DIFFERENTIAL IDENTITIES IN PRIME RINGS

ABDELKARIM BOUA and AHMED Y. ABDELWANIS

Abstract

Let \mathcal{R} be a prime ring with center $Z(\mathcal{R})$ and $\alpha, \beta: \mathcal{R} \rightarrow \mathcal{R}$ be automorphisms. This paper is divided into two parts. The first tackles the notions of (generalized) skew derivations on \mathcal{R}, as the subject of the present study, several characterization theorems concerning commutativity of prime rings are obtained and an example proving the necessity of the primeness hypothesis of \mathcal{R} is given. The second part of the paper tackles the notions of symmetric Jordan bi (α, β)-derivations. In addition, the researchers illustrated that for a prime ring with $\operatorname{char}(\mathcal{R}) \neq 2$, every symmetric Jordan bi (α, α)-derivation D of \mathcal{R} is a symmetric bi (α, α)-derivation.

MSC 2010. 16W25, 16 U 80.
Key words. Prime rings, skew derivations, symmetric Jordan bi (α, β)-derivation.

1. INTRODUCTION

It is worth mentioning that the notion of derivation was extended to the notion of skew derivation as follows: an additive map $D: \mathcal{R} \rightarrow \mathcal{R}$ is called skew derivation (or skew derivation associated with α) if $D(x y)=D(x) y+\alpha(x) D(y)$ for all $x, y \in \mathcal{R}$ where $\alpha: \mathcal{R} \rightarrow \mathcal{R}$ is an automorphism. Also, the concepts of derivation, generalized derivation and skew derivation were extended to the concept of a generalized skew derivation as follows: an additive map $F: \mathcal{R} \rightarrow$ is called a generalized skew derivation (or generalized skew derivation associated with D and α) if $F(x y)=F(x) y+\alpha(x) D(y)$ for all $x, y \in \mathcal{R}$, where D is a skew derivation and $\alpha: \mathcal{R} \rightarrow \mathcal{R}$ is an automorphism. There has been a continuous enthusiasm concerning the connection between the commutativity of a prime ring \mathcal{R} and the behavior of a derivation or generalized derivation on \mathcal{R} (see [1], [2], where further references can be found).

Herstein, as in [7], defined the Jordan derivation on associative rings and proved that for prime rings of characteristic different from 2, a Jordan derivation is an ordinary derivation. Also, 1988, Bresar and Vukman gave an alternative proof of the result in [1]. As in [5], Bresar and Vukman defined left derivation from a ring to a left \mathcal{R} module Y and they showed the existence of a nonzero Jordan left derivation of \mathcal{R} into Y implies \mathcal{R} is commutative. The

[^0]concept of a symmetric bi-derivation was presented and studied by Maksa as in [8].

In the following, \mathcal{R} denotes an associative ring with center $Z(\mathcal{R})$. Additionally, we will write for all $x, y \in \mathcal{R}$, the symbol $[x, y]$ sign to the commutator $x y-y x$ and the symbol $x \circ y$ sign to the anti-commutator $x y+y x$. Our objective in this paper is to extend the result [3, Theorem 2.6] to generalized skew derivation, and also to generalize some results which exist in [6] in the case where D is a symmetric Jordan bi- (α, β)-derivation.

2. GENERALIZED SKEW DERIVATIONS IN PRIME RINGS

Let $\alpha: \mathcal{R} \rightarrow \mathcal{R}$ be an automorphism of \mathcal{R}. In this section, we suppose that d is a nonzero skew derivation associated with α and G is a generalized skew derivation associated with d and α. By abbreviation, we note that d is a nonzero skew derivation and G is a generalized skew derivation. Also we shall make use of the following identities without any specific mention:
(i) $[x y, t]=x[y, t]+[x, t] y$ for all $x, y, t \in \mathcal{R}$.
(ii) $[x, y t]=y[x, t]+[x, y] t$ for all $x, y, t \in \mathcal{R}$.

The following lemma is a generalization of a result of E. Posner for more details see [9, Lemma 3].

Lemma 2.1. Let \mathcal{R} be a prime ring. If $d: \mathcal{R} \rightarrow \mathcal{R}$ is a nonzero skew derivation of \mathcal{R} such that $[d(x), x]=0$ for all $x \in \mathcal{R}$, then \mathcal{R} is commutative.

Proof. Suppose that

$$
\begin{equation*}
[d(x), x]=0 \text { for all } x \in \mathcal{R} \tag{1}
\end{equation*}
$$

Linearizing (1), we obtain

$$
\begin{equation*}
[d(x), y]+[d(y), x]=0 \text { for all } x, y \in \mathcal{R} \tag{2}
\end{equation*}
$$

Taking $y x$ instead of y in (2), we get

$$
\begin{equation*}
[d(x), y x]+[d(y) x+\alpha(y) d(x), x]=0 \text { for all } x, y \in \mathcal{R} \tag{3}
\end{equation*}
$$

This can be rewritten as

$$
\begin{equation*}
[d(x), y] x+[d(y), x] x+[\alpha(y) d(x), x]=0 \text { for all } x, y \in \mathcal{R} \tag{4}
\end{equation*}
$$

Using (2), (4) becomes $[\alpha(y) d(x), x]=0$ for all $x, y \in \mathcal{R}$ which implies that $\alpha(y) d(x) x=x \alpha(y) d(x)$ for all $x, y \in \mathcal{R}$. Replacing y by $\alpha^{-1}(t) y$ where $t \in \mathcal{R}$ in the last relation and use it to get $t x \alpha(y) d(x)=x t \alpha(y) d(x)$ for all $x, y, t \in \mathcal{R}$. So $[x, t] \alpha(y) d(x)=0$ for all $x, y, t \in \mathcal{R}$. Since α is an automorphism of \mathcal{R}, we obtain $[x, t] \mathcal{R} d(x)=\{0\}$ for all $x, t \in \mathcal{R}$ and the primeness of \mathcal{R} yields that $x \in Z(\mathcal{R})$ or $d(x)=0$ for all $x \in \mathcal{R}$. Therefore, \mathcal{R} is the union of its additive subgroups $Z(\mathcal{R})$ and $H=\{x \in \mathcal{R} \mid d(x)=0\}$. But a group cannot be the union of two of its proper subgroups. Hence, either $R=Z(\mathcal{R})$ or $\mathcal{R}=H$. Since $d \neq 0$, we conclude that \mathcal{R} is commutative. Hence the proof is complete.

Theorem 2.2. Let \mathcal{R} be a prime ring with $\operatorname{char}(\mathcal{R}) \neq 2$. If G is a generalized skew derivation on \mathcal{R}, then the following assertions are equivalent:
(i) $G(x \circ y) \in Z(\mathcal{R})$ for all $x, y \in \mathcal{R}$,
(ii) \mathcal{R} is commutative.

Proof. It is obvious that (ii) \Rightarrow (i). Now we prove
(i) \Rightarrow (ii) Suppose that \mathcal{R} satisfies the following property

$$
\begin{equation*}
G(x \circ y) \in Z(\mathcal{R}) \text { for all } x, y \in \mathcal{R} \tag{5}
\end{equation*}
$$

First if $Z(\mathcal{R})=\{0\}$, so we get $G(x \circ y)=0$ for all $x, y \in \mathcal{R}$. Replacing y by $y x$ and using the fact that $(x \circ y x)=(x \circ y) x$ we get $0=\alpha(x \circ y) d(x)$ for all $x, y \in \mathcal{R}$. But α is an automorphism of \mathcal{R}, so we have $-x y \alpha^{-1}(d(x))=y x \alpha^{-1}(d(x))$ for all $x, y \in \mathcal{R}$. Again substituting y with $t y$ in the last expression and use it to obtain $[x, t] y \alpha^{-1}(d(x))=0$ for all $x, y, t \in \mathcal{R}$ i.e. $[x, t] \mathcal{R} \alpha^{-1}(d(x))=\{0\}$ for all $x, t \in \mathcal{R}$. Since \mathcal{R} is prime, we can easily arrive at $x \in Z(\mathcal{R})$ or $d(x)=0$ for all $x \in \mathcal{R}$. From the above we find that \mathcal{R} is commutative.

Second if $Z(\mathcal{R}) \neq\{0\}$, then there exists an element $z \in Z(\mathcal{R})-\{0\}$. Now from our hypotheses, we get $G\left(z^{2} \circ x\right) \in Z(\mathcal{R})$, and by using with $\operatorname{char}(\mathcal{R}) \neq 2$, we have

$$
\begin{equation*}
G\left(z^{2}\right) x+\alpha\left(z^{2}\right) d(x) \in Z(\mathcal{R}) \text { for all } x \in \mathcal{R} \tag{6}
\end{equation*}
$$

Thus $\left[G\left(z^{2}\right) x+\alpha\left(z^{2}\right) d(x), x\right]=0$ for all $x \in \mathcal{R}$, but $G\left(z^{2}\right) \in Z(\mathcal{R})$ from (5), so

$$
\begin{equation*}
G\left(z^{2}\right)[x, x]+\alpha\left(z^{2}\right)[d(x), x]=0 \text { for all } x \in \mathcal{R} . \tag{7}
\end{equation*}
$$

Since $\alpha\left(z^{2}\right) \in Z(\mathcal{R}),(7)$ becomes

$$
\begin{equation*}
\alpha\left(z^{2}\right) \mathcal{R}[d(x), x]=\{0\} \text { for all } x \in \mathcal{R} \tag{8}
\end{equation*}
$$

The fact that α is an automorphism of \mathcal{R} forces that $[d(x), x]=0$ for all $x \in \mathcal{R}$, and \mathcal{R} is commutative by Lemma 2.1.

It is clear that if G is a generalized skew derivation on \mathcal{R} associated with a nonzero skew derivation d, then $G \pm i d_{R}$ is also a generalized skew derivation on \mathcal{R} associated with d and α. In this case, when G is replaced by $G \pm i d_{R}$, we obtain the following result:

Theorem 2.3. Let \mathcal{R} be a prime ring with $\operatorname{char}(\mathcal{R}) \neq 2$. If G is a generalized skew derivation on \mathcal{R}, then the following assertions are equivalent:
(i) $G(x \circ y)-(x \circ y) \in Z(\mathcal{R})$ for all $x, y \in \mathcal{R}$.
(ii) $G(x \circ y)+(x \circ y) \in Z(\mathcal{R})$ for all $x, y \in \mathcal{R}$.
(iii) \mathcal{R} is commutative.

Notice that if we put $\alpha=i d_{\mathcal{R}}$ in the previous theorem we obtain:
Corollary 2.4 ([3, Theorem 2.6]). Let \mathcal{R} be a prime ring with $\operatorname{char}(\mathcal{R}) \neq 2$ and F is a generalized derivation on \mathcal{R} associated with a nonzero derivation d. Then the following assertions are equivalent:
(i) $F(x \circ y)-(x \circ y) \in Z(\mathcal{R})$ for all $x, y \in \mathcal{R}$.
(ii) $F(x \circ y)+(x \circ y) \in Z(\mathcal{R})$ for all $x, y \in \mathcal{R}$.
(iii) \mathcal{R} is commutative.

In the next example, we show that the condition " \mathcal{R} is prime" is necessary in Theorem 2.2 and Theorem 2.3.

Example 2.5. Let us defined \mathcal{R} and $G, d, \alpha: \mathcal{R} \rightarrow \mathcal{R}$ as follows:

$$
\begin{gathered}
\mathcal{R}=\left\{\left.\left(\begin{array}{lll}
0 & x & y \\
0 & 0 & z \\
0 & 0 & 0
\end{array}\right) \right\rvert\, x, y, z \in \mathbb{Z}\right\}, G\left(\begin{array}{lll}
0 & x & y \\
0 & 0 & z \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & x & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
d\left(\begin{array}{lll}
0 & x & y \\
0 & 0 & z \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & x & 0 \\
0 & 0 & z \\
0 & 0 & 0
\end{array}\right) \text { and } \alpha=-i d_{\mathcal{R}} .
\end{gathered}
$$

It is clear that \mathcal{R} is not prime with $\operatorname{char}(\mathcal{R}) \neq 2$. Moreover, d is a nonzero skew derivation of \mathcal{R} and G is a generalized skew derivation of \mathcal{R} associated with d and α such that
(i) $G(x \circ y) \in Z(\mathcal{R})$ for all $x, y \in \mathcal{R}$,
(ii) $G(x \circ y)-x \circ y \in Z(\mathcal{R})$ for all $x, y \in \mathcal{R}$,
(iii) $G(x \circ y)+x \circ y \in Z(\mathcal{R})$ for all $x, y \in \mathcal{R}$,
but \mathcal{R} is not commutative.

3. SOME RESULTS INVOLVING SYMMETRIC JORDAN BI- (α, β)-DERIVATION

In this section, we investigated some properties of symmetric bi (α, β) derivation and symmetric Jordan bi (α, β)-derivation for associative rings. We showed that for an associative prime ring with $\operatorname{char}(\mathcal{R}) \neq 2$ if D is a symmetric Jordan bi (α, α)-derivation, then D is symmetric bi (α, α)-derivation.

Definition 3.1. Let \mathcal{R} be an associative ring, $\alpha, \beta: \mathcal{R} \rightarrow \mathcal{R}$ are automorphisms and $D: \mathcal{R} \times \mathcal{R} \rightarrow \mathcal{R}$ be a symmetric bi-additive mapping. If

$$
D(x y, z)=\alpha(x) D(y, z)+D(x, z) \beta(y) \text { for all } x, y, z \in \mathcal{R}
$$

then D is called a symmetric bi- (α, β)-derivation.
Definition 3.2. Let \mathcal{R} be an associative ring, $\alpha, \beta: \mathcal{R} \rightarrow \mathcal{R}$ are automorphisms and $D: \mathcal{R} \times \mathcal{R} \rightarrow \mathcal{R}$ be a symmetric bi-additive mapping. If

$$
D\left(x^{2}, z\right)=\alpha(x) D(x, z)+D(x, z) \beta(x) \text { for all } x, z \in \mathcal{R}
$$

then D is called a symmetric Jordan bi- (α, β)-derivation.
Clearly, every symmetric bi- (α, β)-derivation is a symmetric Jordan bi(α, β)-derivation. But the converse is not true in general, see the following example:

EXAMPLE 3.3. Let S be a zero-square ring, a ring which verifies $a^{2}=0$ for all $a \in S$. It is obvious that every zero-square ring is anti-commutative, that is, $x y+y x=0$ for all $x, y \in S$.
Let

$$
\mathcal{R}=\left\{\left.\left(\begin{array}{ccc}
0 & a & b \\
0 & 0 & a \\
0 & 0 & 0
\end{array}\right) \right\rvert\, a, b \in S\right\}
$$

and define the maps $D: \mathcal{R} \times \mathcal{R} \rightarrow \mathcal{R}$ and $\alpha: \mathcal{R} \rightarrow \mathcal{R}$ as follows:

$$
\begin{gathered}
D\left(\left(\begin{array}{lll}
0 & a & b \\
0 & 0 & a \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & x & y \\
0 & 0 & x \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & a x & a y+b x \\
0 & 0 & a x \\
0 & 0 & 0
\end{array}\right)\right. \\
\alpha\left(\begin{array}{ccc}
0 & a & b \\
0 & 0 & a \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & -a & b \\
0 & 0 & -a \\
0 & 0 & 0
\end{array}\right), \beta=\alpha .
\end{gathered}
$$

It is easy to see that D is a symmetric Jordan bi- (α, β)-derivation which is not a symmetric bi- (α, β)-derivation.

Theorem 3.4. Let \mathcal{R} be a ring with $\operatorname{char}(\mathcal{R}) \neq 2, \alpha, \beta: \mathcal{R} \rightarrow \mathcal{R}$ are automorphisms and $D: \mathcal{R} \times \mathcal{R} \rightarrow \mathcal{R}$ be a symmetric Jordan bi- (α, β)-derivation. Then the following statements are hold for all a, $x, y, z \in \mathcal{R}$
(i) $D(x y+y x, z)=\alpha(x) D(y, z)+\alpha(y) D(x, z)+D(x, z) \beta(y)+D(y, z) \beta(x)$,
(ii) $D(x y x, z)=\alpha(x y) D(x, z)+\alpha(x) D(y, z) \beta(x)+D(x, z) \beta(y x)$,
(iii) $D(x a y+y a x, z)=\alpha(x a) D(y, z)+\alpha(y a) D(x, z)+\alpha(x) D(a, z) \beta(y)+$ $\alpha(y) D(a, z) \beta(x)+D(y, z) \beta(a x)+D(x, z) \beta(a y)$
(iv) $(D(a y, z)-\alpha(a) D(y, z)-D(a, z) \beta(y))(\beta(a y-y a))=0$

Proof. (i) Since $D\left(x^{2}, z\right)=\alpha(x) D(x, z)+D(x, z) \beta(x)$, we have

$$
\begin{aligned}
D\left((x+y)^{2}, z\right) & =\alpha(x+y) D(x+y, z)+D(x+y, z) \beta(x+y) \\
& =\alpha(x) D(x+y, z)+\alpha(y) D(x+y, z) \\
& +D(x+y, z) \beta(x)+D(x+y, z) \beta(y) \\
& =\alpha(x) D(x, z)+\alpha(x) D(y, z)+\alpha(y) D(x, z)+\alpha(y) D(y, z) \\
& +D(x, z) \beta(x)+D(y, z) \beta(x)+D(x, z) \beta(y)+D(y, z) \beta(y)
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
D\left((x+y)^{2}, z\right) & =D\left(x^{2}+x y+y x+y^{2}, z\right) \\
& =D\left(x^{2}, z\right)+D(x y+y x, z)+D\left(y^{2}, z\right) \\
& =\alpha(x) D(x, z)+D(x, z) \beta(x)+D(x y+y x, z) \\
& +\alpha(y) D(y, z)+D(y, z) \beta(y)
\end{aligned}
$$

Comparing the above two expressions, we get the first equality.
(ii) Putting $x y+y x$ instead of y in (i), we have

$$
D((x(x y+y x)+(x y+y x) x), z)=\alpha(x) D(x y+y x, z)+\alpha(x y+y x) D(x, z)
$$

$$
\begin{aligned}
& +D(x, z) \beta(x y+y x)+D(x y+y x, z) \beta(x) \\
& \quad=\alpha\left(x^{2}\right) D(y, z)+2 \alpha(x y) D(x, z) \\
& \quad+\alpha(x) D(x, z) \beta(y)+2 \alpha(x) D(y, z) \beta(x) \\
& \quad+\alpha(y x) D(x, z)+D(x, z) \beta(x y) \\
& \quad+\alpha(y) D(x, z) \beta(x)+2 D(x, z) \beta(y x)+D(y, z) \beta\left(x^{2}\right) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
D((x(x y+y x)+(x y+y x) x), z) & =D\left(x^{2} y+x y x+x y x+y x^{2}, z\right) \\
& =D\left(x^{2} y+y x^{2}, z\right)+2 D(x y x, z) \\
& =\alpha\left(x^{2}\right) D(y, z)+\beta(y) D\left(x^{2}, z\right) \\
& +D\left(x^{2}, z\right) \beta(y)+D(y, z) \beta\left(x^{2}\right) \\
& =\alpha\left(x^{2}\right) D(y, z)+\beta(y) \alpha(x) D(x, z) \\
& +\beta(y) D(x, z) \beta(x)+\alpha(x) D(x, z) \beta(y) \\
& +D(x, z) \beta(x y)+D(y, z) \beta\left(x^{2}\right) \\
& +2 D(x y x, z) .
\end{aligned}
$$

So by comparing the previous two expressions and using the 2-torsion freeness of \mathcal{R}, we obtain the (ii).
(iii) Putting $a+b$ instead of x in (ii), we get

$$
\begin{aligned}
D(((a+b) y(a+b), z) & =\alpha((a+b) y) D(a+b, z)+\alpha(a+b) D(y, z) \beta(a+b) \\
& +D(a+b, z) \beta(y(a+b)) \\
& =\alpha(a y) D(a, z)+\alpha(b y) D(a, z)+\alpha(a y) D(b, z) \\
& +\alpha(b y) D(b, z))+\alpha(a) D(y, z) \beta(a) \\
& +\alpha(a) D(y, z) \beta(b)+\alpha(b) D(y, z) \beta(a) \\
& +\alpha(b) D(y, z) \beta(b)+D(a, z) \beta(y a) \\
& +D(a, z) \beta(y b)+D(b, z) \beta(y a)+D(y, z) \beta(y b) .
\end{aligned}
$$

In another way,

$$
\begin{aligned}
D(((a+b) y(a+b), z) & =D(a y a+a y b+b a y+b y b, z) \\
& =D(a y a, z)+D(a y b+b a y, z)+D(b y b, z) \\
& =\alpha(a y) D(a, z)+\alpha(a) D(y, z) \beta(a)+D(a, z) \beta(y a) \\
& +D(a y b+b a y, z)+\alpha(b y) D(b, z)+\alpha(b) D(y, z) \beta(b) \\
& +D(b, z) \beta(y b) .
\end{aligned}
$$

Now by comparing the two equations, we get (iii).
(iv) Let us take $a y$ instead of b in (iii) and get:

$$
\begin{aligned}
D\left(\left((a y)(a y)+a y^{2} a, z\right)\right. & =\alpha(a y) D(a y, z)+\alpha\left(a y^{2}\right) D(a, z) \\
& +\alpha(a) D(y, z) \beta(a y)+\alpha(a y) D(y, z) \beta(a)
\end{aligned}
$$

$$
+D(a y, z) \beta(y a)+D(a, z) \beta(y a y) .
$$

But

$$
\begin{aligned}
D\left(\left((a y)(a y)+\left(a y^{2} a\right), z\right)\right. & =D\left((a y)^{2}, z\right)+D\left(a y^{2} a, z\right), \\
& =\alpha(a y) D(a y, z)+D(a y, z) \beta(a y) \\
& +\alpha\left(a y^{2}\right) D(a, z)+\alpha(a) D\left(y^{2}, z\right) \beta(b) \\
& +D(a, z) \beta\left(y^{2} a\right) .
\end{aligned}
$$

By comparing the previous two equations, we get

$$
(D(a y, z)-\alpha(a) D(y, z)-D(a, z) \beta(y))(\beta(a y-y a))=0,
$$

which finishes the proof.
For accommodation of utilization in an associative $\operatorname{ring} \mathcal{R}$ with $\operatorname{char}(\mathcal{R}) \neq 2$, we utilize the image for all $x, y, z \in \mathcal{R}$

$$
x_{\alpha, \beta}^{y}:=D(x . y, z)-\alpha(x) D(y, z)-D(x, z) \beta(y) .
$$

Lemma 3.5. Let \mathcal{R} be a ring with $\operatorname{char}(\mathcal{R}) \neq 2, \alpha, \beta: \mathcal{R} \rightarrow \mathcal{R}$ are automorphisms and $D: \mathcal{R} \times \mathcal{R} \rightarrow \mathcal{R}$ be a symmetric Jordan bi- (α, β)-derivation. Then the following statements are hold for all $a, b, x, y, z \in \mathcal{R}$
(i) $x_{\alpha, \beta}^{y}+y_{\alpha, \beta}^{x}=0$,
(ii) $x_{\alpha, \beta}^{a+b}=x_{\alpha, \beta}^{a}+x_{\alpha, \beta}^{b}$,
(iii) $\alpha(y x z-x y z) x_{\alpha, \beta}+x_{\alpha, \beta}^{y} \beta(z y x-z x y)=0$.

Proof. (i) Let $x, y, z \in \mathcal{R}$. We have

$$
\begin{aligned}
x_{\alpha, \beta}^{y}+y_{\alpha, \beta}^{x} & =D(x y, z)-\alpha(x) D(y, z)-D(x, z) \beta(y)+D(y x, z) \\
& -\alpha(y) D(x, z)-D(y, z) \beta(x) \\
& =D(x y+y x, z)-\alpha(x) D(y, z)-D(x, z) \beta(y) \\
& -\alpha(y) D(x, z)-D(y, z) \beta(x) \\
& =\alpha(x) D(y, z)+\alpha(y) D(x, z)+D(x, z) \beta(y)+D(y, z) \beta(x) \\
& -\alpha(x) D(y, z)-D(x, z) \beta(y)-\alpha(y) D(x, z)-D(y, z) \beta(x) \\
& =0 .
\end{aligned}
$$

(ii) Let $x, z, a, b \in \mathcal{R}$. We have

$$
\begin{aligned}
x_{\alpha, \beta}^{a+b} & =D(x(a+b), z)-\alpha(x) D(a+b, z)-D(x, z) \beta(a+b) \\
& =D(x a, z)+D(x b, z) \\
& -\alpha(x) D(a, z)-\alpha(x) D(b, z)-D(x, z) \beta(a)-D(x, z) \beta(b) .
\end{aligned}
$$

Using the definition of $x_{\alpha, \beta}^{y}$, we can easily arrive at $x_{\alpha, \beta}^{a+b}=x_{\alpha, \beta}^{a}+x_{\alpha, \beta}^{b}$.
(iii) Putting $w:=x(y z y) x+y(x z x) y, A:=y z y$ and $B:=x z x$ for every $x, y, z \in \mathcal{R}$, and using additivity and Theorem 3.4 (ii), we get
$D(w, t)=D(x(y z y) x+y(x z x) y, t)$,

$$
\begin{aligned}
& =D(x(y z y) x, t)+D(y(x z x) y, t) \\
& =D(x A x, t)+D(y B y, t) \\
& =\alpha(x A) D(x, t)+\alpha(x) D(A, t) \beta(x)+D(x, t) \beta(A x) \\
& +\alpha(y B) D(y, t)+\alpha(y) D(B, t) \beta(y)+D(y, t) \beta(B y), \\
& =\alpha(x y z y) D(x, t)+\alpha(x y z) D(y, t) \beta(x)+\alpha(x y) D(z, t) \beta(y x) \\
& +\alpha(x) D(y, t) \beta(z y x)+D(x, t) \beta(y z y x)+\alpha(y x z x) D(y, t) \\
& =\alpha(y x z) D(x, t) \beta(y)+\alpha(y x) D(z, t) \beta(x y) \\
& +\alpha(y) D(x, t) \beta(z x y)+D(y, t) \beta(x z x y) .
\end{aligned}
$$

Conversely, since $w:=(x y) z(y x)+(y x) z(x y)$, so by using Theorem 3.4 (iii), we get

$$
\begin{aligned}
D(w, t) & =D((x y) z(y x)+(y x) z(x y), t) \\
& =\alpha(x y z) D(y x, t)+\alpha(y x z) D(x y, t)+\alpha(x y) D(z, t) \beta(y x) \\
& +\alpha(y x) D(z, t) \beta(x y)+D(y x, t) \beta(z x y)+D(x y, t) \beta(z y x)
\end{aligned}
$$

By comparing the previous two equations, we get

$$
\alpha(y x z) x_{\alpha, \beta}^{y}+\alpha(x y z) y_{\alpha, \beta}^{x}+x_{\alpha, \beta}^{y} \beta(z y x)+y_{\alpha, \beta}^{x} \beta(z x y)=0 .
$$

Now by using $x_{\alpha, \beta}^{y}=-y_{\alpha, \beta}^{x}$, we obtain

$$
\alpha(y x z-x y z) x_{\alpha, \beta}+x_{\alpha, \beta}^{y} \beta(z y x-z x y)=0
$$

Thus the proof of this lemma is completed.
ThEOREM 3.6. Let \mathcal{R} be an associative prime ring with $\operatorname{char}(\mathcal{R}) \neq 2$ and $D: \mathcal{R} \times \mathcal{R} \rightarrow \mathcal{R}$ be a symmetric Jordan bi-($\alpha, \alpha)$-derivation. Then D is a symmetric bi- (α, α)-derivation.

Proof. Let x and y be fixed elements of \mathcal{R}. For the proof of this result, it is good to treat two cases $x y=y x$ and $x y \neq y x$.

For $x y=y x$, then $x, y \in Z(\mathcal{R})$. Using Theorem 3.1, we get

$$
\begin{aligned}
2 D(x y, z) & =D(x y+y x, z) \\
& =\alpha(x) D(y, z)+\alpha(y) D(x, z)+D(x, z) \alpha(y)+D(y, z) \alpha(x) \\
& =\alpha(x) D(y, z)+D(x, z) \alpha(y)+D(x, z) \alpha(y)+\alpha(x) D(y, z) \\
& =2(\alpha(x) D(y, z)+D(x, z) \alpha(y)) .
\end{aligned}
$$

Since $\operatorname{char}(\mathcal{R}) \neq 2$, it is obvious that $D(x y, z)=\alpha(x) D(y, z)+D(x, z) \alpha(y)$. So that D is symmetric bi-derivation.

If $x y \neq y x$, then using Lemma 1 , we can easily arrive at $x_{\alpha, \alpha}^{y}=0$, i.e., $D(x y, z)=\alpha(x) D(y, z)+D(x, z) \alpha(y)$. So that D is a bi- (α, α)-derivation.

Corollary 3.7. Let \mathcal{R} be an associative prime ring with $\operatorname{char}(\mathcal{R}) \neq 2$ and $D: \mathcal{R} \times \mathcal{R} \rightarrow \mathcal{R}$ be a symmetric Jordan bi-derivation. Then D is a symmetric bi-derivation.

REFERENCES

[1] M. Ashraf, A. Asma and A. Shakir, On Lie ideals and generalized (θ, ϕ)-derivations in prime rings, Comm. Algebra, 32 (2004), 2977-2985 .
[2] M. Ashraf and N. Rehman, On commutativity of rings with derivation, Results Math., 42 (2002), 3-8.
[3] M. Ashraf, N.-ur-Rehman and M. Rahman, On generalize derivations and commutativity of rings, Internat. J. Math., Game Theory, and Algebra, 18 (2008), 19-24.
[4] M. Bresar and J. Vukman, Jordan derivations on prime rings, Bull. Aust. Math. Soc., 37 (1988), 321-322.
[5] M. Bresar and J. Vukman, On left derivations and related mappings, Proc. Am. Math. Soc., 10 (1990), 7-16.
[6] Y. Çeven and Z. Çiloğlu, On symmetric Jordan and Jordan left bi-derivations of prime rings, Afr. Mat., 29 (2018), 689-698.
[7] I.N. Herstein, Jordan derivations of prime rings, Proc. Am. Math. Soc., 8 (1957), 11041110.
[8] G. Maksa, A remark on symmetric biadditive functions having nonnegative diagonalization, Glas. Mat., 15 (1980), 279-282.
[9] E. Posner, Commuting derivations in prime rings, Proc. Amer. Math. Soc., 8 (1957), 1093-1100.

Received January 23, 2020
Accepted August 31, 2020

Sidi Mohammed Ben Abdellah University Polydisciplinary Faculty LSI, Taza, Morocco
E-mail: abdelkarimboua@yahoo.fr

Cairo University
Faculty of Science
Department of Mathematics
Giza, Egypt
E-mail: ayunis@sci.cu.edu.eg

[^0]: The authors thank the referee for his helpful comments and suggestions.

