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SOME NEW INEQUALITIES FOR CONVEX FUNCTIONS
VIA GENERALIZED INTEGRAL OPERATORS
AND THEIR APPLICATIONS

ARTION KASHURI and THEMISTOCLES M. RASSIAS

Abstract. The authors discover an identity for a generalized integral operator
via differentiable function. By using this integral equation, we derive some new
bounds on Hermite-Hadamard type integral inequality for differentiable map-
pings that are in absolute value at certain powers convex. Our results include
several new and known results as particular cases. At the end, some applications
of presented results for special means and error estimates for the mixed trapez-
ium and midpoint formula have been analyzed. The ideas and techniques of this
paper may stimulate further research in the field of integral inequalities.
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1. INTRODUCTION AND PRELIMINARIES

Convex functions and their generalizations have various applications in the
fields of pure and applied sciences. Due to these applications, it is the most
attractive area for researchers now a days. The class of convex functions is
well known in the literature and is usually defined in the following way:

DEFINITION 1.1. Let J be an interval in . A function f : J — R, is said
to be convex on J, if the inequality

(1) f(tar + (1 —t)az) < tf(ar) + (1 —1)f(a2)

holds for all a;,a2 € J and t € [0,1]. Also, we say that f is concave, if the
inequality in (1) holds in the reverse direction.

The following inequality, named Hermite-Hadamard inequality (or H-H
inequality), is one of the most famous inequalities in the literature for convex
functions.

THEOREM 1.2. Let f : J C R — R be a convex function and a1, as € J with
a1 < as. Then the following inequality holds:
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This inequality (2) is also known as trapezium inequality.

The trapezium inequality has remained an area of great interest due to its
wide applications in the field of mathematical analysis. Authors of recent
decades have studied (2) in the premises of newly invented definitions due to
motivation of convex function. Interested readers see the references [1, 2, 3,
4,6,7,9, 10, 12, 14, 16, 17].

The aim of this paper is to establish some new trapezium type generalized
integral inequalities for convex functions. Interestingly, the special cases of
presented results, are fractional integral inequalities, see also the references [4,
12]. Therefore, it is important to summarize the study of fractional integrals.

Let us recall some special functions and evoke some basic definitions as
follows:

DEFINITION 1.3. For k € ®" and x € C, the k—~gamma function is defined
by

(3) Ik(x) = lim M

n—oo (:L‘),,Lk.

Its integral representation is given by

0o ok
(4) k(o) = / t* e ® dt.
0
One can note that
(5) Ii(a+ k) = al'y(a).

For k =1, (4) gives integral representation of gamma function.

DEFINITION 1.4. Let f € L[ai,az2]. Then k—fractional integrals of order
a, k > 0 with a; > 0 are defined by

@) = g [ =0 0 2>

and
(© 1550) = o [ =00 >
Tfr) = = —x , G2 > .
a; kC(a) J, 2
For k = 1, k—fractional integrals give Riemann—Liouville integrals. For

o =k =1, k—fractional integrals give classical integrals.
Also, lets define a function ¢ : [0, +00) — [0, +00) satisfying the following
conditions:

(7) Al

0 7 <

(t)

dt < +o0,
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(9) @gB%QS) for s<r
1
(10) ¢f§)—¢§§) §C|T—s|¢7g) for §g§g2

where A, B,C > 0 are independent of r, s > 0. If ¢(r)r® is increasing for some
a > 0 and % is decreasing for some S > 0, then ¢ satisfies (7)-(10), see
[11]. Therefore, the left—sided and right-sided generalized integral operators
are defined as follows:

(11) I¢f /qﬁw—t (t)dt, x> aq,

r—1

* ot —x)

P f(t)dt, T < a2.

(12) S Tof@) = [

x
The most important feature of generalized integrals is that; they produce
Riemann-Liouville fractional integrals, k—Riemann-Liouville fractional inte-
grals, Katugampola fractional integrals, conformable fractional integrals, Ha-
damard fractional integrals, etc.

Motivated by the above literature, the main objective of this paper is to
discover in Section 2 an identity for a generalized integral operator via dif-
ferentiable function. By using the established identity as an auxiliary result,
some new estimates on Hermite-Hadamard type integral inequality for dif-
ferentiable mappings that are in absolute value at certain powers convex are
obtained. Moreover, our results include several new and known results as par-
ticular cases. In Section 3, some applications of presented results for special
means and error estimates for the mixed trapezium and midpoint formula are
given. In Section 4, a brief conclusion is given as well.

2. MAIN RESULTS

Throughout this study, let P = [maj,as], P° = (maj,a2) with a1 <
az, L(P) is the set of all integrable functions on P and A\, m € (0,1]. Fi-
nally, for all ¢ € [0,1], we define

ma1+a2 _ u
(13) / ?(( ) m91) %) 4 < oo
and
ma1+a2 u
(14) / ¢ 2 )) /\)du < +o00.

For establishing some new results regarding general fractional integrals we
need to prove Lemma 2.1.
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LEMMA 2.1. Let f : P — R be a differentiable mapping on P°. If f' € L(P)

and o, € R then the following identity for generalized fractional integrals
holds:

2 21\ (ma12+a2) — may as — \ (ma12+a2)
a+’8 may + az
- |7 <)\ <2>)
A 1
2N (%ﬂu) — may x (A(%))‘Iqﬁf(mal)

1
+Zyf(a
ag — A (etez) x (A<ma++a2)) o f( 2)]

B A (77”“1;“2) — maq
N 2

X /01 [/\E\w)—j)gal —a] f! (ma1t+)\(1 —t) (W)) dt

+<@—Ag%#ﬂ>
x/ol [5_@jxf(n%)]f’()\<ma12+a2>t+(1—t)a2>dt.

We denote

+

(15)

Tt A, A (N 0, By a1, a2)

B A (7"““;“2) — maq
N 2

as) | L CoEre “] f(mant 30— (M) Y

=2 (2252
e

[ -2k ( (2 ) v u-om)a
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Proof. Integrating by parts (16) and changing the variables of integration,
we have

2 (Meita2) _ g A
Tf’An“Am()\,Oé,ﬁ,al;aZ) - ( ( : 2) 1) { (}\(ma1+a2) _mal)

X /01 Am((1 = )A)f (malt—l—)\(l—t <m‘“+“2> dt

_ a/olf’ <ma1t F AL —t) <ma12+ a2>> dt}

N <a2—/\(:a12+a2)> X {5/01f’ </\ <ma12+a2>t+(1—t)a2) dt
- mal;az)> /01 AN ! ()\ (m‘“; a2> t+(1— t)a2> dt}

A
_ 5
(A (77”“1;“2) — may
B 2
. { A f (maxt + M1 — 1) (me5te2))
T)
B 1

1

()\ (mal+a2 _ ma1> [Am((l —1)A) may — A (ma12+a2)

( ma1 +a2 )

maq

el TMQu—mf@muﬁu—ow?”ﬁ)§

—1

- (nml;mO:) e [f ()\ <ma12+ ag)) - f(mal)]}
N (az—/\(;mlzm))
FO(2522) 14 (1= t)as) [

X{<@—Aémﬂﬂ) R
/ (a2 — A ( m“12+a2 ¢

— Ap(M)

ma1 +a2

( (’”‘””Z)H 1—“2)01]
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_afma) +Bfa) A A Aw()  a+d
2 21X (ma12+a2) may  as — A\ (ma12+a2) X
< P("5)
A 1
2 [)‘ (male) — may % (A<ma+m2))—f¢f(mal)

1
o gy )

The proof of Lemma 2.1 is completed. O

REMARK 2.2. Taking A = m =1 and ¢(t) = t in Lemma 2.1, we get [16,
Lemma 2.1].

THEOREM 2.3. Let f : P — R be a differentiable mapping on P° and

a, B € [0,1]. If | f'|7 is convex on P for ¢ > 1 and p~' + ¢~ = 1, then the
following inequality for generalized fractional integrals holds:

‘TfAmyA (A auﬁ7a17a2)}

A ma1+a2
é( ( m) By, (a, Xip)

q
al| | g1 mai + a2
o e ()
_ ma1+a2
+<a2 )> Ca,. (B, X;p)
R q
\lf/ mai az)) +‘f’(a2) q,
where
Y A RV S (S =5y ﬂp
(18) Ba oo = [ ey o o
and
I Y
(19) CantBxin) = [ 3= — iy | O
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Proof. From Lemma 2.1, convexity of |f’|?, Holder’s inequality and proper-
ties of the modulus, we have

maitas) _
‘Tf,Am,Am(A,a,57a17a2)‘§(A( 2 ) ma1>

2
1 Mun((1 = )Y) / may + az
g /D A (%—f—az) — maq —« f <ma1t + )\(1 - t) (2>> dt
as — A (%ﬂu) 1 B AL (M)
() [

% dt

f (A (W) t+ (1 t)@)
<)\ (mastaz) ma1> </01
(/01 f’ maxt + A(1 —t) <ma12+“2)>
<a2_ ma1+a2)> </01
( ma1+a2>t+(1—t)a2>

1
PP
2An ({1 = HA) —oaf dt
A(%W)—mal

P\
dt>
2
dt)

A (M)
ag — A (mastez)

¢ N\7q
dt>
mal) Ba,, (o, A;p)
! q
I (ﬂf -l (3 (2257)) ) o
0
ma1+a2

az — A 2 )> Y/Ca, (B, X p)

X /J( () s oistear) o

)\ ma1+a2 — ma
( 1) By, (a, A;p)

q
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1

0 2

mal +a2
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X
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1
q
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a2_/\(ma1+a2) -
+< NQZ )VQMW%M
g

(=)

The proof of Theorem 2.3 is completed. U

q
+ | f(a2)|".

We point out some special cases of Theorem 2.3.

COROLLARY 2.4. Taking A =m =1 and ¢(t) =t in Theorem 2.3, we get

af(ar) +Bf(a2) 2—a—pB, a1+ a2 1 a2
2 + 2 f< 2 >_a2—a1/1 f(&)dt

()
T \4V2¢p+ 1
X {{J/oﬂ’“—i-(l—a)l’Jrl x | f(ar)]" +

(20)

, [ a1 + a2 ‘q
2
, a1 +az\ |9 q
+VW“+ﬂﬂW“X¢f(:z>’+UMM}-
COROLLARY 2.5. Tuking o = 8 =1 in Corollary 2.4, we have

Fon) + Slaa) _
2_(11/ f dt

1) {\/\f’ )l + <a1+a2>‘q
¢ﬂ<“+”)f+vmmﬁ.

COROLLARY 2.6. Taking a = 8 =0 in Corollary 2.4, we obtain

f(al—l—ag) 2_a1/ iyt
(22 {\/U' )] + <a1+a2)}q
\/f,<a1+a2> ‘q+]f’(a2)]q}.

(wio)

(w51)
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COROLLARY 2.7. Taking p = q = 2 in Theorem 2.3, we get

A (77”‘“2*“2) — maq

2v2

oo (3 (2252

n (ag —A (ma12+a2)> \/CAm(B7)\; 2)

22
\

(23)

+ | f(a2) ]

b))

COROLLARY 2.8. Taking |f'| < K in Theorem 2.3, we get

’Tf7A'IYL7Am ()\’ a, ﬂv ai, a2)’

(24) : Iz({ (A (W) - ma1> Bay, (a;A;p)

mai + a
# (- (mE)) v mw,x;p)}.
THEOREM 2.9. Let f : P — R be a differentiable mapping on P° and
a, B €[0,1]. If | f'|? is convex on P for q > 1, then the following inequality for

generalized fractional integrals holds:

(ma1 +az

_ 1—1
’Tf,Am7Am()‘7avﬁaalaa2)‘ < < 2 2) ma1> [BAm(O(,/\; 1):| q

(=)

q
X <l DA7n (a7 )\)|f/(ma1>|q + EA'm (OK, A)

(25) 4y — ) (master) L1

T ( S ) CanBXD)]

q

y dmm(ﬂ,» I (A (”“;“2)) G (B, V)] f/(a2)]",

where
1 _
(26) Dy, (a,\) :/0 ¢ A?ﬁxi(alz) _t)jn)a1 —aldt,
2
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ot A, (M)
(27) Ea, (@) = /0 ! 5 e o~ {2
1 AA, (A
2
1 AA,, (N
2

and By, (a, A\; 1), Ca,, (B, A; 1) are defined as in Theorem 2.3.

Proof. From Lemma 2.1, convexity of |f’|, the well-known power mean
inequality and properties of the modulus, we have

2 (Mmaitaz) _ 0
‘TffAm’Am()\7a7/B7a1,a2)‘ S < ( 2 2) 1)
| el =) ! maj + az
X/o )\(Wlle)_mal—a f (mmt—l—)\(l—t) <2>>

Ao — maj+az 1
+<2 )\(2 : )>/0 . AA L, ()

=2 (225720

(2 )
() (]
(f
az-A(j“?”)) </01

Y- eY)
=2 (2252

dt

X dt

Mo (1= )A)
A (ma12+a2) — may

—« dt)

I (malt LA —1) (m;)>
dt)

f (A <m‘“2+ a2) t+(1— t>a2)

mai+az) __ _1
)\( 2 ) mal) [BAm(Oé,)\; 1)}1 q

Mum((1=HN)
> (72572) — ma,

—

0\
dt>

1

q q
dt)

AA L, ()
=2 (22575)

/8_

2

)\Am((l B t)A)
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i (A (m‘”;“z» D i (a2 - A2(;;;“2)> Canio ]

[ e wSestim| (1 O (=)

e —t)\f'(ag)\q>dt] . (A (225) —ma1> ]
=)

(B2 o g

2
=)
2

The proof of Theorem 2.9 is completed. g

ﬂ_

X d Dy, (e, M| f/(mar)|” + Ea,, (e, )

X q\lFAm(ﬁ, A) +GAm(B,/\)‘f’(a2)‘q.

We point out some special cases of Theorem 2.9.

COROLLARY 2.10. Taking A = m =1 and ¢(t) =t in Theorem 2.9, we get
[16, Theorem 3.1].

COROLLARY 2.11. Taking ¢ =1 in Theorem 2.9, we get

2

() |
()

T A (A @, By a1, a2)| < (

A (7ma12+“2) — ma1>

X [DAM(a, M| f (ma1)| + Ea,, (a, A)

o A (2252
P22

n Gﬁmw,mf'(@n].

(30)

Fa,, (B, )
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COROLLARY 2.12. Taking o = B in Theorem 2.9, we have

maitaz) _ 1
T A am (A @y, a1, a2) | < <)\( 2 2) mal) {BAm(a,A;l)}1 a
()
-\ mai+a 1
+<a2 - )> Cantany]

=)

COROLLARY 2.13. Taking |f'| < K in Theorem 2.9, we obtain
K

q
X ¢ Dy, (e, \)| f'(ma1)|” + En,, (a, A)

(31)

X A FAm(av )‘) +GAm(aa>‘)‘f/(a2)‘q'

Tt A A (N @, By a1, a2) | <

x{(A(ma1+a2) a1> au}l_;

(32) x /Dy, (o, \) + Ep, (a, \)
() o]

x {/Fa,.(8.N) + Ga,, (B, A)}.

REMARK 2.14. Applying our Theorems 2.3 and 2.9 for special parameter

values A = %,%, %, 1; a,8 =0, 4 3 2, 2, 1 and various suitable choices of
function 9(t) = ¢, tfay. gy where a, k > 0, ¢(t) = taz — )~ and

¢(t) = Lexp [(_%) t] for a € (0,1), such that |f'|? to be convex, we can
deduce some new fascinating general fractional integral inequalities. We omit
their proofs and the details are left to the interested reader.

3. APPLICATIONS

Consider the following special means for different real numbers a1 < as:
(1) The arithmetic mean:

A(al, CLQ) = “ ;a2 .
(2) The harmonic mean:
2
H(ai,a2) = —
() =

al az
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(3) The logarithmic mean:
Llay,az) = — 22

~ Injas| — In|ay|’

(4) The r—generalized log—mean:

S =

Ay —
(r+1)(az —a1)

Er(al,ag) = ;T E Z\{—l,O}.

r+1 r+1 ]

Now, using the theory results in Section 2, we give some applications to special
means for different real numbers.

PROPOSITION 3.1. Let aj,az € R\ {0}, where a1 < az and o, 5 € [0,1].
Then for r > 2 and r € N, where ¢ > 1 and p~ + ¢~ = 1, the following
inequality holds:

2—a-—p4
2

r(ag —ay)
4Yp+1

q(r—1)>

r—1
VT A )

Proof. Taking f(t) = t" in Corollary 2.4, one can obtain the result immedi-
ately. O

PROPOSITION 3.2. Let aj,as € R\ {0}, where a1 < ag and o, B8 € [0,1].
Then for ¢ > 1 and p~' + ¢~ = 1, the following inequality holds:
1 2—a—2 1

+
H(Bay,az)  2A(a1,a2) L(ar,as)

A(ad}, Bap) + A(ar,az) — L (a1, az)| <

a1 + as

(33) X {{’/ap+1 + (1 — a)Ptl x {]/A (\allq”_l),

(ag —a1)

~ 4Yp+1

X

Yortl+ A —aptt /6P 4+ (- Bt

2 2
(o) (o)

1
Proof. Taking f(t) = n in Corollary 2.4, one can obtain the result immedi-
ately. O

aitaz
2

ai+az
2

Next, we provide some new error estimates for the mixed trapezium and
midpoint formula. Let P be the partition of the points a1 = zg < 21 < ... <
xr = ag of the interval [a1, as]. Let consider the following quadrature formula:

/@ f(x)dz = TM(f, P, B) + E(f, P; v, B),
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where
TM(f,P;a,p)
k-1
-3 af(z;) +2ﬁf($i+1) L 2o C2V - ﬁf <5CZ +2xi+1> ] (€1 — 1)
i=0

is the mixed trapezium and midpoint version and E(f, P;a, 3) is denote their
associated approximation error.

PROPOSITION 3.3. Let f : [a1,a2] — R be a differentiable function on
(a1,az2), where a1 < ag and «, B € [0,1]. If |f'|7 is convex on [a1,az] for
g>1andp~ ' +q ' =1, then the following inequality holds:

k

) _
E(f,P0,8)] € —— x S (141 — 22)?
| | A2y ; “
s Ti+ T\ |9
r(5)]

r <xl+2xl+l> ’q+ \f’(xz‘+1)|q}-

Proof. Applying Theorem 2.3 for A = m = 1 and ¢(t) = ¢, on the subinter-

[y

(35) x {{J/Oé”“ + (L=t x {1 f () ]9 +

+VWH+G—6VHx¢

vals [z, zi41] (i =0,...,k — 1) of the partition P, we have
af(@) +Bf(wit1)  2—a—B,(zi+zip
+ f
2 2 2
1 Tt i+1 — T
_ / f(z)dz| < (@iy1 — i)
Tit1 — T Jg, 492¢9p+1
(36)

x {f/ap“ + (1 —a)tlx @] /(x| +

f (% + fl?z'+1> “1
2

r (xz+2$Z+1> ’q + |f/($i+1)|q}-

+ {/prtl 4 (1— 6)p+1 x t\z/

Hence from (36), we get

|E(f, P;a, B)| =

/a2 f(z)dx — TM(f,P; a,ﬁ)‘
-1

Z { /Q:HI f(z)dz — [ozf(acz) +25f(xi+1)

1=0

<
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+ 2= 3 _5,}” <:CZ +2x2-+1> ] (Tit1 —ﬂcz)}'

k-1 Tip1 af(z)+ Bf(zit1)
= =0 { /xl f(x)dx ) [ ?
2—a—p T + Tip1
+ f< 2 >](M1_$Z>}'
) 1 k—1 |
YT e z:o(xl+1 -

’ {f/ap“ + (1= )Pt ([ f (i)

f (l’z + $i+1> ‘q
2

+ {/prtl 4 (1 — p)rtl x i/ f! (W) ’q + |f’($i+1)’q}'

The proof of Proposition 3.3 is completed. U

REMARK 3.4. Applying our Theorems 2.3 and 2.9 for m = 1, for special

parameter values A = % % 2 1; a, B =0, 1 35 2, 2, 1, and various suitable
choices of function ¢(t) = t, (a), krt:(a)’ where a, k > 0; ¢(t) = t(az —t)*!

and ¢(t) = Lexp [( )t} for a € (0,1), such that |f|? to be convex, we

can deduce some new 1nequahtles for special means and new bounds for the
mixed trapezium and midpoint formula using above ideas and techniques. We
omit their proofs and the details are left to the interested reader.

4. CONCLUSION

Since convexity has large applications in many mathematical areas, then it
can be applied to obtain several results in convex analysis, special functions,
related optimization theory, mathematical inequalities and may stimulate fur-
ther research in different areas of pure and applied sciences. Also, from our
results using above ideas and techniques we can deduce some new fascinating
inequalities using special means and we can find out new refinement bounds
for the above mixed trapezium and midpoint formula for different choices of
parameters.
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