E(t) \sim E(t)$, we obtain $E(t) \leq E(0) e^{-\mathrm{d} t}$. Thus, we have

$$
E(t) \leq E(0) e^{-\mathrm{d} t}=E(0) G_{1}^{-1}(\mathrm{~d} t)
$$

Case 2: G is nonlinear, we define the following functional I by

$$
I(t)=\frac{1}{\left|\Omega_{1}\right|} \int_{\Omega_{1}} \Delta u^{\prime} g\left(\Delta u^{\prime}\right) \mathrm{d} x .
$$

From Jensen's inequality and the concavity of G^{-1}, we conclude that

$$
G^{-1}(I(t)) \geq c \int_{\Omega_{1}} G^{-1}\left(\Delta u^{\prime} g\left(\Delta u^{\prime}\right) \mathrm{d} x .\right.
$$

By using this inequality and (4), we obtain

$$
\int_{\Omega_{1}}\left|\Delta u^{\prime}\right|^{2}+\left|g\left(\Delta u^{\prime}\right)\right|^{2} \mathrm{~d} x \leq \int_{\Omega_{1}} G^{-1}\left(\Delta u^{\prime} g\left(\Delta u^{\prime}\right)\right) \mathrm{d} x
$$

which implies

$$
\begin{gather*}
\int_{\Omega_{1}}\left[\left|\Delta u_{t}\right|^{2}+\left|g\left(\Delta u_{t}\right)\right|^{2}\right] \mathrm{d} x \leq c G^{-1}(I(t) \tag{46}\\
L^{\prime}(t) \leq-d E(t)+c G^{-1}(I(t) \tag{47}
\end{gather*}
$$

For $\varepsilon_{0}<\varepsilon$ and $c_{0}>0$, we define H_{1} by

$$
\begin{equation*}
H_{1}(t)=G^{\prime}\left(\varepsilon_{0} \frac{E(t)}{E(0)}\right) L(t)+c_{0} E(t) \tag{48}
\end{equation*}
$$

Since $L(t)$ is equivalent to $E(t)$ (see (38)), there exist positive constants α_{1}, α_{2}, such that

$$
\begin{equation*}
\alpha_{1} H_{1}(t) \leq E(t) \leq \alpha_{2} H_{1}(t) \quad, \quad \forall t \in \mathbb{R}_{+} \tag{49}
\end{equation*}
$$

By recalling that $E^{\prime} \leq 0, G^{\prime}>0$, and $G^{\prime \prime}>0$ on $\left.] 0, \varepsilon\right]$, making use of (32) and (47), we obtain

$$
\begin{align*}
H_{1}^{\prime}(t) & =\varepsilon_{0} \frac{E^{\prime}(t)}{E(0)} G^{\prime \prime}\left(\varepsilon_{0} \frac{E(t)}{E(0)}\right) L(t)+G^{\prime}\left(\varepsilon_{0} \frac{E(t)}{E(0)}\right) L^{\prime}(t)+c_{0} E^{\prime}(t) \tag{50}\\
& \leq-d E(t) G^{\prime}\left(\varepsilon_{0} \frac{E(t)}{E(0)}\right)+c G^{\prime}\left(\varepsilon_{0} \frac{E(t)}{E(0)}\right) G^{-1}(I(t))+c_{0} E^{\prime}(t) .
\end{align*}
$$

Using (7) with $S=G^{\prime}\left(\varepsilon_{0} \frac{E(t)}{E(0)}\right)$ and $T=G^{-1}(I(t))$, using the Lemma 4.1, Remark 2.2 and (32), we deduce that

$$
\begin{aligned}
& H_{1}^{\prime}(t) \leq-d E(t) G^{\prime}\left(\varepsilon_{0} \frac{E(t)}{E(0)}\right)+c G^{*}\left(G^{\prime}\left(\varepsilon_{0} \frac{E(t)}{E(0)}\right)\right)+c I(t)+c_{0} E^{\prime}(t) \\
& \leq-d E(t) G^{\prime}\left(\varepsilon_{0} \frac{E(t)}{E(0)}\right)+c \varepsilon_{0} E(0) \frac{E(t)}{E(0)} G^{\prime}\left(\varepsilon_{0} \frac{E(t)}{E(0)}\right)-c E^{\prime}(t)+c_{0} E^{\prime}(t)
\end{aligned}
$$

Choosing $c_{0}>c$ and ε_{0} small enough, we obtain

$$
\begin{equation*}
H_{1}^{\prime}(t) \leq-k \frac{E(t)}{E(0)} G^{\prime}\left(\varepsilon_{0} \frac{E(t)}{E(0)}\right)=-k G_{2}\left(\varepsilon_{0} \frac{E(t)}{E(0)}\right), \tag{51}
\end{equation*}
$$

where $G_{2}(t)=t G^{\prime}\left(\varepsilon_{0} t\right)$. Since $G_{2}^{\prime}(t)=G^{\prime}\left(\varepsilon_{0} t\right)+\varepsilon_{0} t G^{\prime \prime}\left(\varepsilon_{0} t\right)$ and G is convex on $] 0, \varepsilon]$, we find that $G_{2}^{\prime}(t)>0$ and $G_{2}(t)>0$ on $(0,1]$. By setting

$$
\begin{equation*}
H(t)=\frac{\alpha_{1}}{E(0)} H_{1}(t) \tag{52}
\end{equation*}
$$

(α_{1} is given in (49)) we easily see that, by (49), we have

$$
\begin{equation*}
H(t) \sim E(t) \tag{53}
\end{equation*}
$$

Using (51), we arrive at $H^{\prime}(t) \leq-k_{1} G_{2}(H(t))$. By recalling (40), we deduce $G_{2}(t)=-1 / G_{1}^{\prime}(t)$, hence $H^{\prime}(t) \leq k_{1} \frac{1}{G_{1}^{\prime}(H(t))}$, which gives $\left[G_{1}(H(t))\right]^{\prime}=$ $H^{\prime}(t) G_{1}^{\prime}(H(t)) \leq k_{1}$, by integrating over $[0, t]$, we obtain

$$
G_{1}(H(t)) \geq k_{1} t+G_{1}(H(0))
$$

consequently

$$
\begin{equation*}
\left.H(t) \leq G_{1}^{-1}\left(k_{1} t+k_{2}\right)\right) \tag{54}
\end{equation*}
$$

Combining (53) and (54), we obtain (39). The proof is complete.

Finally, we remark that, with appropriate choices of the defining parameters, our results agree with the existing results.

REFERENCES

[1] R.A. Adams, Sobolev spaces, Pure and Applied Mathematics, Vol. 65, Academic Press, 1978.
[2] F. Alabau-Boussouira, Convexity and weighted intgral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems, Appl. Math. Optim., 51 (2005), 61-105.
[3] V.I. Arnold, Mathematical methods of classical mechanics, Springer-Verlag, New York, 1989.
[4] V. Komornik, Well-posedness and decay estimates for a Petrovsky system by a semigroup approach, Acta Sci. Math. (Szeged), 60 (1995), 451-466.
[5] S. Kouémou-Patcheu, Global exixtence and exponential decay estimates for a dampad quasilinear equation, Comm. Partial Differential Equations, 22 (1997), 2007-2024
[6] A. Guesmia, Existence globale et stabilisation interne non lineaire d'un systeme de Petrovsky, Bell. Belg. Math. Soc., 5 (1998), 583-594.
[7] S. Kouémou-Patcheu, On a Global Solution and Asymptotic Behaviour for the Generalized Damped Extensible Beam Equation, J. Differential Equations, 135 (1997), 299-314.
[8] I. Lasiecka Stabilization of wave and plate-like equation with nonlinear dissipation on the boundary, J. Differential Equations, 79 (1989), 340-381.
[9] S.A. Messaoudi, Global existence and nonexistence in a system of Petrovsky, J.Math Anal. Appl., 265 (2002), 296-308.
[10] M.I. Mustafa and S.A. Messaoudi, General energy decay for a weakly damped wave equation, Commun. Math. Anal., 9 (2010), 1938-1978.
[11] I. Lasiecka and D. Toundykov, Energy decay rates for the semilinear wave equation with nonlinear localized damping and source terms, Nonlinear Anal., 64 (2006), 1757-1797.
[12] J.L. Lions, Quelques méthodes de résolution des problémes aux limites nonlinéaires, Dunod Gautier-Villars, Paris, 1969.
[13] W.J. Liu and E. Zuazua, Decay rates for dissipative wave equations, Ric. Mat., 48 (1999), 61-75.

Received December 3, 2019
Accepted November 12, 2020

> University of Mascara
> Mustapha Stambouli, Algeria
> E-mail: abdelli.mama@gmail.com
> E-mail: mounir.bahlil@univ-mascara.dz
> Dillali Liabes University, Laboratory of Analysis and Control of Partial Differential Equations
> P. O. Box 89, Sidi Bel Abbes 22000, Algeria
> E-mail: tayeblakroumbe@yahoo.fr
> https://orcid.org/0000-0002-4173-6335
> E-mail: abdelli.mama@gmail.com
> https://orcid.org/0000-0003-2641-5223
> E-mail: louhibi_ben@yahoo.fr
> https://orcid.org/0000-0002-4570-2677
> E-mail: mounir.bahlil@univ-mascara.dz
> https://orcid.org/0000-0002-9688-8897

