THE STRONG NORMAL SYSTEM OF SOME COMPACT RIGHT TOPOLOGICAL GROUPS

ZOHREH BAHRAMIAN and ALI JABBARI

Abstract

The aim of the present paper is to characterize the strong normal system of the Ellis groups of a well-known family of dynamical systems on the finite and infinite dimensional tori. MSC 2010. 43A60. Key words. Ellis group, strong normal system, CHART group, compact right topological group, Furstenberg-Ellis-Namioka Structure Theorem.

1. INTRODUCTION

A right topological group is a group G endowed with a topology τ such that for each $t \in G$ the mapping $\rho_{t}: G \rightarrow G$ defined by $\rho_{t}(s)=s t$ is continuous. On a right topological group G, the set of all continuous left translations $\lambda_{s}: G \rightarrow G$ (with $s \in G$), defined by $\lambda_{s}(t)=s t$, is called the topological center of G and is denoted by $\Lambda(G)$. A right topological group (G, τ) is said to be (countably) admissible if there is a (countable) subset S of $\Lambda(G)$ such that S is dense in G. By a CHART group we mean a compact Hausdorff admissible right topological group. The Furstenberg-Ellis-Namioka structure theorem deals with the existence of a (transfinite) sequence of closed normal subgroups in a CHART group G characterizing the structure of G explicitly $[2,3,8,9]$. The σ-topology, introduced by Namioka [9], on a right topological group (G, τ) is the quotient of the product topology $\tau \times \tau$ under the map $(G \times G, \tau \times \tau) \rightarrow G$ defined by $(x, y) \mapsto x^{-1} y$. For a σ-closed subgroup L of G let $N(L)$ denote the intersection of all σ-closed σ-neighborhoods of the identity element 1 in L, then $N(L)$ is a σ-closed normal subgroup of L. Furthermore, $N(G)$ is the smallest closed normal subgroup of G with the property that the quotient space $G / N(G)$ is a topological group. As a matter of fact, if we define $L_{0}=G, L_{1}=N(G), L_{2}=N\left(L_{1}\right), \ldots$, and $L_{\xi}=\cap_{\eta<\xi} L_{\eta}$ for any limit ordinal $\xi \leq \xi_{0}$ then the system of normal subgroups $\left\{L_{\xi}\right\}_{\xi}$ is exactly the strong normal system of G that is constructed in the Furstenberg-Ellis-Namioka structure theorem. Namioka [9] Showed that if a CHART group (G, τ) is countably admissible, and if \mathcal{U} denotes the family of

The authors thank the referee for his helpful comments and suggestions.
all τ-open neighborhoods of its identity 1 , then $N(G)=\bigcap\left\{U^{-1} U U^{-1} U, U \in\right.$ $\mathcal{U}\}$. Later, Moors and Namioka [8] removed the countability condition and showed that the above result remains true for admissible compact Hausdorff right topological groups. More generally, it is a result of Milnes and Pym [7] that for a σ-closed normal subgroup L of a CHART group G, the family $\left\{U^{-1} U \cap L, U \in \mathcal{U}\right\}$ is a base of open neighborhoods of 1 in (L, σ) and $N(L)$ is a normal subgroup of G and that $N(L)=\bigcap\left\{\left(U^{-1} U \cap L\right)^{-1}\left(U^{-1} U \cap L\right), U \in \mathcal{U}\right\}$. They also proved the existence of a unique left invariant Haar measure on any CHART group, by using the strong normal system in the Furstenberg-EllisNamioka structure theorem.

For a dynamical system (X, T), the closure of the set $\left\{T^{n}: X \rightarrow X, n \in\right.$ $\mathbb{Z}\}$ in X^{X} with the product topology is a semigroup with composition as multiplication, is called the enveloping semigroup of the system and is denoted by $\Sigma(X, T)$. A dynamical system (X, T) is called distal if for any two points x, y in X and any net $\left\{n_{\alpha}\right\}_{\alpha}$ in \mathbb{Z}, the identity $\lim _{\alpha} T^{n_{\alpha}} x=\lim _{\alpha} T^{n_{\alpha}} y$ implies that $x=y$. Ellis [1] showed that a dynamical system is distal if and only if its enveloping semigroup is a group, called the Ellis group of the system.

Assume that \mathbb{T} is the unit circle in the complex plane and let $E(\mathbb{T})$ denote the family of all endomorphisms of the group \mathbb{T}. Consider the dynamical systems $\left(\mathbb{T}^{k}, T_{k}\right)$ and $\left(\mathbb{T}^{\infty}, T_{\infty}\right)$ defined by

$$
\begin{aligned}
T_{k}\left(x_{1}, x_{2}, \ldots, x_{k}\right) & =\left(\lambda x_{1}, x_{1} x_{2}, \ldots, x_{k-1} x_{k}\right), \text { and } \\
T_{\infty}\left(x_{1}, x_{2}, x_{3}, \ldots\right) & =\left(\lambda x_{1}, x_{1} x_{2}, x_{2} x_{3}, \ldots\right),
\end{aligned}
$$

in which λ is an element of \mathbb{T}. Such systems are distal [4], hence their enveloping semigroups are actually groups. A characterization of the Ellis groups $\Sigma\left(\mathbb{T}^{\infty}, T_{\infty}\right), \Sigma\left(\mathbb{T}^{k}, T_{k}\right)$ (for irrational λ), and $\Sigma\left(\mathbb{T}^{k}, T_{k}\right)$ (for rational λ) as closed subgroups of $E\left(\mathbb{T}^{\infty}\right), E(\mathbb{T})^{k-1} \times \mathbb{T}$ and $E(\mathbb{T})^{k-1}$ is given in [6], [5] and [10], respectively, as follows: If $\sigma \in \Sigma\left(\mathbb{T}^{\infty}, T_{\infty}\right)$ and $\sigma=\lim _{\alpha} T^{n_{\alpha}}$, for some net $\left(n_{\alpha}\right)_{\alpha}$ in \mathbb{Z}, then for each $i=1,2, \ldots$ define $\theta_{i} \in E(\mathbb{T})$ by $\theta_{i}(x)=\lim _{\alpha} x^{P_{i}\left(n_{\alpha}\right)}$, for all $x \in \mathbb{T}$, in which for positive integer $n, P_{i}(n)=\binom{n}{i}$ and for negative integer $n, P_{i}(n)=(-1)^{i}\left({ }_{i}^{i-n-1}\right)$, where $1 \leq i \leq|n|$. Then $\Theta_{\infty}: \Sigma\left(\mathbb{T}^{\infty}, T_{\infty}\right) \rightarrow$ $E(\mathbb{T})^{\infty}$ defined by $\Theta_{\infty}(\Sigma)=\left(\theta_{1}, \theta_{2}, \theta_{3}, \ldots\right)$ is an embedding isomorphism onto its range. If $\lambda \in \mathbb{T}$ is irrational and $\sigma \in \Sigma\left(\mathbb{T}^{k}, T_{k}\right)$, and $\sigma=\lim _{\alpha} T^{n_{\alpha}}$, for some net $\left(n_{\alpha}\right)_{\alpha}$ in \mathbb{Z}, then define $\Theta_{k}: \Sigma\left(\mathbb{T}^{k}, T_{k}\right) \rightarrow E(\mathbb{T})^{k-1} \times \mathbb{T}$ by $\Theta_{k}(\sigma)=\left(\theta_{1}, \ldots, \theta_{k-1}, u\right)$, where $u=\lim _{\alpha} \lambda^{P_{k}\left(n_{\alpha}\right)}$ and $\theta_{1}, \ldots, \theta_{k-1}$ are defined as above and the mapping Θ_{k} is an embedding isomorphism onto its range. Finally, if $\lambda \in \mathbb{T}$ is rational and $\sigma \in \Sigma\left(\mathbb{T}^{k}, T_{k}\right)$, and $\sigma=\lim _{\alpha} T^{n_{\alpha}}$, for some net $\left(n_{\alpha}\right)_{\alpha}$ in \mathbb{Z}, then define $\Theta_{k}: \Sigma\left(\mathbb{T}^{k}, T_{k}\right) \rightarrow E(\mathbb{T})^{k-1}$ by $\Theta_{k}(\sigma)=\left(\theta_{1}, \ldots, \theta_{k-1}\right)$, where $\theta_{1}, \ldots, \theta_{k-1}$ are defined as above and the mapping Θ_{k} is an embedding isomorphism onto its range. Notice that the products in the groups $E(\mathbb{T})^{\infty}$, $E(\mathbb{T})^{k-1}$ and $E(\mathbb{T})^{k-1} \times \mathbb{T}$ are given by

$$
\left(\theta_{1}, \theta_{2}, \ldots\right)\left(\theta_{1}^{\prime}, \theta_{2}^{\prime}, \ldots\right)=\left(\varphi_{1}, \varphi_{2}, \ldots\right)
$$

$$
\begin{aligned}
\left(\theta_{1}, \ldots, \theta_{k-1}\right)\left(\theta_{1}^{\prime}, \ldots, \theta_{k-1}^{\prime}\right) & =\left(\varphi_{1}, \ldots, \varphi_{k-1}\right) \text { and } \\
\left(\theta_{1}, \ldots, \theta_{k-1}, u\right)\left(\theta_{1}^{\prime}, \ldots, \theta_{k-1}^{\prime}, u^{\prime}\right) & =\left(\varphi_{1}, \ldots, \varphi_{k-1}, z\right),
\end{aligned}
$$

where for $i=1,2, \ldots$, one has $\varphi_{i}=\prod_{j=0}^{i} \theta_{i-j} \circ \theta_{j}^{\prime}$ with $\theta_{i}, \theta_{i}^{\prime} \in E(\mathbb{T})$, and also $z=u^{\prime} \prod_{j=1}^{k-1} \theta_{k-j} \circ \theta_{j}^{\prime}(\lambda) u$, for $\theta_{i}, \theta_{i}^{\prime} \in E(\mathbb{T})$ and $u, u^{\prime} \in \mathbb{T}$.

In this paper, we characterize the Furstenberg-Ellis-Namioka structure of the groups $\Sigma\left(\mathbb{T}^{k}, T_{k}\right)$ and $\Sigma\left(\mathbb{T}^{\infty}, T_{\infty}\right)$ (Theorem 2.2) explicitly. In [11] the structure of the group $\Sigma\left(\mathbb{T}^{3}, T_{3}\right)$ is discussed in detail.

2. THE MAIN RESULT

Assume that \mathbb{Q} is the set of all rational numbers. Let $\mathbb{T}_{\mathbb{Q}}$ denote the torsion subgroup of \mathbb{T}, that is $\mathbb{T}_{\mathbb{Q}}=\left\{x \in \mathbb{T} ; x^{n}=1\right.$, for some $\left.n \in \mathbb{Z}\right\}=\left\{\mathrm{e}^{2 \pi \mathrm{i} q} ; q \in\right.$ $\mathbb{Q}\}$. For given $t \in \mathbb{T}$ and $U \subseteq \mathbb{T}$, put $B(t, U)=\{\varphi \in E(\mathbb{T}) ; \varphi(t) \in U\}$. Then the family $\{B(t, U), t \in \mathbb{T}, U \subseteq \mathbb{T}$ an open set containing 1$\}$ forms a sub-base of $E(\mathbb{T})$ around the element $1_{\mathbb{T}}$, where $1_{\mathbb{T}}(t)=1$, for all $t \in \mathbb{T}$. In fact, the family $\left\{B(t, U) ; t \in \mathbb{T}_{\mathbb{Q}}, U \subseteq \mathbb{T}\right.$ an open set containing 1$\}$ forms a sub-base of $E(\mathbb{T})$ around $1_{\mathbb{T}}[11]$. We need the next lemma in the sequel.

Lemma 2.1. Let $W=B\left(t_{1}, U_{1}\right) \times \cdots \times B\left(t_{k-1}, U_{k-1}\right) \times U$, where for $j=$ $1, \ldots, k-1, t_{j} \in \mathbb{T}_{\mathbb{Q}}$ and U and U_{j} are open sets in \mathbb{T} containing 1. Let $\left(1_{\mathbb{T}}, \psi_{2}, \ldots, \psi_{k-1}, v\right) \in E(\mathbb{T})^{k-1} \times \mathbb{T}$ with $\psi_{j}\left(t_{j}\right)=1$, for all $j=2,3, \ldots, k-1$, then $\left(1_{\mathbb{T}}, \psi_{2}, \ldots, \psi_{k-1}, v\right) \in W^{-1} W W^{-1} W$, where the product in $E(\mathbb{T})^{k-1} \times \mathbb{T}$ is given above with $\lambda \in \mathbb{T}-\mathbb{T}_{\mathbb{Q}}$.

Proof. Let $W \subset E(\mathbb{T})^{k-1} \times \mathbb{T}$ and $\left(1_{\mathbb{T}}, \psi_{2}, \ldots, \psi_{k-1}, v\right) \in E(\mathbb{T})^{k-1} \times \mathbb{T}$ be as stated in the lemma. Let $y=\left(\theta_{1}, \ldots, \theta_{k-1}, u\right) \in W^{-1} W$ be arbitrary. Let $x=\left(\theta_{1}^{\prime}, \ldots, \theta_{k-1}^{\prime}, u^{\prime}\right) \in W$ with $u^{\prime} v \in U$ and

$$
x y=\left(\theta_{1}^{\prime}, \ldots, \theta_{k-1}^{\prime}, u^{\prime}\right)\left(\theta_{1}, \ldots, \theta_{k-1}, u\right) \in W
$$

Then (by taking $\theta_{0}^{\prime}=i d_{\mathbb{T}}$) one has

$$
z=\left(\frac{1}{\theta_{1}}, \frac{\psi_{2}}{\left(\theta_{1}^{\prime} \circ \theta_{1}\right) \theta_{2}}, \ldots, \frac{\psi_{k-1}}{\prod_{r=1}^{k-1} \theta_{(k-1)-r}^{\prime} \circ \theta_{r}}, \frac{v}{u \prod_{r=1}^{k-1} \theta_{k-r}^{\prime} \circ \theta_{r}(\lambda)}\right) \in W^{-1} W
$$

In fact, it is enough to show that $(x y) z \in W$. A straightforward computation shows that

$$
(x y) z=\left(\theta_{1}^{\prime}, \theta_{2}^{\prime} \psi_{2}, \theta_{3}^{\prime} \psi_{3}, \ldots, \theta_{k-1}^{\prime} \psi_{k-1}, u^{\prime} v\right) \in W
$$

because $\psi_{j}\left(t_{j}\right)=1$, for $j=2,3, \ldots, k-1$. Thus we derive that $z \in W^{-1} W$ and hence $\left(1_{\mathbb{T}}, \psi_{2}, \ldots, \psi_{k-1}, v\right)=y z \in\left(W^{-1} W\right)\left(W^{-1} W\right)$.

We are ready to prove our main result. In what follows $\left(\mathbb{T}^{\infty}, T_{\infty}\right)$ and $\left(\mathbb{T}^{k}, T_{k}\right)$ are the dynamical systems stated in the introduction.

Theorem 2.2. (i) The strong normal system $\left\{N_{i}\right\}_{i \in \mathbb{N}}$ of $\Sigma\left(\mathbb{T}^{\infty}, T_{\infty}\right)$ is characterized by: $\left(\theta_{1}, \theta_{2}, \theta_{3}, \ldots\right) \in N_{i}\left(\Sigma\left(\mathbb{T}^{\infty}, T_{\infty}\right)\right)$ if and only if $\theta_{1}=\theta_{2}=\ldots=$ $\theta_{i}=1_{\mathbb{T}}$.
(ii) The strong normal system $\left\{N_{i}, 1 \leq i \leq k\right\}$ of $\Sigma\left(\mathbb{T}^{k}, T_{k}\right)$ with $\lambda \in \mathbb{T}-\mathbb{T}_{\mathbb{Q}}$ is characterized by: $\left(\theta_{1}, \ldots, \theta_{k-1}, u\right) \in N_{i}\left(\Sigma\left(\mathbb{T}^{k}, T_{k}\right)\right)$ if and only if $u \in \mathbb{T}$ is arbitrary and $\theta_{1}=\theta_{2}=\ldots=\theta_{i}=1_{\mathbb{T}}$ (for $1 \leq i \leq k-1$) and $N_{k}=$ $\left\{\left(1_{\mathbb{T}}, \ldots, 1_{\mathbb{T}}, 1\right)\right\}$.
(iii) The strong normal system $\left\{N_{i}, 1 \leq i \leq k-1\right\}$ of $\Sigma\left(\mathbb{T}^{k}, T_{k}\right)$ with $\lambda \in \mathbb{T}_{\mathbb{Q}}$ is characterized by: $\left(\theta_{1}, \ldots, \theta_{k-1}\right) \in N_{i}\left(\Sigma\left(\mathbb{T}^{k}, T_{k}\right)\right)$ if and only if $\theta_{1}=\theta_{2}=$ $\ldots=\theta_{i}=1_{\mathbb{T}}($ for $1 \leq i \leq k-1)$.

Proof. We prove part (ii) by induction. The other two cases are proved similarly. Fix $k \geq 2$ in \mathbb{N}. Let $\lambda \in \mathbb{T}$ be irrational, i.e. $\lambda \in \mathbb{T}-\mathbb{T}_{\mathbb{Q}}$. Define $\Theta_{k}: \Sigma\left(\mathbb{T}^{k}, T_{k}\right) \rightarrow E(\mathbb{T})^{k-1} \times \mathbb{T}$ by $\Theta_{k}(\sigma)=\left(\theta_{1}, \ldots, \theta_{k-1}, u\right)$, where $u=$ $\lim _{\alpha} \lambda^{P_{k}\left(n_{\alpha}\right)}$ and $\theta_{1}, \ldots, \theta_{k-1}$ are defined as in the introduction. The mapping Θ_{k} is an embedding isomorphism onto its range. Clearly $\Sigma=\Sigma\left(\mathbb{T}^{k}, T_{k}\right)$ is a CHART group. Thus
$N(\Sigma)=\bigcap(W \cap \Sigma)^{-1}(W \cap \Sigma)(W \cap \Sigma)^{-1}(W \cap \Sigma)=\bigcap\left(W^{-1} W \cap \Sigma\right)\left(W^{-1} W \cap \Sigma\right)$
where W runs over the local sub-basis \mathcal{W} of all open sets of the form

$$
W=B\left(t_{1}, U_{1}\right) \times \cdots \times B\left(t_{k-1}, U_{k-1} \times U\right),
$$

in which for $j=1, \ldots, k-1, t_{j} \in \mathbb{T}_{\mathbb{Q}}$ and U and U_{j} are open sets in \mathbb{T} containing 1. (Actually, it is easily verified that $(W \cap \Sigma)^{-1}(W \cap \Sigma)=W^{-1} W \cap \Sigma$.) Hence,

$$
N(\Sigma)=\bigcap_{W \in \mathcal{W}}\left(W^{-1} W \cap \Sigma\right)\left(W^{-1} W \cap \Sigma\right) .
$$

Let $\left(\psi_{1}, \ldots, \psi_{k-1}, v\right) \in N_{1}=N(\Sigma)$. Thus for $W \in \mathcal{W},\left(\psi_{1}, \ldots, \psi_{k-1}, v\right) \in$ $\left(W^{-1} W \cap \Sigma\right)\left(W^{-1} W \cap \Sigma\right)$. It follows that $\psi_{1}\left(t_{1}\right) \in U_{1}^{-1} U_{1} U_{1}^{-1} U_{1}$, for each $t_{1} \in \mathbb{T}_{\mathbb{Q}}$, and for any open set U_{1} in \mathbb{T} containing 1 . Hence $\psi_{1}=1_{\mathbb{T}}$. Therefore, $N(\Sigma)=N_{1} \subseteq\left\{\left(1_{\mathbb{T}}, \theta_{2}, \ldots, \theta_{k-1}, u\right) \in \Sigma ; u \in \mathbb{T}, \theta_{j} \in E(\mathbb{T}), j=2, \ldots, k-1\right\}$.
To prove the converse inclusion, let $\left(\psi_{1}, \psi_{2}, \ldots, \psi_{k-1}, v\right) \in \Sigma$ with $\psi_{1}=1_{\mathbb{T}}$. It follows from [10, Theorem 3.9 (iii)] that for each $j=1,2, \ldots, k-1$,

$$
\psi_{j}\left(t^{j!}\right)=\prod_{l=1}^{j} \psi_{1}^{(l)}\left(t^{s(j, l)}\right)=1, \text { for all } t \in \mathbb{T}_{\mathbb{Q}},
$$

in which $\psi_{1}^{(l)}$ denotes the composition of l instances of ψ_{1}, and $s(j, l)$ is a Stirling number of the first kind. Furthermore, for $1 \leq j \leq k-1$, we know that every element s of $\mathbb{T}_{\mathbb{Q}}$ can be written in the form $s=t^{j}$, for some $t \in \mathbb{T}_{\mathbb{Q}}$. Hence $\psi_{2}(t)=\ldots=\psi_{k-1}(t)=1$, for all $t \in \mathbb{T}_{\mathbb{Q}}$. Let $W=B\left(t_{1}, U_{1}\right) \times \cdots \times$ $B\left(t_{k-1}, U_{k-1}\right) \times U$, where for $j=1, \ldots, k-1 t_{j} \in \mathbb{T}_{\mathbb{Q}}$ and U and U_{j} are open sets in \mathbb{T} containing 1. By Lemma 2.1, $\left(1_{\mathbb{T}}, \psi_{2}, \ldots, \psi_{k-1}, v\right) \in\left(W^{-1} W \cap\right.$
$\Sigma)\left(W^{-1} W \cap \Sigma\right)$. In fact, it is easily verified that if $y=\left(\theta_{1}, \ldots, \theta_{k-1}, u\right) \in$ $W^{-1} W \cap \Sigma$, then

$$
z=\left(\frac{1}{\theta_{1}}, \frac{\psi_{2}}{\left(\theta_{1}^{\prime} \circ \theta_{1}\right) \theta_{2}}, \ldots, \frac{\psi_{k-1}}{\prod_{r=1}^{k-1} \theta_{(k-1)-r}^{\prime} \circ \theta_{r}}, \frac{v}{u \prod_{r=1}^{k-1} \theta_{k-r}^{\prime} \circ \theta_{r}(\lambda)}\right)
$$

is in $W^{-1} W \cap \Sigma$. Hence $\left(1_{\mathbb{T}}, \psi_{2}, \ldots, \psi_{k-1}, v\right)=y z \in\left(W^{-1} W \cap \Sigma\right)\left(W^{-1} W \cap \Sigma\right)$. It follows that $\left(1_{\mathbb{T}}, \psi_{2}, \ldots, \psi_{k-1}, v\right) \in N(\Sigma)$. Therefore
$N_{1}=N(\Sigma)=\left\{\left(1_{\mathbb{T}}, \theta_{2}, \ldots, \theta_{k-1}, u\right) \in \Sigma ; u \in \mathbb{T}, \theta_{j} \in E(\mathbb{T}), j=2, \ldots, k-1\right\}$.
To continue the proof by induction, fix $1 \leq i<k-1$, and assume that

$$
N_{i}=\left\{\left(1_{\mathbb{T}}, \ldots, 1_{\mathbb{T}}, \theta_{i+1}, \ldots, u\right) \in \Sigma ; u \in \mathbb{T}, \theta_{j} \in E(\mathbb{T}), j=i+1, \ldots, k-1\right\}
$$

We have to show that $N_{i+1}(\Sigma)$ coincides with the set

$$
\left\{\left(1_{\mathbb{T}}, \ldots, 1_{\mathbb{T}}, \theta_{i+2}, \ldots, \theta_{k-1}, u\right) \in \Sigma ; u \in \mathbb{T}, \theta_{j} \in E(\mathbb{T}), j=i+2, \ldots, k-1\right\}
$$

To this end, with relativization of the σ-topology of Σ to $N_{i}(\Sigma)$, recall that

$$
\begin{aligned}
N_{i+1}(\Sigma)=N\left(N_{i}(\Sigma)\right) & =\bigcap_{W \in \mathcal{W}}\left(W^{-1} W \cap N_{i}(\Sigma)\right)^{-1}\left(W^{-1} W \cap N_{i}(\Sigma)\right) \\
& =\bigcap_{W \in \mathcal{W}}\left(W^{-1} W \cap N_{i}(\Sigma)\right)\left(W^{-1} W \cap N_{i}(\Sigma)\right) .
\end{aligned}
$$

Similar to the proof given above, for the fact that

$$
N_{1}(\Sigma)=\left\{\left(1_{\mathbb{T}}, \theta_{2}, \ldots, \theta_{k-1}, u\right) \in \Sigma ; u \in \mathbb{T}, \theta_{j} \in E(\mathbb{T}), j=2, \ldots, k-1\right\}
$$

by looking at the $i+1$-th component of the product of two elements in $N_{i}(\Sigma)$, it is straightforward to show that $N_{i+1}(\Sigma)$ is contained in the set

$$
\left\{\left(1_{\mathbb{T}}, \ldots, 1_{\mathbb{T}}, \theta_{i+2}, \ldots, \theta_{k-1}, u\right) \in \Sigma ; u \in \mathbb{T}, \theta_{j} \in E(\mathbb{T}), j=i+2, \ldots, k-1\right\}
$$

For the converse inclusion, let $\left(\psi_{1}, \psi_{2}, \ldots, \psi_{k-1}, v\right) \in \Sigma$ with $\psi_{1}=\psi_{2}=\ldots=$ $\psi_{i+1}=1_{\mathbb{T}}$. We have to show that $\left(1_{\mathbb{T}}, \ldots, 1_{\mathbb{T}}, \psi_{i+2}, \ldots, \psi_{k-1}, v\right) \in N_{i+1}(\Sigma)$. Recall that for each $j=1,2, \ldots, k-1$,

$$
\psi_{j}\left(t^{j!}\right)=\prod_{l=1}^{j} \psi_{1}^{(l)}\left(t^{s(j, l)}\right)=1, \text { for all } t \in \mathbb{T}_{\mathbb{Q}}
$$

Hence

$$
\psi_{i+2}(t)=\ldots=\psi_{k-1}(t)=1, \text { for all } t \in \mathbb{T}_{\mathbb{Q}}
$$

Let $W=B\left(t_{1}, U_{1}\right) \times \cdots \times B\left(t_{k-1}, U_{k-1}\right) \times U$, where for $j=1, \ldots, k-1, t_{j} \in \mathbb{T}_{\mathbb{Q}}$ and U and U_{j} are open sets in \mathbb{T} containing 1 . To prove the result it is enough to show that

$$
\left(1_{\mathbb{T}}, \ldots, 1_{\mathbb{T}}, \psi_{i+2}, \ldots, \psi_{k-1}, v\right) \in\left(W^{-1} W \cap N_{i}(\Sigma)\right)\left(W^{-1} W \cap N_{i}(\Sigma)\right)
$$

If $y=\left(1_{\mathbb{T}}, \ldots, 1_{\mathbb{T}}, \theta_{i+1}, \ldots, \theta_{k-1}, u\right) \in W^{-1} W \cap N_{i}(\Sigma)$, then

$$
x y=\left(\theta_{1}^{\prime}, \ldots, \theta_{k-1}^{\prime}, u^{\prime}\right)\left(1_{\mathbb{T}}, \ldots, 1_{\mathbb{T}}, \theta_{i+1}, \ldots, \theta_{k-1}, u\right) \in W
$$

for some $x=\left(\theta_{1}^{\prime}, \ldots, \theta_{k-1}^{\prime}, u^{\prime}\right) \in W$. Let

$$
\begin{aligned}
z=\left(1_{\mathbb{T}}, \ldots, 1_{\mathbb{T}}\right. & \frac{\psi_{i+1}}{\prod_{r=1}^{i+1} \theta_{(i+1)-r}^{\prime} \circ \theta_{r}}, \ldots, \\
& \left.\frac{\psi_{k-1}}{\prod_{r=1}^{k-1} \theta_{(k-1)-r}^{\prime} \circ \theta_{r}}, \frac{v}{u \prod_{r=1}^{k-1} \theta_{k-r}^{\prime} \circ \theta_{r}(\lambda)}\right) .
\end{aligned}
$$

To show that $z \in W^{-1} W$, it is enough to show that $(x y) z \in W$. A straightforward computation shows that

$$
(x y) z=\left(\theta_{1}^{\prime}, \theta_{2}^{\prime}, \ldots, \theta_{i}^{\prime}, \theta_{i+1}^{\prime} \psi_{i+1}, \ldots, \theta_{3}^{\prime} \psi_{3}, \ldots, \theta_{k-1}^{\prime} \psi_{k-1}, u^{\prime} v\right)
$$

$\operatorname{But}\left(\theta_{1}^{\prime}, \theta_{2}^{\prime}, \ldots, \theta_{i}^{\prime}, \theta_{i+1}^{\prime} \psi_{i+1}, \ldots, \theta_{3}^{\prime} \psi_{3}, \ldots, \theta_{k-1}^{\prime} \psi_{k-1}, u^{\prime} v\right) \in W$, since $\psi_{j}\left(t_{j}\right)=$ 1 , for $j=i+1, \ldots, k-1$. Hence $z \in W^{-1} W \cap N_{i}(\Sigma)$. Furthermore,

$$
\left(1_{\mathbb{T}}, \ldots, 1_{\mathbb{T}}, \psi_{i+2}, \ldots, \psi_{k-1}, v\right)=y z \in\left(W^{-1} W \cap N_{i}(\Sigma)\right)\left(W^{-1} W \cap N_{i}(\Sigma)\right)
$$

Hence part (ii) follows by induction.

REFERENCES

[1] R. Ellis, Distal transformation groups, Pacific J. Math., 8 (1958), 401-405.
[2] R. Ellis, The Furstenberg structure theorem, Pacific J. Math., 76 (1978), 345-349.
[3] H. Furstenberg, The structure of distal flows, Amer. J. Math., 83 (1963), 477-515.
[4] F. Hahn, Skew product transformations and the algebras generated by $\exp (p(n))$, Illinois J. Math., 9 (1965), 178-190.
[5] A. Jabbari and I. Namioka, Ellis group and the topological center of the flow generated by the map $n \mapsto \lambda^{n^{k}}$, Milan J. Math., 78 (2010), 503-522.
[6] A. Jabbari and H.R.E. Vishki, Skew product dynamical systems, Ellis groups and topological center, Bull. Aust. Math. Soc., 79 (2009), 129-145.
[7] P. Milnes and J. Pym, Haar measure for compact right topological groups, Proc. Amer. Math. Soc., 114 (1992), 387-393.
[8] W.B. Moors and I. Namioka, Furstenberg's structure theorem via CHART groups, Ergodic Theory Dynam. Systems., 33 (2013), 954-968.
[9] I. Namioka, Right topological groups, distal flows and a fixed-point theorem, Math. System Theory, 6 (1972), 193-209.
[10] J. Rautio, Enveloping semigroups and quasi-discrete spectrum, Ergodic Theory Dynam. Systems, 36 (2016), 2627-2660.
[11] M. Zaman-Abadi and A. Jabbari, The Furstenberg-Ellis-Namioka structure theorem on a CHART group, Bull. Iranian Math. Soc., 44 (2018), 409-415.

Received October 27, 2019
Accepted June 2, 2020

Shahid Bahonar University of Kerman Faculty of Mathematics and Computer Department of Pure Mathematics

Kerman, Iran
E-mail: arshta@yahoo.com
E-mail: jabbari@uk.ac.ir

