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ON DISTRIBUTIVE LATTICES
OF LEFT k-ARCHIMEDEAN SEMIRINGS

TAPAS KUMAR MONDAL and ANJAN KUMAR BHUNIYA

Abstract. Here we introduce the notion of left k-Archimedean semirings which
generalize the notion of k-Archimedean semirings [1], and characterize the semir-
ings which are distributive lattices (chains) of left k-Archimedean semirings. A

semiring S is a left k-Archimedean semiring if for all a, b ∈ S, b ∈
√
Sa, the

k-radical of Sa. A semiring S is a distributive lattice of left k-Archimedean
semirings if and only if for all a, b ∈ S, ab ∈

√
Sa and S is a chain of left k-

Archimedean semirings if and only if
√
L is a completely prime k-ideal, for every

left k-ideal L of S.
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1. INTRODUCTION

In 1941, A. H. Clifford [4] first introduced and studied the semilattice decom-
positions of semigroups. The idea consists of decomposing a given semigroup S
into component subsemigroups which are of simpler structure, through a con-
gruence η on S such that the quotient semigroup S/η is the greatest semilattice
homomorphic image of S and each η-class is a component subsemigroup. This
well known result has since been generalized by M. S. Putcha, S. Bogdanović,
M. Ćirić, F. Kmet and many others [3], [7], [8].

Both the greatest semilattice decomposition of semigroups and the greatest
distributive lattice decomposition of semirings evolve out of the divisibility
relation. In an additive idempotent semiring S, we define a −→ b if a | bn
for some n ∈ N. The binary relation −→ is neither symmetric nor transitive
in general, which allows us to find the least distributive lattice congruence
as the least congruence from −→ in several ways. For example, symmetric
opening of the transitive closure and the transitive closure of the symmetric
opening of −→ give us different description of the least distributive lattice
congruence on S. Such variations in the description of the least distributive
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lattice congruence lead us to introduce some new kinds of semirings such as k-
Archimedean semirings. Considering left divisibility relation on a semiring as a
generalization of the divisibility relation gives us the idea of left k-Archimedean
semirings.

This article is a continuation of [1] where we introduced k-Archimedean
semirings and studied the semirings which are distributive lattices of k-Archi-
medean semirings. Here we introduce the left k-Archimedean semirings and
characterize the semirings which are distributive lattices (chains) of left k-
Archimedean semirings. The left k-ideals play a crucial role in characterizing
such semirings. A necessary and sufficient condition for a semiring S to be a
distributive lattice of left k-Archimedean semirings is that

√
L is a k-ideal of

S, for every left k-ideal L of S.
The preliminaries and prerequisites we need are discussed in section 2. In

section 3, several equivalent characterizations are made for the semirings which
are distributive lattices of left k-Archimedean semirings, which is the main
theorem of this article. In section 4, the semirings which are chains of left
k-Archimedean semirings are characterized. A semiring S is a chain of left
k-Archimedean semirings if and only if k-radical of every left k-ideal of S is a
completely prime k-ideal.

2. PRELIMINARIES

A semiring (S,+, ·) is an algebra with two binary operations + and · such
that both the additive reduct (S,+) and the multiplicative reduct (S, ·) are
semigroups and such that the following distributive laws hold:

x.(y + z) = x.y + x.z and (x+ y).z = x.z + y.z.

Every distributive lattice D can be regarded as a semiring (D,+, ·) such
that both the additive reduct (D,+) and the multiplicative reduct (D, ·) are
semilattices(that is, commutative and idempotent) together with the absorp-
tive law:

x+ x.y = x for all x, y ∈ S.
Now onwards, we write xy for x.y for x, y ∈ S. Thus a semiring is regarded
as a common generalization of both rings and distributive lattices. By SL+

we denote the variety of all semirings (S,+, ·) with (S,+) is a semilattice.
Throughout this paper, unless otherwise stated, S is always a semiring in
SL+. Let A be a nonempty subset of S. Then the k-closure of A in S is
defined by

A = {x ∈ S | x+ a1 = a2 for some a1, a2 ∈ A}.

We have, A ⊆ A and if (A,+) is a subsemigroup of (S,+) then A = {x ∈
S | ∃ a ∈ A such that x + a ∈ A} and A = A, since (S,+) is a semilattice.
A is called a k-set if A ⊆ A. An ideal (left, right) K of S is called a k-ideal
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(left, right) of S if it is a k-set. The principal left k-ideal generated by a ∈ S
is denoted by Lk(a) and is given by,

Lk(a) = {x ∈ S | x+ s1a+ a = s2a+ a, for some s1, s2 ∈ S}.
A nonempty subset A of S is called completely prime (resp. semiprimary) if
for x, y ∈ S, xy ∈ A implies x ∈ A or y ∈ A (resp. xn ∈ L or yn ∈ L, for
some n ∈ N). Let F be a subsemiring of S. F is called a left (right) filter
of S if: (i) for any a, b ∈ S, ab ∈ F ⇒ b ∈ F (a ∈ F ); and (ii) for any
a ∈ F, b ∈ S, a + b = b ⇒ b ∈ F . F is a filter of S if it is both a left and a
right filter of S. The least filter of S containing a is denoted by N(a). Let N
be the equivalence relation on S defined by

N = {(x, y) ∈ S × S | N(x) = N(y)}.
An equivalence relation ρ on a semiring S is called a congruence on S if for
a, b, c, d ∈ S,

aρb and cρd implies (a+ c)ρ(b+ d) and acρbd,

or, equivalently,

aρb implies (a+ c)ρ(b+ c), (c+ a)ρ(c+ b), acρbc, caρcb.

A congruence relation ρ on S is called a distributive lattice congruence on S if
the quotient semiring S/ρ is a distributive lattice. If C is a class of semirings
we refer to semirings in C as C-semirings. A semiring S is called a distributive
lattice(resp. chain) of C-semirings if there exists a congruence ρ on S such
that S/ρ is a distributive lattice(resp. chain) and each ρ-class is a semiring in
C[1], [2].

We refer to [6] for the information we need concerning semigroup theory
and to [2], [5] for notions concerning semiring theory.

Lemma 2.1. Let S be a semiring.
(a) For a, b ∈ S the following statements are equivalent:

(i) there are si ∈ S such that b+ s1a = s2a;
(ii) there are s ∈ S such that b+ sa = sa.

(b) If a, b, c, d ∈ S are such that c + xa = xa and d + yb = yb for some
x, y ∈ S, then there is some z ∈ S such that c+ za = za and d+ zb = zb.

Proof. (a) Since (ii)⇒(i) is clear, we assume (i). For x = s1 + s2 one gets
b+ s1a+ xa = s2a+ xa since (S,+) is a semilattice. Hence (i) implies (ii).

(b) Clearly, z = x+ y is such an element. �

In view of this lemma, it follows that for a ∈ S, we have

Lk(a) = {x ∈ S | x+ sa+ a = sa+ a, for some s ∈ S}.
It is interesting to note that Sa = {x ∈ S | x + sa = sa, for some s ∈ S} is
a left k-ideal of S but may not contain a. Let A be a non-empty subset of a
semiring S. Then we define the k-radical of A in S by

√
A = {x ∈ S | (∃ n ∈ N) xn ∈ A}.
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The notion of k-Archimedean semiring was introduced in [1]. Here we intro-
duce left k-Archimedean semiring.

Definition 2.2. A semiring S is called left k-Archimedean if for all a ∈ S,
S =

√
Sa.

Right k-Archimedean semiring can be defined dually. Now by Lemma 2.1,
a semiring S is left k-Archimedean if and only if for all a, b ∈ S there exist
n ∈ N and x ∈ S such that bn + xa = xa.

Example 2.3. Let A = {12 ,
1
3 ,

1
4 , .....}, define ’+’ and ’·’ on S = A × A by:

for all (a, b), (c, d) ∈ S,

(a, b) + (c, d) = (max{a, c},max{b, d}), (a, b) · (c, d) = (ac, b).

Then (S,+, ·) is a left k-Archimedean semiring. Now let (a, 12), (c, 13) ∈ S. If

possible, let there exist n ∈ N and (x, y) ∈ S satisfying (a, 12)n + (c, 13)(x, y) =

(c, 13)(x, y). This implies (an, 12)+(cx, 13) = (cx, 13), which gives max{an, cx} =

cx, max{12 ,
1
3} = 1

3 . But the last equality is absurd. Consequently, (S,+, ·) is
not a right k-Archimedean semiring.

A semiring S is called a distributive lattice (chain) of left k-Archimedean
semirings if there exists a congruence ρ on S such that S/ρ is a distributive
lattice (chain) and each ρ-class is a left k-Archimedean semiring.

3. DISTRIBUTIVE LATTICE OF LEFT K-ARCHIMEDEAN SEMIRINGS

In this section, we characterize the semirings which are distributive lattices
of left k-Archimedean semirings. In the subsequent proofs we will use that
from b + c = c for b, c ∈ S in any semiring S it follows that bn + cn = cn for
every n ∈ N. This claim can be proved by induction. Since the case n = 1 is
given, we may assume bn + cn = cn for some n ∈ N. Then bn+1 + cnb = cnb
and by adding cn+1 on both sides we get bn+1 + cn(b + c) = cn(b + c), and
hence bn+1 + cn+1 = cn+1.

Lemma 3.1. Let S be a semiring such that for all a, b ∈ S, ab ∈
√
Sa. Then

the following statements hold.

(1) For all a, b ∈ S,
√
Sab =

√
Sa ∩

√
Sb.

(2) For all a, b ∈ S,
√
Sab =

√
Sba.

(3) For all a, b ∈ S, b ∈ Sa implies that b ∈
√
Sa2r for every r ∈ N.

(4) For all a, b ∈ S, a ∈
√
Sb implies that

√
Sa ⊆

√
Sb.

(5) The least distributive lattice congruence η on S is given by: for all
a, b ∈ S,

aηb⇔ a ∈
√
Sb and b ∈

√
Sa.

Proof. (1) For any x ∈
√
Sab we have x ∈

√
Sb, and there are n ∈ N and

y ∈ S such that xn+yab = yab. Again, (yab)m ∈ Sya ⊆ Sa for some m ∈ N .

Then xnm + (yab)m = (yab)m implies that xnm ∈ Sa, that is, x ∈
√
Sa. Thus
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√
Sab ⊆

√
Sa ∩

√
Sb. Conversely, for x ∈

√
Sa ∩

√
Sb there exist n ∈ N and

s ∈ S such that xn + sa = sa and xn + sb = sb, and we get x2n + sasb = sasb.
Also there are m ∈ N and u ∈ S such that (bsas)m + ubsa = ubsa. Now we

have x2n(m+1) + sas(bsas)mb = sas(bsas)mb, that is, x2n(m+1) + sasubsab =

sasubsab, which yields x ∈
√
Sab. Thus

√
Sa∩

√
Sb ⊆

√
Sab. Hence the result

follows.
(2) Follows from (1).
(3) Let b ∈ Sa. Then b + sa = sa, for some s ∈ S. Also there are

n ∈ N and t ∈ S such that (as)n + ta = ta. Now bn+1 + (sa)n+1 = (sa)n+1

gives bn+1 + sta2 = sta2. This yields b ∈
√
Sa2. So the result is true for

r = 1. Let b ∈
√
Sa2k , for some k ∈ N. Then there exist n ∈ N and s ∈ S

such that bn + sa2
k

= sa2
k
. Also (a2

k
s)m + ta2

k
= ta2

k
, for some m ∈ N

and t ∈ S. Then we have bn(m+1) + s(a2
k
s)ma2

k
= s(a2

k
s)ma2

k
, that is,

bn(m+1) + sta2
k+1

= sta2
k+1

which gives b ∈
√
Sa2k+1 . Hence by the principle

of mathematical induction, b ∈
√
Sa2r for all r ∈ N.

(4) For a ∈
√
Sb we have m ∈ N and s ∈ S such that am + sb = sb. Let

x ∈
√
Sa. Then there is n ∈ N such that xn ∈ Sa. Suppose r ∈ N such that

2r > m. By (3), xn ∈
√
Sa2r so that there are p ∈ N and u ∈ S such that

xnp + ua2
r

= ua2
r

which gives xnp + ua2
r−msb = ua2

r−msb, that is, x ∈
√
Sb.

Hence the result.
(5) From [1, Theorem 3.4], we have the least distributive lattice congruence

η on S as follows:

η = ρ ∩ ρ−1, where ρ = σ∗ and aσb⇔ b ∈
√
SaS.

Let ξ be the binary relation on S defined by: for all a, b ∈ S,

aηb⇔ a ∈
√
Sb and b ∈

√
Sa.

We will show ξ = η. Clearly
√
Sa ⊆

√
SaS. Now let x ∈

√
SaS. Then there

are n ∈ N and s ∈ S such that xn + sas = sas. Again, sas ∈
√
Ssa ⊆

√
Sa,

which implies that (sas)m + ta = ta for some m ∈ N and t ∈ S. Then

xnm ∈ Sa, i.e. x ∈
√
Sa. Thus

√
SaS =

√
Sa. Now aηb implies that there

are c1, c2, .....cn, d1, d2, .....dm ∈ S such that aσc1, c1σc2, ...., cn−1σcn, cnσb and
bσd1, d1σd2, ...., dm−1σdm, dmσa. Then c1 ∈

√
Sa, c2 ∈

√
Sc1, ......, b ∈

√
Scn

and d1 ∈
√
Sa, d2 ∈

√
Sd1, ......, b ∈

√
Sdm so that b ∈

√
Sa and a ∈

√
Sb.

Thus aξb. Again aξb implies b ∈
√
Sa and a ∈

√
Sb which yields aσb and bσa,

that is, aηb. Thus ξ = η. �

Remark 3.2. Let S be a semiring and a ∈ S. Then Sa ⊆ Lk(a) and usually

this inclusion is proper. But, it is interesting to note that
√
Sa =

√
Lk(a).

Thus it follows that if for all a, b ∈ S, ab ∈
√
Sa then the least distributive

lattice congruence η on S is given by: for all a, b ∈ S,

aηb⇔ a ∈
√
Lk(b) and b ∈

√
Lk(a).
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Now we prove the main theorem of this article.

Theorem 3.3. The following conditions on a semiring S are equivalent:

(1) S is a distributive lattice of left k-Archimedean semirings;

(2) for all a, b ∈ S, b ∈ SaS implies that b ∈
√
Sa;

(3) for all a, b ∈ S, ab ∈
√
Sa;

(4) for all a, b ∈ S, ab ∈
√
Lk(a);

(5) for all a ∈ S,
√
Lk(a) is a k-ideal;

(6)
√
L is a k-ideal of S, for every left k-ideal L of S;

(7)
√
Sa is a k-ideal of S, for all a ∈ S;

(8) N(a) = {x ∈ S | a ∈
√
Sx}, for all a ∈ S;

(9) for all a, b ∈ S,
√
Sab =

√
Sa ∩

√
Sb.

Proof. Scheme of the proof: (1) ⇒ (2) ⇒ (3) ⇒ (1), (3) ⇒ (4) ⇒ (5) ⇒
(6)⇒ (7)⇒ (3), (3)⇔ (8), (3)⇔ (9).

(1)⇒ (2) : Let S be a distributive lattice D = S/ρ of left k-Archimedean
semirings Lα = aρ, α ∈ D and a ∈ S. Let a, b ∈ S be such that b ∈ SaS.
Then b+xax = xax for some x ∈ S. Now xaxρxa implies that xax, xa ∈ Lα,
for some α ∈ D. Since Lα is a left k-Archimedean semiring, there exist n ∈ N
and y ∈ Lα such that (xax)n + yxa = yxa. Now bn + (xax)n = (xax)n implies

that bn + yxa = yxa, and so b ∈
√
Sa.

(2)⇒ (3) : This follows from (ab)2 ∈ SaS and by (2).
(3) ⇒ (1) : By Lemma 3.1, the least distributive lattice congruence η on

S is given by: for a, b ∈ S,

aηb⇔ a ∈
√
Sb and b ∈

√
Sa.

Let L be an η class. Then L is a subsemiring of S, since η is a distributive
lattice congruence. Let a, b ∈ L. Then there exist n ∈ N and x ∈ S such that
an + xb = xb. Again axb ∈

√
Sax implies that there are m ∈ N and y ∈ S

such that (axb)m + yax = yax. Now we have an+1 + axb = axb which yields

am(n+1) + yax = yax so that a ∈
√
Sax. Also ax ∈

√
Sa. Thus aηax which

implies that ax ∈ L. Hence an+1 + axb = axb shows that a ∈
√
Lb. Thus L is

a left k-Archimedean semiring.
(3)⇒ (4) : Let a, b ∈ S. Then Sa ⊆ Lk(a) implies that ab ∈

√
Lk(a).

(4) ⇒ (5) : Let a, c ∈ S and u ∈
√
Lk(a). Then uc ∈

√
Lk(a), by (4)

of Lemma 3.1 and Remark 3.2. Also there exist n ∈ N and s ∈ S such that
un + sa + a = sa + a. Let r ∈ N be such that 2r > n. Now cu ∈ Su
implies that cu ∈

√
Su2r , whence there exist p ∈ N and y ∈ S such that

(cu)p + yu2
r

= yu2
r
. Then we have (cu)p + (yu2

r−ns+ yu2
r−n)a = (yu2

r−ns+

yu2
r−n)a to get cu ∈

√
Lk(a). Let u, v ∈

√
Lk(a). Then there exist n ∈ N

and t ∈ S such that un + ta = ta and vn + ta = ta. Now we can write
(u + a)n + sas + sa + as = un + sas + sa + as, for some s ∈ S. Then, for
x = (u + a)s + s(u + a) + (u + a)t + u + a we have (u + a)n+2 + xax = xax

which implies that u + v ∈
√
Lk(ax). Again ax ∈

√
Lk(a) implies that



7 On distributive lattices of left k-Archimedean semirings 185√
Lk(ax) ⊆

√
Lk(a), by Lemma 3.1. Thus u + a ∈

√
Lk(a) which again

implies that
√
Lk(u+ a) ⊆

√
Lk(a). Arguing in a similar way, we have,

(u+v)n+sus+su+us = vn+sus+su+us for some s ∈ S, which implies that
(u+v)n+2+w(u+a)w = w(u+a)w, where w = (u+v)s+s(u+v)+(u+v)t+u+

v. Thus u+v ∈
√
Lk((u+ a)w) ⊆

√
Lk(u+ a) ⊆

√
Lk(a) i.e. u+v ∈

√
Lk(a).

Thus
√
Lk(a) is an ideal of S. Let s ∈ S and l ∈

√
Lk(a) be such that s+l = l.

Then there exist n ∈ N and t ∈ S such that ln + ta + a = ta + a. Then
sn + ln = ln implies that sn + ta + a = ta + a, that is, s ∈

√
Lk(a). Thus√

Lk(a) is a k-ideal of S.

(5) ⇒ (6) : Let L be a left k-ideal of S. Let u, v ∈
√
L and s ∈ S. Then

there exist n ∈ N and l1, l2 ∈ L such that un + l1 = l1 and vn + l2 = l2. This
implies that un + l = l and vn + l = l, where l = l1 + l2 ∈ L. Now (5) shows

that su, us, u+ v ∈
√
Lk(l) ⊆

√
L. Thus

√
L is an ideal of S. Similarly as in

(4)⇒ (5), it can be proved that
√
L is a k-ideal of S.

(6)⇒ (7) : Let a ∈ S. Then Sa is a left k-ideal of S. Thus it follows that√
Sa is a k-ideal of S.
(7) ⇒ (3) : Let a, b ∈ S. Then a ∈

√
Sa and

√
Sa is a k-ideal of S. Thus

ab ∈
√
Sa.

(3) ⇒ (8) : Let a ∈ S, F = {x ∈ S | a ∈
√
Sx} and y, z ∈ F . Then there

exist n ∈ N and u ∈ S such that an + uy = uy and an + uz = uz. Then
an +u(y+ z) = u(y+ z) shows that y+ z ∈ F . Also a ∈

√
Sy∩

√
Sz =

√
Syz,

by Lemma 3.1, which implies that yz ∈ F . Thus F is a subsemiring of S. Now
let c, d ∈ S be such that cd ∈ F . Then a ∈

√
Scd =

√
Sc ∩

√
Sd. Hence c ∈ F

and d ∈ F . Let y ∈ F and c ∈ S be such that y + c = c. Then there exist
n ∈ N and t ∈ S such that an + ty = ty, which implies an + tc = tc. Hence
c ∈ F . Thus F is a filter of S containing a.

Let T be a filter of S containing a. Let x ∈ F . Then an + ux = ux, for
some n ∈ N, u ∈ S. Then an ∈ T implies that ux ∈ T , and so x ∈ T . Thus
N(a) = F = {x ∈ S | a ∈

√
Sx}.

(8)⇒ (3) : Let a, b ∈ S. Then ab ∈ N(ab) implies that a ∈ N(ab) = {x ∈
S | ab ∈

√
Sx}. Hence ab ∈

√
Sa.

(3)⇒ (9) : Follows from the Lemma 3.1.

(9) ⇒ (3) : Let a, b ∈ S. Then ab ∈
√
Sab =

√
Sa ∩

√
Sb ⊆

√
Sa implies

that ab ∈
√
Sa. �

4. CHAIN OF LEFT K-ARCHIMEDEAN SEMIRINGS

In this section we characterize the semirings which are chains of left k-
Archimedean semirings. Let (T,+, ·) be a distributive lattice with the partial
order defined by a ≤ b ⇔ a + b = b for all a, b ∈ S. It is well known that
(T,≤) is a chain if and only if ab = b or ab = a for all a, b ∈ T .

Theorem 4.1. The following conditions on a semiring S are equivalent:

(1) S is a chain of left k-Archimedean semirings;
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(2) S is a distributive lattice of left k-Archimedean semirings such that for
all a, b ∈ S,

b ∈
√
Sa or a ∈

√
Sb;

(3) S is a distributive lattice of left k-Archimedean semirings such that for
all a, b ∈ S,

b ∈
√
Lk(a) or a ∈

√
Lk(b);

(4) N(a) = {x ∈ S | a ∈
√
Sx}, and N(ab) = N(a) ∪ N(b), for all

a, b ∈ S;
(5) η = N is the least chain congruence on S such that each of its congru-

ence classes is a left k-Archimedean semiring.

Proof. Scheme of the proof: (1)⇒ (2)⇒ (4)⇒ (5)⇒ (1), (2)⇔ (3).
(1) ⇒ (2) : Let S be a chain C of left k-Archimedean semirings {Sα |

α ∈ C}. Then S is the distributive lattice C of left k-Archimedean semirings
{Sα | α ∈ C}. Let a, b ∈ S. Then there exist α, β ∈ C such that a ∈ Sα and
b ∈ Sβ. Then αβ = α or αβ = β, since C is a chain. If αβ = α then a, ab ∈ Sα.

So a ∈
√
Sab ⊆

√
Sb. If αβ = β, then b, ba ∈ Sβ and hence b ∈

√
Sba ⊆

√
Sa.

(2)⇒ (4) : For all a ∈ S, we have N(a) = {x ∈ S | a ∈
√
Sx}, by Theorem

3.3.
Let a, b ∈ S. Then a ∈

√
Sb or b ∈

√
Sa. If a ∈

√
Sb, then there exist

m ∈ N and x ∈ S such that am + xb = xb. Again there exist n ∈ N and y ∈ S
such that (bax)n + yba = yba, by Theorem 3.3. Then am + xb = xb implies

that a(m+1)(n+1) + axybab = axybab so that ab ∈ N(a). Thus N(ab) ⊆ N(a).

If b ∈
√
Sa, then there exist p ∈ N and z ∈ S such that bp + za = za which

implies that bp+1 + zab = zab. Thus ab ∈ N(b), and so N(ab) ⊆ N(b). Hence
N(ab) ⊆ N(a)∪N(b). Again ab ∈ N(ab) implies that a ∈ N(ab) and b ∈ N(ab)
which implies that N(a) ∪N(b) ⊆ N(ab). Thus N(ab) = N(a) ∪N(b).

(4) ⇒ (5) : It follows from Lemma 3.1 and Theorem 3.3 that the least
distributive lattice congruence η on S is given by: for a, b ∈ S, aηb ⇔ a ∈√
Sb and b ∈

√
Sa, and each η-class is a left k-Archimedean semiring. Then

we have

η = {(x, y) ∈ S × S | x ∈
√
Sy and y ∈

√
Sx}

= {(x, y) ∈ S × S | N(x) = N(y)} = N .
Again for all a, b ∈ S, we have ab ∈ N(ab) = N(a) ∪ N(b). This implies
that ab ∈ N(a) or ab ∈ N(b), that is, N(ab) ⊆ N(a) ⊆ N(a) ∪ N(b) =
N(ab) or N(ab) ⊆ N(b) ⊆ N(a) ∪ N(b) = N(ab). This gives abNa or abN b,
and thus N is a chain congruence.

(5)⇒ (1) : Follows directly.
(2)⇔ (3) : Follows from the Remark 3.2. �

Finally, we show that a necessary and sufficient condition for a semiring S
being a chain of left k-Archimedean semirings is that for every left k-ideal L
of S,

√
L is a completely prime k-ideal of S..
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Theorem 4.2. The following conditions on a semiring S are equivalent:

(1) S is a chain of left k-Archimedean semirings;

(2)
√
L is a completely prime k-ideal of S for every left k-ideal L of S;

(3)
√
Lk(a) is a completely prime k-ideal of S for every a ∈ S;

(4) for all a, b ∈ S,
√
Lk(ab) =

√
Lk(a)∩

√
Lk(b) and every left k-ideal of

S is semiprimary.

Proof. (1) ⇒ (2) : Let S be a chain C of left k-Archimedean semirings

{Sα | α ∈ C}. Consider a left k-ideal L of S. Then
√
L is a k-ideal of S, by

Theorem 3.3. Let x, y ∈ S such that xy ∈
√
L. Then there exists m ∈ N

such that u = (xy)m ∈ L = L. Suppose α, β ∈ C be such that x ∈ Sα and
y ∈ Sβ. Then αβ = α or αβ = β, since C is a chain. If αβ = α, then x, u ∈ Sα
implies that x ∈

√
Su ⊆

√
L and so x ∈

√
L. If αβ = β, then similarly we

have y ∈
√
L. Thus

√
L is a completely prime k-ideal of S.

(2)⇒ (3) : Obvious.

(3) ⇒ (4) : Let a, b ∈ S. Then
√
Lk(a),

√
Lk(b) and

√
Lk(ab) are com-

pletely prime k-ideals of S. Let x ∈
√
Lk(ab). Then there exist n ∈ N and

s ∈ S such that xn+sab = sab. Again, since Lk(a) is a k-ideal, sab ∈ Lk(a) and

so xn ∈ Lk(a), which implies that x ∈
√
Lk(a). Thus

√
Lk(ab) ⊆

√
Lk(a).

Similarly,
√
Lk(ab) ⊆

√
Lk(b). Thus

√
Lk(ab) ⊆

√
Lk(a) ∩

√
Lk(b). Let

z ∈
√
Lk(a)∩

√
Lk(b). Then there exist n ∈ N and s ∈ S such that zn+sa = sa

and zn + sb = sb. Now sabs ∈
√
Lk(ab) implies that sa ∈

√
Lk(ab) or

bs ∈
√
Lk(ab). If sa ∈

√
Lk(ab), then there exist r ∈ N, v ∈ S such that

(sa)r + vab = vab. Then znr + (sa)r = (sa)r implies that z ∈
√
Lk(ab),

and so
√
Lk(a) ∩

√
Lk(b) ⊆

√
Lk(ab). If bs ∈

√
Lk(ab), then similarly

we have
√
Lk(b) ⊆

√
Lk(ab). Hence

√
Lk(a) ∩

√
Lk(b) ⊆

√
Lk(ab). Thus√

Lk(ab) =
√
Lk(a) ∩

√
Lk(b).

Let L be a left k-ideal of S and a, b ∈ S be such that ab ∈ L. Then Lk(ab) ⊆
L. Now ab ∈

√
Lk(ab) implies an ∈ Lk(ab) or bn ∈ Lk(ab), for some n ∈ N so

that an ∈ L or bn ∈ L. Thus L is semiprimary.
(4) ⇒ (1) : Let a, b ∈ S. Then

√
Lk(ab) ⊆

√
Lk(a) implies that ab ∈√

Lk(a). Then by Lemma 3.1, Remark 3.2 and Theorem 3.3, it follows
that the least distributive lattice congruence η on S is given by : for all
a, b ∈ S, aηb ⇔ a ∈

√
Lk(b) and b ∈

√
Lk(a), and each η-class is a left k-

Archimedean semiring. Now ab ∈
√
Lk(ab) =

√
Lk(a) ∩

√
Lk(b) implies that

ab ∈
√
Lk(a) and ab ∈

√
Lk(b). Again ab ∈ Lk(ab) implies that am ∈ Lk(ab)

or bm ∈ Lk(ab), for some m ∈ N. Thus either ab ∈
√
Lk(a) and a ∈

√
Lk(ab),

or ab ∈
√
Lk(b) and b ∈

√
Lk(ab), whence aηab or bηab. Thus S/η is a

chain. �
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[3] M. Ćirić and S. Bogdanović, Semilattice decompositions of semigroups, Semigroup Fo-
rum, 52 (1996), 119–132.

[4] A. H. Clifford, Semigroups admitting relative inverses, Ann. of Math., 42 (1941), 1037–
1049.

[5] U. Hebisch and H. J. Weinert, Semirings: Algebraic Theory and Applications in Com-
puter Science, World Scientific, Singapore, 1998.

[6] J. M. Howie, Fundamentals in Semigroup Theory, Clarendon Press, 1995.
[7] F. Kmet, Radicals and their left ideal analogues in a semigroup, Math. Slovaca, 38

(1988), 139–145.
[8] M. S. Putcha, Semilattice decomposition of semigroups, Semigroup Forum, 6 (1973),

12–34.

Received May 5, 2019

Accepted November 3, 2019

Dr. Bhupendra Nath Dutta Smriti

Mahavidyalaya

Department of Mathematics

Hagobindapur - 713407, Purba Bardhaman

West Bengal, India

E-mail: tapumondal@gmail.com

Visva Bharati University

Department of Mathematics

Santiniketan - 731235, Birbhum

West Bengal, India

E-mail: anjankbhuniya@gmail.com


