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FRACTIONAL ORDER DIFFERENTIAL INCLUSIONS
ON AN UNBOUNDED DOMAIN WITH INFINITE DELAY

MOHAMED HELAL

Abstract. In this paper, we provide sufficient conditions for the existence of
solutions to initial value problems, for partial hyperbolic differential inclusions
of fractional order involving Caputo fractional derivative with infinite delay by
applying the nonlinear alternative of Frigon type for multivalued admissible con-
traction in Fréchet spaces.

MSC 2010. 26A33, 34K30, 34K37, 35R11.

Key words. Partial functional differential inclusion, fractional order, solution,
left-sided mixed Riemann-Liouville integral, Caputo fractional-order derivative,
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1. INTRODUCTION

The idea of fractional calculus and fractional order differential equations
and inclusions has been a subject of interest not only among mathematicians,
but also among physicists and engineers. Indeed, we can find numerous ap-
plications in rheology, control, porous media, viscoelasticity, electrochemistry,
electromagnetism, etc. [16, 21]. There has been a significant development in
ordinary and partial fractional differential equations in recent years; see the
monographs of Kilbas et al. [24], Miller and Ross [29], the papers of Agarwal
[1, 2], Belarbi et al. [6], Benchohra et al. [7, 8, 9, 10], Kilbas and Marzan [25],
Vityuk [31], Vityuk and Golushkov [32], and the references therein.

Differential inclusion is a generalization of the notion of an ordinary differ-
ential equation. Therefore all problems considered for differential equations,
that is, existence of solutions, continuation of solutions, dependence on initial
conditions and parameters, are present in the theory of differential inclusions.
Since a differential inclusion usually has many solutions starting at a given
point, new issues appear, such as investigation of topological properties of
the set of solutions, selection of solutions with given properties, evaluation of
the reachability sets, etc. To solve the above problems special mathematical
techniques were developed. Differential inclusions have been the subject of an
intensive study of many researchers in the recent decades, see [4, 5, 16, 23]
and the references therein.
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Differential delay equations and inclusions, or functional differential equa-
tions and inclusions, have been used in modeling scientific phenomena for
many years. Often, it has been assumed that the delay is either a fixed con-
stant or is given as an integral in which case it is called a distributed delay;
see for instance the books by Hale and Verduyn Lunel [18], Helal [19], Hino et
al. [22], Kolmanovskii and Myshkis [27], Lakshmikantham et al. [28], Samko
et al. [30] and the papers [17].

This paper initiates the existence of solutions for Darboux problem for frac-
tional partial differential inclusions in Fréchet spaces with infinite delay, for
the system

(1) (cDr
0u)(t, x) ∈ F (t, x, u(t,x)), if (t, x) ∈ J,

(2) u(t, x) = φ(t, x), if (t, x) ∈ J̃ ,

(3)

{
u(t, 0) = ϕ(t),

u(0, x) = ψ(x),
(t, x) ∈ J,

where ϕ(0) = ψ(0), J := R2, J̃ := (−∞,+∞) × (−∞,+∞)\[0,∞) × [0,∞),
cDr

0 is the standard Caputo’s fractional derivative of order r = (r1, r2) ∈
(0, 1] × (0, 1], F : J × B→P(Rn) is a multivalued map with compact valued,

P(Rn) is the family of all subsets of Rn, φ : J̃ → Rn is a given continuous
function with φ(t, 0) = ϕ(t), φ(0, x) = ψ(x) for each (t, x) ∈ J, ϕ : [0,∞) →
Rn, ψ : [0,∞)→ Rn are given absolutely continuous functions and B is called
a phase space that will be specified in Section 3.

We denote by u(t,x) the element of B defined by

u(t,x)(s, τ) = u(t+ s, x+ τ); (s, τ) ∈ (−∞, 0]× (−∞, 0],

here u(t,x)(·, ·) represents the history of the state u.
In this paper, we present existence results for the problem (1)–(3). Our aim

here is to give global existence results for the above problem. The fundamental
tools applied here are essentialy multivalued version of nonlinear alternative
of Frigon type [14].

2. PRELIMINARY LEMMAS

In this section we introduce notations, definitions, and preliminary facts
which are used throughout this paper. Let J0 = [0, n] × [0, n]; n > 0. By
C(J0,R) we denote the Banach space of all continuous functions from J0 into
Rn with the norm

‖u‖∞ = sup
(t,x)∈J0

‖u(t, x)‖,

where ‖ · ‖ denotes a suitable complete norm on Rn. As usual, by AC(J0,R)
we denote the space of absolutely continuous functions from J0 into Rn and
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L1(J0,R) is the space of Lebesgue-integrable functions u : J0 → Rn with the
norm

‖u‖L1 =

∫ n

0

∫ n

0
‖u(t, x)‖dtdx.

Now we give some definitions and properties of fractional calculus.

Definition 2.1 ([32]). Let r = (r1, r2) ∈ (0,∞) × (0,∞), θ = (0, 0) and
u ∈ L1(J,Rn). The left-sided mixed Riemann-Liouville integral of order r of
u is defined by

(Irθu)(t, x) =
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− τ)r2−1u(s, τ)dτds.

In particular,

(Iθθu)(t, x) = u(t, x), (Iσθ u)(t, x) =

∫ t

0

∫ x

0
u(s, τ)dτds;

for almost all (t, x) ∈ J , where σ = (1, 1).
For instance, Irθu exists for all r1, r2 ∈ (0,∞)× (0,∞), when u ∈ L1(J,Rn).

Note also that when u ∈ C(J,Rn), then (Irθu) ∈ C(J,Rn), moreover

(Irθu)(t, 0) = (Irθu)(0, x) = 0; (t, x) ∈ J.

Example 2.2. Let λ, ω ∈ (−1,∞) and r = (r1, r2) ∈ (0,∞)× (0,∞), then

Irθ t
λxω =

Γ(1 + λ)Γ(1 + ω)

Γ(1 + λ+ r1)Γ(1 + ω + r2)
tλ+r1xω+r2 , for almost all (t, x) ∈ J.

By 1 − r we mean (1 − r1, 1 − r2) ∈ [0, 1) × [0, 1). Denote by D2
tx := ∂2

∂t∂x ,
the mixed second order partial derivative.

Definition 2.3 ([32]). Let r ∈ (0, 1]× (0, 1] and u ∈ L1(J,Rn). The mixed
fractional Riemann-Liouville derivative of order r of u is defined by the ex-
pression

Dr
θu(t, x) = (D2

txI
1−r
θ u)(t, x)

and the Caputo fractional-order derivative of order r of u is defined by the
expression

(cDr
0u)(t, x) =

(
I1−rθ

∂2

∂t∂x
u

)
(t, x).

The case σ = (1, 1) is included and we have

(Dσ
θ u)(t, x) = (cDσ

θ u)(t, x) = (D2
txu)(t, x), for almost all (t, x) ∈ J.

Example 2.4. Let λ, ω ∈ (−1,∞) and r = (r1, r2) ∈ (0, 1]× (0, 1], then

Dr
θt
λxω =

Γ(1 + λ)Γ(1 + ω)

Γ(1 + λ− r1)Γ(1 + ω − r2)
tλ−r1xω−r2 , for almost all (t, x) ∈ J.

In the sequel we will make use of the following generalization of Gronwall’s
lemma for two independent variables and singular kernel.
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Lemma 2.5 ([20]). Let υ : J → [0,∞) be a real function and ω(·, ·) be a
nonnegative, locally integrable function on J. If there are constants c > 0 and
0 < r1, r2 < 1, such that

υ(t, x) ≤ ω(t, x) + c

∫ t

0

∫ x

0

υ(s, τ)

(t− s)r1(x− τ)r2
dτds,

then there exists a constant δ = δ(r1, r2), such that

υ(t, x) ≤ ω(t, x) + δc

∫ t

0

∫ x

0

ω(s, τ)

(t− s)r1(x− τ)r2
dτds,

for every (t, x) ∈ J.

3. THE PHASE SPACE B

The notation of the phase space B plays an important role in the study
of both qualitative and quantitative theory for functional differential equa-
tions. A usual choice is a semi-normed space satisfying suitable axioms, which
was introduced by Hale and Kato (see [17]). For further applications see for
instance the books [18, 22, 28] and their references.

For any (t, x) ∈ J denote E(t,x) := [0, t] × {0} ∪ {0} × [0, x], furthermore
in case t = a, x = b we simply write E. Consider the space (B, ‖(·, ·)‖B) is a
seminormed linear space of functions mapping (−∞, 0]× (−∞, 0] into Rn, and
satisfying the following fundamental axioms which were adapted from those
introduced by Hale and Kato for ordinary differential functional equations:

(A1) If y : (−∞, a] × (−∞, b] → Rn continuous on J and y(t,x) ∈ B, for all
(t, x) ∈ E, then there are constants H,K,M > 0 such that for any
(t, x) ∈ J the following conditions hold:

(i) y(t,x) is in B;
(ii) ‖y(t, x)‖ ≤ H‖y(t,x)‖B,
(iii) ‖y(t,x)‖B ≤ K sup(s,τ)∈[0,t]×[0,x] ‖y(s, τ)‖+M sup(s,τ)∈E(t,x)

‖y(s,τ)‖B,
(A2) For the function y(·, ·) in (A1), y(t,x) is a B-valued continuous function

on J.
(A3) The space B is complete.

Now, we present some examples of phase spaces [12, 11].

Example 3.1. Let B be the set of all functions φ : (−∞, 0]× (−∞, 0]→ Rn
which are continuous on [−α, 0]× [−β, 0], α, β ≥ 0, with the seminorm

‖φ‖B = sup
(s,τ)∈[−α,0]×[−β,0]

‖φ(s, τ)‖.

Then we have H = K = M = 1. The quotient space B̂ = B/‖.‖B is isometric
to the space C([−α, 0]× [−β, 0],Rn) of all continuous functions from [−α, 0]×
[−β, 0] into Rn with the supremum norm, this means that partial differential
functional equations with finite delay are included in our axiomatic model.
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Example 3.2. Let γ ∈ R and let Cγ be the set of all continuous functions

φ : (−∞, 0]×(−∞, 0]→ Rn for which a limit lim‖(s,τ)‖→∞ e
γ(s+τ)φ(s, τ) exists,

with the norm

‖φ‖Cγ = sup
(s,τ)∈(−∞,0]×(−∞,0]

eγ(s+τ)‖φ(s, τ)‖.

Then we have H = 1 and K = M = max{e−γ(a+b), 1}.

Example 3.3. Let α, β, γ ≥ 0 and let

‖φ‖CLγ = sup
(s,τ)∈[−α,0]×[−β,0]

‖φ(s, τ)‖+

∫ 0

−∞

∫ 0

−∞
eγ(s+τ)‖φ(s, τ)‖dτds.

be the seminorm for the space CLγ of all functions φ : (−∞, 0]×(−∞, 0]→ Rn
which are continuous on [−α, 0]× [−β, 0] measurable on (−∞,−α]×(−∞, 0]∪
(−∞, 0]× (−∞,−β], and such that ‖φ‖CLγ <∞. Then

H = 1, K =

∫ 0

−α

∫ 0

−β
eγ(s+τ)dτds, M = 2.

4. SOME PROPERTIES OF SET-VALUED MAPS

Let (X, ‖ · ‖) be a Banach space. Denote

• P(X) = {Y ⊂ X : Y 6= ∅},
• Pcl(X) = {Y ∈ P(X) : Y closed},
• Pb(X) = {Y ∈ P(X) : Y bounded},
• Pcp(X) = {Y ∈ P(X) : Y compact},
• Pcp,c(X) = {Y ∈ P(X) : Y compact and convex}.

For each u ∈ C(J,Rn), define the set of selections of F by

SF,u = {f ∈ L1(J,Rn) : f(t, x) ∈ F (t, x, u(t, x)) a.e. (t, x) ∈ J}.

Let (X, d) be a metric space induced from the normed space (X, ‖·‖). Consider
Hd : P(X)× P(X) −→ R+ ∪ {∞} given by

Hd(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(A, b)

}
,

where d(A, b) = inf
a∈A

d(a, b), d(a,B) = inf
b∈B

d(a, b). Then (Pb,cl(X), Hd) is a

metric space and (Pcl(X), Hd) is a generalized metric space (see [26]).

Definition 4.1. A multivalued map F : J × Rn → P(Rn) is said to be
Carathéodory if

(i) (t, x) 7−→ F (t, x, u) is measurable for each u ∈ Rn.
(ii) u 7−→ F (t, x, u) is upper semicontinuous for almost all (t, x) ∈ J.

F is said to be L1-Carathéodory if (i), (ii) and the following condition holds;
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(iii) for each c > 0, there exists σc ∈ L1(J,R+) such that

‖F (t, x, u)‖P = sup{‖f‖ : f ∈ F (t, x, u)}
≤ σc(t, x) for all ‖u‖ ≤ c and for a.e. (t, x) ∈ J.

For more details on multivalued maps see the books of Aubin and Cellina [4],
Aubin et al. [5], Deimling [13], Gorniewicz [16], Hu et al. [23] and Kisielewiecz
[26].

5. SOME PROPERTIES IN FRÉCHET SPACES

Let X be a Fréchet space with a family of semi-norms {‖ · ‖n}n∈N. We
assume that the family of semi-norms {‖ · ‖n} verifies:

‖u‖1 ≤ ‖u‖2 ≤ ‖u‖3 ≤ · · · for every u ∈ X.

If Y ⊂ X, we say that Y is bounded if for every n ∈ N, there exists Mn > 0
such that ‖v‖n ≤Mn, for all v ∈ Y . To X we associate a sequence of Banach
spaces {(Xn, ‖ · ‖n)} as follows: for every n ∈ N, we consider the equivalence
relation ∼n defined by: u ∼n v if and only if ‖u − v‖n = 0 for u, v ∈ X. We
denote Xn = (X|∼n , ‖ · ‖n) the quotient space, the completion of Xn with
respect to ‖ · ‖n. To every Y ⊂ X, we associate a sequence {Y n} of subsets
Y n ⊂ Xn as follows: for every u ∈ X, we denote [u]n the equivalence class of
u of subset Xn and we defined Y n = {[u]n : u ∈ Y }. We denote Y n, intn(Y n)
and ∂nY

n, respectively, the closure, the interior and the boundary of Y n with
respect to ‖ · ‖n in Xn. For more information about this subject see [15].

Definition 5.1. A multivalued map F : X −→ P(X) is called an admissi-
ble contraction with constant {kn}n∈N if for each n ∈ N there exists kn ∈ (0, 1)
such that

(i) Hd(F (u), F (v)) ≤ kn||u− v||n for all u, v ∈ X.
(ii) For every u ∈ X and every ε ∈ (0,∞)n, there exists v ∈ F (u) such

that ||u− v||n ≤ ||u− F (u)||n + εn for every n ∈ N.

Theorem 5.2 ([14, Nonlinear alternative of Frigon type]). Let X be a
Fréchet space and U an open neighborhood of the origin in X and let N : U →
P(X) be an admissible multivalued contraction. Assume that N is bounded.
Then one of the following statements is holds:

(C1) N has at least one fixed point.
(C2) There exist λ ∈ [0, 1) and u ∈ ∂U such that u ∈ λN(u).

6. EXISTENCE OF SOLUTIONS

In this section, we give our main existence result for problem (1)–(3). Before
starting and proving this result, we give what we mean by a solution of this
problem. Let the space

Ω := {u : R2 → Rn : u(t,x) ∈ B for (t, x) ∈ E and u|J ∈ C(J,Rn)}.
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Definition 6.1. A function u ∈ Ω is said to be a solution of (1)–(3) if
there exists a function f ∈ L1(J,Rn) with f(t, x) ∈ F (t, x, u(t,x)) such that
(cDr

0u)(t, x) = f(t, x) and u satisfies equations (3) on J and the condition (2)

on J̃ .

For the existence of solutions for the problem (1)–(3), we need the following
lemma.

Lemma 6.2. A function u ∈ Ω is a solution of problem (1)–(3) if and only
if u satisfies the equation

u(t, x) = z(t, x) +
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− τ)r2−1f(s, τ)dτds

for all (t, x) ∈ J and the condition (2) on J̃ , where z(t, x) = ϕ(t)+ψ(x)−ϕ(0).

For each n ∈ N, we consider the following sets,

Cn = {u : (−∞, n]× (−∞, n]→ Rn : u(t,x) ∈ B, u(t,x) = 0 for (t, x) ∈ E and
u|J0 ∈ C(J0,Rn)},

and C0 = {u ∈ Ω : u(t,x) = 0 for (t, x) ∈ E}. On C0 we define the semi-norms:

‖u‖n = sup
(t,x)∈E

‖u(t,x)‖+ sup
(t,x)∈J0

‖u(t, x)‖ = sup
(t,x)∈J0

‖u(t, x)‖, u ∈ Cn.

Then C0 is a Fréchet space with the family of semi-norms {‖u‖n}.

Further, we present conditions for the existence and uniqueness of a solution
of problem (1)–(3).

Theorem 6.3. Assume the following hypotheses hold:

(H1) F : J × B → Pcp,c(R) is a L1-Carathéodory map.
(H2) For each n ∈ N, there exists `n ∈ L1(J0,R+) such that

Hd(F (t, x, u), F (t, x, v)) ≤ `n(t, x)||u− v||B, for all u, v ∈ B.

If

(4)
kn`
∗
nn

r1+r2

Γ(r1 + 1)Γ(r2 + 1)
< 1,

where `∗n = sup
(t,x)∈J0

`n(t, x), then the problem (1)–(3) has at least one solution

on (−∞,∞)× (−∞,∞).

Proof. Transform the problem (1)–(3) into a fixed point problem. Consider
the operator A : Ω→P(Ω) defined by (Au)(t, x) = h ∈ Ω such that

h(t, x) =


φ(t, x), (t, x) ∈ J̃ ,
z(t, x)

+
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− τ)r2−1

×f(s, τ)dτds, f ∈ SF,u (t, x) ∈ J.
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Remark 6.4. For each u ∈ Ω, the set SF,u is nonempty since by (H1), F
has a mesurable selection.

Let v(·, ·) : (−∞,∞)× (−∞,∞)→ Rn be a function defined by

v(t, x) =

{
z(t, x), (t, x) ∈ J.
φ(t, x), (t, x) ∈ J̃ ,

Then v(t,x) = φ for all (t, x) ∈ E. For each w ∈ C(J,Rn) with w(t, x) = 0 and
for each (t, x) ∈ E we denote by w the function defined by

w(t, x) =

{
w(t, x) (t, x) ∈ J,
0, (t, x) ∈ J̃ .

If u(·, ·) satisfies the integral equation,

u(t, x) = z(t, x) +
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− τ)r2−1f(s, τ)dτds,

we can decompose u(·, ·) as u(t, x) = w(t, x)+v(t, x); (t, x) ∈ J, which implies
u(t,x) = w(t,x) + v(t,x), for every (t, x) ∈ J, and the function w(·, ·) satisfies

w(t, x) =
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− τ)r2−1f(s, τ)dτds,

where f ∈ SF,w+v. Let the operators A′ : C0 →P(C0) defined by (A′w)(t, x) =
h ∈ C0, such that

h(t, x) =
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− τ)r2−1f(s, τ)dτds,

where f ∈ SF,w(t,x)+v(t,x) . Obviously, that the operator A has a fixed point is

equivalent to A′ has a fixed point, and so we turn to prove that A′ has a fixed
point. We shall show that the operator A′ satisfies all conditions of Theorem
5.2 to prove that A′ has a fixed point.

Let w be a possible solution of the problem w = λA′(w) for some 0 < λ < 1.
This implies by (H2) that, for each (t, x) ∈ J0, we have

||w(t, x)|| ≤ 1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− τ)r2−1`n(s, τ)

× (1 + ||w(s,τ) + v(s,τ)||B)dτds

≤ `∗nn
r1+r2

Γ(r1 + 1)Γ(r2 + 1)

+
`∗n

Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− τ)r2−1||w(s,τ) + v(s,τ)||Bdτds.
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But

‖w(s,τ) + v(s,τ)‖B ≤ ‖w(s,τ)‖B + ‖v(s,τ)‖B
≤ Kn sup{w(s̃, τ̃) : (s̃, τ̃) ∈ [0, s]× [0, τ ]}
+Mn‖φ‖B +Kn‖φ(0, 0)‖.

(5)

If we name y(s, τ) the right hand side of (5), then we have ‖w(s,τ) + v(s,τ)‖B ≤
y(t, x), and therefore, for each (t, x) ∈ J0, we obtain

‖w(t, x)‖ ≤ `∗nn
r1+r2

Γ(r1 + 1)Γ(r2 + 1)

+
`∗n

Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− τ)r2−1y(s, τ)dτds.

(6)

Using the above inequality and the definition of y for each (t, x) ∈ J0, we have

y(t, x) ≤Mn‖φ‖B +Kn‖φ(0, 0)‖+
Kn`

∗
nn

r1+r2

Γ(r1 + 1)Γ(r2 + 1)

+
Kn`

∗
n

Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− τ)r2−1y(s, t)dτds.

Then by Lemma 2.5, there exists δ = δ(r1, r2) such that we have

‖y(t, x)‖ ≤ Rn + δ
K`∗n

Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− τ)r2−1Rndτds,

where

Rn = Mn‖φ‖B +Kn‖φ(0, 0)‖+
Kn`

∗
nn

r1+r2

Γ(r1 + 1)Γ(r2 + 1)
.

Hence

‖y‖n ≤ Rn +
RnδKn`

∗
nn

r1+r2

Γ(r1 + 1)Γ(r2 + 1)
:= R̃n.

Then (6) implies that

‖w‖n ≤
`∗nn

r1+r2

Γ(r1 + 1)Γ(r2 + 1)
(1 + R̃n) := R∗n.

Set U ′ = {w ∈ C0 : ‖w‖n ≤ R̃∗n + 1 for all n ∈ N}. We shall show that
A′ : U ′ →P(U ′) is a contraction and an admissible operator.

First, we prove that A′ is a contraction; that is, there exists γ < 1, such
that

Hd(A
′(w)−A′(w∗)) ≤ γ||w − w∗||n, for w,w∗ ∈ U ′.

Let w,w∗ ∈ U ′ and h ∈ A′(w). Then there exists f(t, x) ∈ F (t, x, w(s,τ)+v(s,τ))
such that for each (t, x) ∈ J0,

h(t, x) =
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− τ)r2−1f(s, τ)dτds.
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From (H2) it follows that

Hd(F (t, x, w(t,x) + v(t,x))− F (t, x, w∗(t,x) + v(t,x))) ≤ `n(t, x)||w(t,x) − w∗(t,x)||.

Hence there exists f∗ ∈ F (t, x, w∗(t,x) + v(t,x)) such that

|f(t, x)− f∗(t, x)| ≤ `n(t, x)||w(t,x) − w∗(t,x)||, ∀(t, x) ∈ J0.
Let us define ∀(t, x) ∈ J0,

h∗(t, x) =
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− τ)r2−1f∗(s, τ)dτds.

Then we have

|h(t, x)− h∗(t, x)| ≤ 1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− τ)r2−1

× |f(s, τ)− f∗(s, τ)|dτds

≤ 1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− τ)r2−1`n(s, τ)||w(s,τ) − w∗(s,τ)||

≤ 1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− τ)r2−1K`n(s, τ)

× sup
(s,τ)∈[0,t]×[0,x]

||w(s,τ) − w∗(s,τ)||dτds

≤ K`∗n||w − w∗||n
Γ(r1)Γ(r2)

∫ n

0

∫ n

0
(t− s)r1−1(x− τ)r2−1dτds,

where `∗n = sup
(s,τ)∈J0

`n(s, τ). Therefore

‖h− h∗‖n ≤
Kn`

∗
nn

r1+r2

Γ(r1 + 1)Γ(r2 + 1)
‖w − w∗‖n.

By an analogous relation, obtained by interchanging the roles of w and w∗, it
follows that

Hd(A
′(w)−A′(w∗)) ≤ Kn`

∗
nn

r1+r2

Γ(r1 + 1)Γ(r2 + 1)
||w − w∗||n.

So, A′ is a contraction.
Now, A′ : Cn →Pcp(Cn) is given by (A′w)(t, x) = h ∈ Cn such that

h(t, x) =

 φ(t, x), (t, x) ∈ J̃ ,
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t− s)r1−1(x− τ)r2−1f(s, τ)dτds, (t, x) ∈ J0,

where f ∈ SnF,u = {f ∈ L1(J0,Rn) : f(t, x) ∈ F (t, x, u(t,x)) a.e. (t, x) ∈ J0}.
From (H2) and since F is compact valued, we can prove that for every w ∈
Cn, A

′(w) ∈ Pcp(Cn) and there exists w∗ ∈ Cn such that w∗ ∈ A′(w∗) (for
the proof see Benchohra et al [7]). Let h ∈ Cn, w ∈ U ′ and ε > 0. Now,
if w̃ ∈ A′(w∗), then we have ||w∗ − w̃||n ≤ ||w∗ − h||n + ||w̃ − h||n. Since h
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is arbitrary we may supose that h ∈ B(w̃, ε) = {k ∈ Cn : ||k − w̃||n ≤ ε}.
Therefore,

||w∗ − w̃||n ≤ ||w∗ −A′(w∗)||n + ε.

On the other hand, if w̃ /∈ A′(w∗), then ||w̃ − A′(w∗)||n 6= 0. Since A′(w∗) is
compact, there exists v ∈ A′(w∗) such that ||w̃−A′(w∗)||n = ||w̃− v||n. Then
we have

||w∗ − v||n ≤ ||w∗ − h||n + ||v − h||n.
Therefore,

||w∗ − v||n ≤ ||w∗ −A′(w∗)||n + ε.

So, A′ is an admissible operator contraction. By our choice of U ′, there is
no w ∈ ∂U ′ such that w ∈ λA′(w), for λ ∈ (0, 1). As a consequence of the
nonlinear alternative of Frigon type, we deduce that A′ has a fixed point which
is a solution to problem (1)–(3). �
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