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BOUNDARY VALUE PROBLEMS FOR HILFER FRACTIONAL
DIFFERENTIAL EQUATIONS WITH KATUGAMPOLA

FRACTIONAL INTEGRAL AND ANTI-PERIODIC CONDITIONS

ABDELATIF BOUTIARA, MAAMAR BENBACHIR, and KADDOUR GUERBATI

Abstract. The purpose of this paper is to investigate the existence and unique-
ness of solutions for a new class of nonlinear fractional differential equations
involving Hilfer fractional operator with fractional integral boundary conditions.
Our analysis relies on classical fixed point theorems and the Boyd-Wong nonlin-
ear contraction. At the end, an illustrative example is presented. The boundary
conditions introduced in this work are of quite general nature and can be reduce
to many special cases by fixing the parameters involved in the conditions.
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1. INTRODUCTION

In the last decades, considerable interest in fractional differential equations
has been stimulated due to their numerous applications in many fields of sci-
ence and engineering. Important phenomena in finance, electromagnetics,
acoustics, viscoelasticity, electrochemistry and material science are well de-
scribed by differential equations of fractional order. For examples and recent
development of the topic, see [2, 3, 4, 6, 9, 17, 18, 13, 20, 21, 22] and the
references cited therein.

Boundary value problems of fractional differential equations and inclusions
involve different kinds of boundary conditions such as nonlocal, integral, and
multipoint boundary conditions. For fractional integral boundary conditions,
see [4, 19], for nonlocal conditions one can consult [3, 4, 24], and anti-periodic
conditions were presented in [12].

In 2008, Benchohra et al. [6] studied the existence and uniqueness of solu-
tions of the following nonlinear fractional differential equation:

(1)

{
CDαy(t) = f(t, y(t)), t ∈ J := [0, T ],
ay(0) + by(T ) = c,
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where CDα is the Caputo fractional derivative of order α (0 < α < 1) f :
[0, T ] × R → R is a given continuous function, and a, b, c are real constants
with a+ b ̸= 0.

In 2017, Asghar Ahmadkhanlu. [5] studied the existence and uniqueness of
solutions of the following boundary value problem:

(2)

{
CDαy(t) = f(t, y(t)), t ∈ J := [0, 1],
y(0) = ηIβy(τ), 0 < τ < 1.

where CDα is the Caputo fractional derivative of order α (0 < α < 1) and
f : [0, 1]× R → R is a given continuous function, η ∈ R, Iβ,0 < β < 1, is the
Riemman-Liouville fractional integral of order β.

In 2018, Benhamida et al. [7]. studied the existence of solutions to the
boundary value problem for the following fractional-order differential equation

(3)

{ CDαy(t) = f(t, y(t)), t ∈ J := [0, T ],

y(0) + y(T ) = b
∫ T
0 y(s)ds, bT ̸= 2,

where CDα is the Caputo fractional derivative of order α (0 < α < 1) and
f : [0, T ]× R → R is a given continuous function, and b are real constant.

In 2018, Abdo et al. [1]. discussed the existence and uniqueness of positive
solutions of the following nonlinear fractional differential equation:

(4)

{
Dαy(t) = f(t, y(t)), t ∈ J := [0, 1],

y(0) = b
∫ 1
0 y(s)ds+ d,

where 0 < α ≤ 1, λ ≥ 0, d > 0, Dα is the standard Caputo fractional operator
and f : [0, 1]× [0,∞) → [0,∞) is a given continuous function.

Motivated by the studies above among others, we concentrate on the follow-
ing boundary value problem of nonlinear Hilfer fractional differential equation

(5) Dα,βx(t) = f(t, x(t)), t ∈ J := [0, T ],

supplemented with the boundary conditions of the form:

(6) aI1−γx(0) + bx(T ) =

m∑
i=1

ci
ρiIqix(ηi) + d,

where Dα,β is the Hilfer fractional derivative 0 < α < 1,0 ≤ β ≤ 1, γ =
α+β−αβ, ρiIqi is the Katugampola integral of qi > 0 and I1−γ is the Riemann-
Liouville integral of order 1 − γ, f : J × R → R is a continuous function,
a, b, d, ci, i = 1, . . . ,m are real constants, and 0 < ηi < T, i = 1, . . . ,m.

In the present paper we initiate the study of boundary value problems like
(5-6), in which we combine Hilfer fractional differential equations subject to
the Katugampola fractional integral boundary conditions.

The rest of the paper is organized into five sections. In Section 2, we recall
some basic concepts of fractional calculus and introduce the integral opera-
tor associated with the given problem. In Section 3, the main existence and
uniqueness results are obtained by using a variety of fixed point theorems,
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such as the Banach fixed point theorem, the Nonlinear Contractions Boyd
and Wong, Schaefer’s fixed point theorem, the Leray-Schauder Nonlinear Al-
ternative. In Section 4, an example is provided, while the paper closes with
some interesting observations.

2. PRELIMINARY LEMMAS

In what follows we introduce definitions, notations, and preliminary facts
which will be used in the sequel. For more details, we refer to [2, 18, 13, 20, 22].

Definition 2.1. Let J = [0, T ] be a finite interval and 0 ≤ γ < 1. We
introduce the weighted space C1−γ(J,E) of continuous functions f on (0, T ]

C1−γ(J,E) = {f : (0, T ] → E : (t− a)1−γf(t) ∈ C(J,E)}.
In the space C1−γ(J,E), we define the norm ∥f∥C1−γ = ∥(t− a)1−γf(t)∥C .

Recall that (C1−γ(J,E), ∥f∥C1−γ ) is a Banach space.
Now, we give some results and properties of fractional calculus.

Definition 2.2 ([18]). The Riemann-Liouville fractional integral of order
α ∈ R+ of a continuous function f : (0,∞) → R is defined by

(7) Iα0+f(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s)ds, t > 0.

provided the right-hand side is point-wise defined on (0,∞), where Γ(α) is the
Euler’s Gamma function.

Definition 2.3 ([18]). The Riemann-Liouville fractional derivative of order
α ∈ R+ of a continuous function f : (0,∞) → R is defined by

(8) Dα
0+f(t) =

1

Γ(n− α)

dn

dtn

∫ t

0
(t− s)n−α−1f(s)ds, n− 1 < α < n,

where n = [α] + 1, and [α] means the integral part of α, provided the right
hand side is point-wise defined on (0,∞).

Definition 2.4 ([18]). The Caputo derivative of order α for a function
f ∈ Cn[0,∞), is given by

(9)
CDαf(t) =

1

Γ(n− α)

∫ t

0
(t− s)n−α−1f (n)(s)ds,

= In−pf (n)(t), t > 0, , n− 1 < α < n.

Definition 2.5 ([17]). Katugampola integral of order q > 0 and ρ > 0, of
a function f(t), for all 0 < t <∞, is defined as

(10) ρIqf(t) =
ρ1−q

Γ(q)

∫ t

0

sρ−1f(s)

(tρ − sρ)1−q
ds,

provided the right-hand side is point-wise defined on (0,∞).
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Lemma 2.6 ([4]). Let ρ, q > 0 and p > 0 be the given constants. Then the
following formula holds:

(11) ρIqtp =
Γ(p+ρ

ρ )

Γ(p+ρq+ρ
ρ )

tp+ρq

ρq
.

In [13], R. Hilfer studied applications of a generalized fractional operator
having the Riemann-Liouville and Caputo derivatives as specific cases (see
also [14, 15, 16]).

Definition 2.7 ([13]). The Hilfer fractional derivative Dα,β
0+

of order α
(n− 1 < α < n) and type β (0 ≤ β ≤ 1) is defined by

(12) Dα,β
0+

= I
β(n−α)
0+

DnI
(1−β)(n−α)
0+

f(t)

where Iα0+ and Dα
0+ are Riemann-Liouville fractional integral and derivative

defined by (7) and (8), respectively.

Remark 2.8 (See [13]). Hilfer fractional derivative interpolates between
the Riemann-Liouville (8), if β = 0) and Caputo (9), if β = 1) fractional

derivatives since Dα,0
0+

=R−L Dα
0+ and Dα,1 =C Dα

0+ .

Lemma 2.9. Let 0 < α < 1, 0 ≤ β ≤ 1, γ = α + β − αβ, and f ∈ L1(J,E).

The operator Dα,β
0+

can be written as

Dα,β
0+
f(t) =

(
I
β(1−α)
0+

d
dtI

(1−γ)
0+

f
)
(t) = I

β(1−α)
0+

Dγf(t), for a.e. t ∈ J .

Moreover, γ satisfies 0 < γ ≤ 1, γ ≥ α, γ > β, 1− γ < 1− β(1− α).

Lemma 2.10. Let 0 < α < 1, 0 ≤ β ≤ 1, γ = α+ β − αβ, If D
β(1−α)
0+

f exists

and in L1(J,E), then Dα,β
0+
Iα0+f(t) = I

β(1−α)
0+

D
β(1−α)
0+

f(t), for a.e. t ∈ J . Fur-

thermore, if f ∈ C1−γ(J,E) and I
1−β(1−α)
0+

f ∈ C1
1−γ(J,E), then Dα,β

0+
Iα0+f(t) =

f(t), for a.e. t ∈ J .

Lemma 2.11. Let 0 < α < 1, 0 ≤ β ≤ 1, γ = α+ β − αβ, and f ∈ L1(J,E).
If Dγ

0+
f exists and in L1(J,E), then

Iα0+D
α,β
0+
f(t) = Iγ

0+
Dγ

0+
f(t) = f(t)−

I1−γ

0+
f(0+)

Γ(γ) (t− a)γ−1, for a.e. t ∈ J .

Lemma 2.12 ([18]). For t > a, we have

Iα0+(t− a)β−1(t) =
Γ(β)

Γ(β + α)
(t− a)β+α−1,

Dα
0+(t− a)β−1(t) =

Γ(β)

Γ(β − α)
(t− a)β−α−1.

(13)

Lemma 2.13. Let α > 0, 0 ≤ β ≤ 1, so the homogeneous differential equa-
tion with Hilfer fractional order

(14) Dα,β
0+
h(t) = 0,
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has a solution

(15) h(t) = c0t
γ−1 + c1t

γ+2β−2 + c2t
γ+2(2β)−3 + · · ·+ cnt

γ+n(2β)−(n+1).

3. MAIN RESULTS

In this section we shall present and prove a preparatory lemma for a bound-
ary value problem of linear fractional differential equations with Hilfer deriv-
ative.

Definition 3.1. A function x(t) ∈ C1−γ(J,R) is said to be a solution of (5)-

(6) if x satisfies the equation Dα,βx(t) = f(t, x(t)) on J , and the conditions
(6).

For the existence of solutions for the problem (5)-(6), we need the following
auxiliary lemma.

Lemma 3.2. Let h : J × R → R be a continuous function. A function x is
a solution of the fractional integral equation

(16) x(t) = Iαh(t) +
tγ−1

Λ

{
m∑
i=1

ci
ρiIqiIαh(ηi)− bIαh(T ) + d

}
,

if and only if x is a solution of the fractional BVP

(17) Dα,βx(t) = h(t), t ∈ J,

(18) aI1−γx(0) + bx(T ) =
m∑
i=1

cρii I
qih(ηi) + d.

Proof. Assume x satisfies (17). Then Lemma 2.13 implies that

(19) x(t) = Iαh(t) +Atγ−1.

By applying the boundary conditions (18) in (19), we obtain

aAΓ(γ) + bIαh(T ) + bAT γ−1 =
m∑
i=1

ci
ρiIqiIαh(ηi)

+

m∑
i=1

ciA
Γ(γ+ρi−1

ρi
)

Γ(γ+ρiqi+ρi−1
ρi

)

tγ+ρiqi−1

ρqii
+ d.

Thus,

A

(
aΓ(γ) + bT γ−1 −

m∑
i=1

ci
Γ(γ+ρi−1

ρi
)

Γ(γ+ρiqi+ρi−1
ρi

)

ηγ+ρiqi−1
i

ρqii

)
=

m∑
i=1

ci
ρiIqiIαh(ηi)

− bIαh(T ) + d.
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Consequently,

A =
1

Λ

{
m∑
i=1

ci
ρiIqiIαh(ηi)− bIαh(T ) + d

}
,

where

Λ =

(
aΓ(γ) + bT γ−1 −

m∑
i=1

ci
Γ(γ+ρi−1

ρi
)

Γ(γ+ρiqi+ρi−1
ρi

)

ηγ+ρiqi−1
i

ρqii

)
.

Finally, we obtain the desired equation (16). □

In the following subsections we prove existence, as well as existence and
uniqueness results, for the boundary value problem (5), (6) by using a variety
of fixed point theorems.

3.1. EXISTENCE AND UNIQUENESS RESULT VIA BANACH’S FIXED POINT

THEOREM

Theorem 3.3. Assume the following hypothesis:
(H1) There exists a constant L > 0 such that |f(t, x)− f(t, y)| ≤ L|x− y|.
If

(20) LΨ < 1,

where

Ψ :=

{
Tα−γ+1

Γ(α+ 1)
+

1

|Λ|

{
m∑
i=1

|ci|
Γ(α+ρi

ρi
)

Γ(α+ρiqi+ρi
ρi

)

ηα+ρiqi
i

ρqii
+ |b| Tα

Γ(α+ 1)

}}
,

then the problem (5) has a unique solution on J .

Proof. Transform the problem (5)-(6) into a fixed point problem for the
operator Z defined by

(21) Zx(t) = Iαh(t) +
tγ−1

Λ

{
m∑
i=1

ci
ρiIqiIαh(ηi)− bIαh(T ) + d

}
.

Applying the Banach contraction mapping principle, we shall show that Z is
a contraction.

We put supt∈[0,T ] |f(t, 0)| =M <∞ and choose r ≥ MΨ
1−LΨ .

To show that ZBr ⊂ Br, where Br = {x ∈ C1−γ : ∥x∥ ≤ r}, we have for any
x ∈ Br

|((Zx)(t))t1−γ | ≤ sup
t∈[0,T ]

{
t1−γIα|f(s, x(s))|(t)

+
1

|Λ|

{ m∑
i=1

ci
ρiIqiIα|f(s, x(s))|(ηi) + bIα|f(s, x(s))|(T ) + d

}}
≤ T 1−γIα(|f(s, x(s))− f(t, 0)|+ |f(t, 0)|)(T )
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+
1

|Λ|

{ m∑
i=1

|ci| ρiIqiIα(|f(s, x(s))− f(t, o)|+ |f(t, 0)|)(ηi)

+ |b|Iα(|f(s, x(s))− f(t, 0)|+ |f(t, 0)|)(T )
}
+

|d|
|Λ|

≤ (Lr +M)

{
T 1−γIα(1)(T )

+
1

|Λ|

{ m∑
i=1

|ci| ρiIqi(1)(ηi) + |b|Iα(1)(T )
}}

+
|d|
|Λ|

:= (Lr +M)Ψ +
|d|
|Λ|

≤ r,

which implies that ZBr ⊂ Br.
Now let x, y ∈ C1−γ(J,R). Then, for t ∈ J , we have

|((Zx)(t)− (Zy)(t))t1−γ | ≤ sup
t∈[0,T ]

{
t1−γIα|f(s, x(s))− f(s, y(s))|(t)

+
1

|Λ|

{ m∑
i=1

ci
ρiIqiIα|f(s, x(s))− f(s, y(s))|(ηi)

+ bIα|f(s, x(s))− f(s, y(s))|(T )
}}

≤ L∥x− y∥
{
T 1−γIα(1)(T )

+
1

|Λ|

{ m∑
i=1

|ci| ρiIqiIα(1)(ηi) + |b|Iα(1)(T )
}}

≤ L∥x− y∥
{
Tα−γ+1

Γ(α+ 1)

+
1

|Λ|

{ m∑
i=1

|ci|
Γ(α+ρi

ρi
)

Γ(α+ρiqi+ρi
ρi

)

ηα+ρiqi
i

ρqii
+ |b| Tα

Γ(α+ 1)

}}
:= LΨ∥x− y∥.

Thus ∥((Zx)(t)− (Zy)(t))t1−γ∥∞ ≤ LΨ∥x− y∥∞.
We deduce that Z is a contraction mapping. As a consequence of Banach

contraction principle. the problem (5)-(6) has a unique solution on J . This
completes the proof. □

3.2. EXISTENCE RESULT VIA SCHAEFER’S FIXED POINT THEOREM

Lemma 3.4. Let X be a Banach space. Assume that T : X → X is com-
pletely continuous operator and the set Ω = {x ∈ X|x = µTx, 0 < µ < 1} is
bounded. Then T has a fixed point in X.
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Theorem 3.5. Assume the hypotheses:
(H2) The function f : [0, T ]× R → R is continuous.
(H3) There exists a constant L1 > 0 such that |f(t, x)| ≤ L1, for a.e. t ∈
J, x ∈ R.

Then the problem (5)-(6) has at least one solution in J .

Proof. We shall use Schaefer’s fixed point theorem to prove that Z defined
by (21) has a fixed point. The proof will be given in several steps.

Step 1. Z is continuous Let xn be a sequence such that xn → x in
C1−γ(J,R). Then for each t ∈ J ,

|((Zxn)(t)− (Zx)(t))t1−γ | ≤ t1−γIα∥f(s, xn(s))− f(s, x(s))∥(t)

+
1

|Λ|

{ m∑
i=1

ci
ρiIqiIα∥f(s, xn(s))− f(s, x(s))∥(ηi)

+ bIα∥f(s, xn(s))− f(s, x(s))∥(T )
}

≤
{
T 1−γIα(1)(T ) +

1

|Λ|

{ m∑
i=1

ci
ρiIqiIα(1)(ηi) + bIα(1)(T )

}}
× ∥f(s, xn(s))− f(s, x(s))∥ := Ψ∥f(s, xn(s))− f(s, x(s))∥.

Since f is continuous, ∥((Zxn)(t)− (Zx)(t))t1−γ∥∞ → 0 as n→ ∞.

Step 2. Z maps bounded sets into bounded sets in C1−γ(J,R)
Indeed, it is enough to show that for any r > 0, if we take x ∈ Br = {x ∈
C(J,R), ∥x∥∞ ≤ r}, such that Zx(t) is bounded. Indeed, from (H3), Then for
x ∈ Br and for each t ∈ [0, T ], we have

|((Zx)(t))t1−γ | ≤ t1−γIα|f(s, x(s))|(t)

+
1

|Λ|

{
m∑
i=1

ci
ρiIqiIα|f(s, x(s))|(ηi) + bIα|f(s, x(s))|(T ) + d

}

≤ L1T
1−γIα(1)(T ) +

L1

|Λ|

{
m∑
i=1

|ci| ρiIqiIα(1)(ηi) + |b|Iα(1)(T )

}
+

|d|
|Λ|

≤ L1

{
T 1−γIα(1)(T ) +

1

|Λ|

{ m∑
i=1

|ci| ρiIqiIα(1)(ηi) + |b|Iα(1)(T )
}}

+
|d|
|Λ|

:= L1Ψ+
|d|
|Λ|

.

Thus, ∥((Zx)(t))T 1−γ∥ ≤ L1Ψ+ |d|
|Λ| .

Step 3. G maps bounded sets into equicontinuous sets of C1−γ(J,R).
Let t1, t2 ∈ J, t1 < t2, Br be a bounded set of C1−γ(J,R) as in Step 2, and let
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x ∈ Br. Then

∥(Zx(t2)− Zx(t1))t
1−γ∥ ≤ Iα|t1−γ

2 f(s, x(s))(t2)− t1−γ
1 f(s, x(s))(t1)|

≤ L1

Γ(α)

∣∣∣∣t1−γ
2

∫ t1

1
(t2 − s)α−1(1)ds −t1−γ

1

∫ t1

1
(t1 − s)α−1(1)ds

∣∣∣∣
+

L1

Γ(α)

∣∣∣∣t1−γ
2

∫ t2

t1

(t2 − s)α−1(1)ds

∣∣∣∣ ≤ L1

Γ(α+ 1)
(tα−γ+1

2 − tα−γ+1
1 ).

which implies ∥Z(t2) − Zx(t1)∥∞ → 0 as t1 → t2. As a consequence of Step1
to Step 3, together with the Arzela-Ascoli theorem, we can conclude that Z is
continuous and completely continuous.

Step 4: A priori bounds.
Now it remains to show that the set Ω = {x ∈ C(J,R) : x = µZ(x) for some

0 < µ < 1} is bounded.
Let x ∈ Ω. Then, for each t ∈ J , we have

x(t) ≤ µ

{
Iαh(t) +

tγ−1

Λ

{
m∑
i=1

ci
ρiIqiIαh(ηi)− bIαh(T ) + d

}}
.

For µ ∈ [0, 1], let x be such that for each t ∈ J

∥(Zx(t))t1−γ∥ ≤ L1

{
T 1−γIα(1)(T )

+
1

|Λ|

{ m∑
i=1

|ci| ρiIqiIα(1)(ηi) + |b|Iα(1)(T )
}}

+
|d|
|Λ|

:= L1Ψ+
|d|
|Λ|

.

Thus

∥(Zx(t))t1−γ∥ ≤ ∞.

This implies that the set Ω is bounded. As a consequence of Schaefer’s fixed
point theorem, we deduce that Z has a fixed point, which is a solution on J
of the problem (5)-(6). □

3.3. EXISTENCE RESULT VIA THE LERAY-SCHAUDER NONLINEAR ALTERNATIVE

Theorem 3.6. Assume the following hypotheses:
(H4) There exist ω ∈ L1(J,R+) and Φ : [0,∞) → (0,∞) continuous and
nondecreasing such that

|f(t, x)| ≤ ω(t)Φ(∥x∥), for a.e. t ∈ J and each x ∈ R.

(H5) There exists a constant ϵ > 0 such that

ϵ− |d|
|Λ|

∥ω∥Φ(ϵ)Ψ
> 1.

Then the boundary value problem (5)-(6) has at least one solution on J .
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Proof. We shall use the Leray-Schauder theorem to prove that Z defined by
(21) has a fixed point. As shown in Theorem 3.6, we see that the operator Z is
continuous, uniformly bounded, and maps bounded sets into equicontinuous
sets. So by the Arzela-Ascoli theorem Z is completely continuous.
Let x be such that for each t ∈ J , we take the equation x = ρZx for ρ ∈ (0, 1)
and let x be a solution. After that, the following is obtained:

|(x)(t))t1−γ | ≤ t1−γIα|f(s, x(s))|(t)

+
1

|Λ|

{
m∑
i=1

ci
ρiIqiIα|f(s, x(s))|(ηi) + bIα|f(s, x(s))|(T ) + d

}
≤ Φ(∥x∥)T γ−1Iαω(s)(T )

+
Φ(∥x∥)
|Λ|

{
m∑
i=1

|ci| ρiIqiIαω(s)(ηi) + |b|Iαω(s)(T )

}
+

|d|
|Λ|

≤ Φ(∥x∥)∥ω∥
{
Iα(1)(T ) +

T γ−1

|Λ|

{ m∑
i=1

|ci| ρiIqiIα(1)(ηi) + |b|Iα(1)(T )
}}

+
|d|
|Λ|

:= Φ(∥x∥)∥ω∥Ψ+
|d|
|Λ|

,

which leads to
∥x∥− |d|

|Λ|
∥ω∥Φ(∥x∥)Ψ ≤ 1. In view of (H5), there exists ϵ such that

∥x∥ ≠ ϵ. Let us set U = {x ∈ C1−γ(J,R) : ∥x∥ < ϵ}.
Obviously, the operator Z : U → C1−γ(J,R) is completely continuous. From

the choice of U , there is no x ∈ ∂U such that x = λZ(x) for some λ ∈ (0, 1). As
a result, by the Leray-Schauder’s nonlinear alternative theorem, Z has a fixed
point x ∈ U which is a solution of the (5)-(6). The proof is completed. □

3.4. EXISTENCE AND UNIQUENESS RESULT VIA BOYD-WONG NONLINEAR

CONTRACTION

Definition 3.7. Assume that E is a Banach space and T : E → E is a
mapping. If there exists a continuous nondecreasing function ψ : R+ → R+

such that ψ(0) = 0 and ψ(ε) < ε for all ε > 0 with the property:

∥Tx− Ty∥ ≤ ψ(∥x− y∥), ∀x, y ∈ E,

then we say that T is a nonlinear contraction.

Theorem 3.8 (Boyd-Wong Nonlinear Contraction). Suppose that E is a
Banach space and T : E → E is a nonlinear contraction. Then T has a
unique fixed point in E.

Theorem 3.9. Assume that f : [0, T ]× R → R is continuous function and
suppose that there exists H > 0 such that

(22) |f(t, x)− f(t, y)| ≤ z(t)
|x− y|

H + |x− y|
, for t ∈ J, x, y ∈ R,
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where z : [0, T ] → R+ is continuous and H the constant defined by

H = Iαz(T ) +
T γ−1

Λ

{
m∑
i=1

|ci| ρiIqiIαz(ηi) + |b|Iαz(T )

}
.

Then the fractional BVP (5)-(6) has a unique solution on J .

Proof. The operator Z is as defined in (21) and consider a continuous non-
decreasing function ψ : R+ → R+ such that ψ(ε) = Hε

H+ε ,∀ε > 0. Notice that

the function ψ satisfies ψ(0) = 0 and ψ(ε) < ε for all ε > 0. For any x, y ∈ τ ,
and for each t ∈ J , we obtain

|((Zx)(t)− (Zy)(t))t1−γ | ≤ sup
t∈[0,T ]

{
t1−γIα|f(s, x(s))− f(s, y(s))|(t)

+
1

|Λ|

{ m∑
i=1

ci
ρiIqiIα|f(s, x(s))− f(s, y(s))|(ηi)

+ bIα|f(s, x(s))− f(s, y(s))|(T )
}}

≤ T 1−γIα(z(t)
|x− y|

H + |x− y|
)(T )

+
1

Λ

{
m∑
i=1

|ci| ρiIqiIα(z(t)
|x− y|

H + |x− y|
)(ηi) +|b|Iα(z(t) |x− y|

H + |x− y|
)(T )

}

≤ ψ(∥x− y∥)
H

{
T 1−γIαz(T ) +

1

Λ

{ m∑
i=1

|ci| ρiIqiIαz(ηi) + |b|Iαz(T )
}}

:= ψ(∥x− y∥).

Then, we get ∥Zx−Zy∥ ≤ ψ(∥x− y∥). Hence, Z is a nonlinear contraction.
Thus, by Boyd-Wong nonlinear contraction theorem, the operator Z has a
unique fixed point which is the unique solution of the fractional BVP (5)-(6).
The proof is completed. □

4. EXAMPLE

Example 4.1. We consider the problem for Hilfer fractional differential
equations of the form

(23)

{
D

2
3x(t) = f(t, x(t)), (t, x) ∈ ([0, π],R),

I
2
6x(0) + x(π) =

(
1
6 I

1
4x(1)

)
.

Here

a = 1, b = 1, c = 1, d = 0,

α =
2

3
, β =

1

2
, γ =

4

6
, q =

1

4
,

ρ =
1

6
, η = 1, T = π, m = 1.
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With

f(t, x) =

(
sin2(πt)

(et + 10)

)(
|x|

|x|+ 1
+ 1

)
+

(√
3

4

)
, t ∈ [0, π],

clearly, the function f is continuous.
For each x ∈ R+ and t ∈ [0, π], we have

|f(t, x(t))− f(t, y(t))| ≤ 1

10
|x− y|.

Hence, the hypothesis (H1) is satisfied with L = 1
10 . Further,

Ψ:=

{
Tα−γ+1

Γ(α+ 1)
+

1

|Λ|

{
m∑
i=1

|ci|
Γ(α+ρi

ρi
)

Γ(α+ρiqi+ρi
ρi

)

ηα+ρiqi
i

ρqii
+ |b| Tα

Γ(α+ 1)

}}
≃ 5.003

and LΨ ≃ 0.5003 < 1. Therefore, by the conclusion of Theorem 3.3, it follows
that the problem (23) has a unique solution defined on [0, π].

5. CONCLUSION

In this paper, we have obtained some existence results for nonlinear Hilfer
fractional differential equations with Katugampola integral boundary condi-
tions by means of some standard fixed point theorems and nonlinear alterna-
tive of Leray-Schauder type. Though the technique applied to establish the
existence results for the problem at hand is a standard one, yet its exposition
in the present framework is new. Our results are new and generalize some
available results on the topic.

In all these cases we choose m = ρi = 1:
✓We remark that when a = 1, b = c1 = d = 0, problem (5)-(6) reduces to

the case initial value problem considered in [25].
✓We remark that when β = 1, c1 = 0, problem (5)-(6) reduces to the case

initial value problem considered in [6].
✓If we take a = b = β = q = 1, d = 0, in (5)-(6), then our results correspond

to the case integral boundary conditions considered in [7].
✓If we take a = β = q = 1, b = 0 , in (5)-(6), then our results correspond

to the case integral boundary conditions considered in [1].
✓If we take α = 1, β = δ = 0, in (6), then our results correspond to the

case fractional integral boundary conditions considered in [5].
✓By fixing (a = 0, b = 1) or (a = 1, b = 0) and c1 = 0, β = 1 in (6),

our results correspond to the ones for initial value problem take the form:
x(T ) = d or x(0) = d.

✓By fixing a = 1, b = c1 = 0, in (6), our results correspond to the ones for
initial value problem take the form: I1−γx(0) = d considered in [8].

✓In case we choose a = b = β = 1, d = c1 = 0, in (6), our results correspond
to anti-periodic type boundary conditions take the form: x(0) = −x(T ).

✓When, a = b = β = 1, d = 0, in (6), our results correspond to fractional
integral and anti-periodic type boundary conditions.
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On the other hand, if m ≥ 1 and ρ = 1, we have the case:
✓When, a = d = 0, in (6), our results correspond to a initial value problem

with m-point fractional integral conditions.
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