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A SHORT NOTE ON HARMONIC FUNCTIONS ON
SELF-SIMILAR STRUCTURES

BRIGITTE E. BRECKNER

Abstract. A sufficient condition is given concerning the harmonic structure
on a post critically finite self-similar structure K that ensures that harmonic
functions are not zero divisors in the algebra of real-valued continuous functions
on K.
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1. INTRODUCTION

In the last four decades, it turned out that fractals are appropriate mathe-
matical concepts to model many objects and phenomena both from nature and
from various domains of science (e.g., physics, mechanics, chemistry, biology,
economics, etc.). This motivated the efforts done by many mathematicians to
develop an analysis on fractals. An overview of the foundations and of differ-
ent approaches that characterize this new domain can be found, for instance,
in the introductions of the monographs [10] and [13].

Important contributions in developing a suitable framework for the study
of PDEs on fractals, i.e., in defining Sobolev-type spaces and Laplace-type
operators on fractals, have been brought by J. Kigami. In the pioneering
paper [8], Kigami founded his theory in case of the Sierpinski gasket (SG
for short) in Rn. This paper originated many subsequent studies devoted to
elliptic equations on the SG. The papers [3-7], [11], [12] are only few examples
in this sense.

Later (in [9] and [10]), Kigami generalized his approach to so-called post
critically finite self-similar structures. A central concept in Kigami’s theory
is that of harmonic structure, and the related concept of harmonic function.
Harmonic functions have finite energy (and hence belong to the Soboev-type
space H1) and can be constructed by an inductive procedure involving the
harmonic structure. The starting point for the present note was [2], where
it is shown that harmonic functions defined on the SG in Rn are not zero
divisors in the algebra of real-valued continuous functions on the SG (as it
is pointed out in [2], this property has connections with aspects studied in
[3]). More exactly, taking into account that the SG is a typical example of a
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post critically finite (p. c. f. for short) self-similar structure, the question that
naturally arises is whether a result similar to that mentioned before for the SG
is valid in the more general setting of p. c. f. self-similar structures. The main
tool used in [2] is the harmonic extension procedure on the SG. In the general
setting of p. c. f. self-similar structures, the harmonic extension procedure is
included in the harmonic structure. Thus the above mentioned question can
be formulated in a more precise manner as

(Q) What property of the harmonic structure on a p. c. f. self-similar struc-
ture K is responsible for the fact that harmonic functions on K are
not zero divisors in the algebra of real-valued continuous functions on
K?

The aim of the present paper is to give an answer to (Q). More exactly,
in Theorem 3.4 below there is given a sufficient condition on the harmonic
structure that prevents harmonic functions from being zero divisors. As it is
pointed out in the last section, this condition is fulfilled in case of the SG, thus
the main result of [2] can be obtained from Theorem 3.4.

Notations. We denote by N the set of natural numbers {0, 1, 2, . . . } and by
N∗ := N \ {0} the set of positive naturals. Furthermore, if K is a nonempty
compact topological space, we denote by C(K) the (real) algebra of real-valued
continuous functions on K.

2. PRELIMINARIES

In order to make the paper self-contained, we recall some basic facts from
[10] concerning the framework we are working in.

Throughout the paper, S is a non-empty finite set and t is a real number
in the interval (0, 1). First, we introduce the following notations:
• for m ∈ N∗, let Wm := Sm be the set of words of length m with symbols

from S;
• for m = 0, let W0 := {∅} and call ∅ the empty word (of length 0);
• W∗ :=

⋃
m∈NWm;

• Σ := SN∗ is the set of sequences with elements in S;
• for i ∈ S, define σi : Σ → Σ by σi(ω1, ω2, . . . ) = (i, ω1, ω2, . . . ), for all

(ω1, ω2, . . . ) ∈ Σ;
• σ : Σ→Σ stands for the left-shift operator, i.e., σ(ω1, ω2, . . . )=(ω2, ω3, . . . ),

for all (ω1, ω2, . . . ) ∈ Σ;
• for ω = (ω1, ω2, . . . ), τ = (τ1, τ2, . . . ) ∈ Σ with ω 6= τ , put

s(ω, τ) := min{m ∈ N∗ | ωm 6= τm} − 1;

• dt : Σ× Σ→ R is defined by

(2.1) dt(ω, τ) =

{
ts(ω,τ), if ω 6= τ
0, if ω = τ.
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It is known (see, e.g., [10, Theorem 1.2.2]) that (Σ, dt) is a compact metric
space. In the sequel, Σ is considered to be endowed with the metric dt.

Definition 2.1. Let K be a nonempty compact metric space and let
{fi : K → K}i∈S be a family of continuous injections. Then (K,S, {fi}i∈S) is
called a self-similar structure if there exists a continuous surjection π : Σ→ K
such that

(2.2) fi ◦ π = π ◦ σi, ∀i ∈ S.
In this case, for simplicity, often K itself is called a self-similar structure.

If L := (K,S, {fi}i∈S) is a self-similar structure, we set

CL,K :=
⋃
i,j∈S
i6=j

(fi(K) ∩ fj(K)), CL := π−1(CL,K), PL :=
⋃
n∈N∗

σn(CL).

Definition 2.2. The self-similar structure L = (K,S, {fi}i∈S) is called post
critically finite (p. c. f. for short) if the set PL is finite.

In what follows, L = (K,S, {fi}i∈S) will stand for a p. c. f. self-similar
structure, and K is assumed to be connected. (Characterizations for the
connectivity of K are presented in [10, section 1.6 ].)

We introduce further notations:
• for w ∈W∗, let fw : K → K be defined by

fw =

{
idK , if w = ∅
fw1 ◦ · · · ◦ fwm , if w = (w1, . . . , wm) ∈Wm, with m ∈ N∗;

• V0 := π(PL), Vm :=
⋃
w∈Wm

fw(V0), for all m ∈ N∗.

Remark 2.3. Since L is p. c. f., the sets Vm, m ∈ N, are finite.

We assume throughout the paper that V0 6= ∅. We also recall from [10,
Lemma 1.3.11] that

(2.3) Vm ⊆ Vm+1, ∀ m ∈ N,
and that the set

(2.4) V∗ :=
⋃
m∈N

Vm

is dense in K.
Without entering into the (quite technical details) of the notion of harmonic

structure on the p. c. f. self-similar structure L, we assume further that HL is a
harmonic structure on L. It is known from [10, section 3.1] that this harmonic
structure naturally induces a sequence (Hm)m∈N of Laplacians, where Hm is
a Laplacian on Vm, for every m ∈ N. (For the definition of a Laplacian on a
finite set we refer, e.g., to [10, Definition 2.1.2 ].)

The following result, in whose statement we use the notations from above,
is a consequence of [10, Proposition 3.2.1 and Theorem 3.2.4].
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Theorem 2.4. For any ρ : V0 → R there exists a unique u ∈ C(K) such
that {

(Hmu)|Vm\V0 = 0, ∀ m ≥ 1,
u|V0 = ρ.

The function u : K → R in the above theorem is the harmonic function with
boundary value ρ. Every function in C(K), obtained according to Theorem
2.4 from a real-valued function on V0, is called a harmonic function on K. We
denote by H(K) the set of harmonic functions on K.

Notation. For a nonempty finite set X, we denote by `(X) the (real) vector
space of real-valued functions defined on X.

Finally, we introduce certain operators on `(V0) which will play an impor-
tant role in the next section. For this, we denote first, for every i ∈ S and
every v ∈ `(V0), by ṽ ∈ `(V1) the (unique) map (actually an extension of v)
satisfying the conditions

ṽ|V0 = v and (H1ṽ)|V1\V0 = 0.

In order to define the above mentioned operators on `(V0), we identify, for
every w ∈W∗, the sets `(V0) and `(fw(V0)) through the injective map fw (i.e.,
u : V0 → R will be identified with ū : fw(V0) → R, where ū(fw(p)) = u(p),
for every p ∈ V0). For every i ∈ S, let now Ai : `(V0) → `(V0) be the linear
operator defined by

(2.5) Aiv = ṽ|fi(V0), ∀ v ∈ `(V0).
The proof of [10, Theorem 3.2.4] yields in particular the following result

concerning harmonic functions. Again, we keep in the statement of this result
the notations introduced above.

Theorem 2.5. Let ρ ∈ `(V0) and let u ∈ H(K) be the harmonic function
with boundary value ρ. If m ∈ N∗ and w = (w1, . . . , wm) ∈ Wm, then the
following equality holds

u|fw(V0) = AwmAwm−1 . . . Aw1ρ.

3. MAIN RESULTS

We keep the notations from the previous section for a p. c. f. self-similar
structure L = (K,S, {fi}i∈S) and for a harmonic structure HL on L.

Definition 3.1. The harmonic structure HL induces the h-recoverability
property on the boundary of K if the operators Ai, i ∈ S, defined in (2.5), are
injective (hence invertible).

Remark 3.2. We have chosen the term h-recoverable, since in case the
operators Ai, i ∈ S, are invertible, one can obtain (recover), according to
Theorem 2.5, the restriction to V0 of a harmonic function u ∈ H(K) from
the restriction of u to any fw(V0), where w ∈ W∗. In the framework of self-
similar structures, the set fw(V0), with w ∈ W∗, is called the boundary of the
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cell fw(K) of K. Thus, in case of h-recoverability, the restriction of every
harmonic function u ∈ H(K) to the boundary V0 of the self-similar structure
K can be recovered from the restriction of u to the boundary of any cell of K.
A consequence of this fact is pointed out in the next result.

Lemma 3.3. If HL induces the h-recoverability property on the boundary of
K, then the following statements are equivalent for u ∈ H(K).

(i) u|V0 = 0.
(ii) u = 0.
(iii) There exists m ∈ N∗ and w ∈Wm such that u|fw(V0) = 0.

Proof. The implication (i)⇒(ii) follows from Theorem 2.4, (ii)⇒(iii) is ob-
vious, and (iii)⇒(i) is a consequence of Theorem 2.5 and the h-recoverability
property. �

Theorem 3.4. Assume that HL induces the h-recoverability property on
the boundary of the p. c. f. self-similar structure K. Then, for u ∈ H(K) and
v ∈ C(K), there are equivalent:

1◦ u · v = 0.
2◦ u = 0 or v = 0.

Proof. The implication 2◦ ⇒ 1◦ is obvious. We prove now that 1◦ ⇒ 2◦.
Assume that u 6= 0. We show that v = 0. For this, let m ∈ N∗ and w =
(w1, . . . , wm) ∈Wm be arbitrary. We are going to prove that

(3.1) v|fw(V0) = 0.

Let p ∈ V0 be arbitrary. Since π is surjective, we can choose τ = (τ1, τ2, . . . ) ∈
Σ such that p = π(τ). According to Lemma 3.3, for every n ∈ N∗, there exists
pn ∈ V0 with the property that

u(fw ◦ f(τ1,...,τn)(pn)) 6= 0, ∀n ∈ N∗.
By the hypothesis 1◦, the above relation implies that

(3.2) v(fw ◦ f(τ1,...,τn)(pn)) = 0, ∀n ∈ N∗.
We show now that

(3.3) lim
n→∞

f(τ1,...,τn)(pn) = p.

For this, choose, for every n ∈ N∗, an element ωn ∈ Σ such that pn = π(ωn).
Using (2.2), we get

(3.4) f(τ1,...,τn)(pn) = f(τ1,...,τn)(π(ωn)) = π(στ1 ◦ · · · ◦ στn(ωn)).

The definition (2.1) of the metric dt yields that

dt(στ1 ◦ · · · ◦ στn(ωn), τ) ≤ tn, ∀n ∈ N∗,
which implies

(3.5) lim
n→∞

στ1 ◦ · · · ◦ στn(ωn) = τ.
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The relations (3.4) and (3.5), the continuity of π, and the equality π(τ) = p
imply now (3.3). From (3.3) we obtain, according to the continuity of fw, that

lim
n→∞

fw ◦ f(τ1,...,τn)(pn) = fw(p).

The above equality, together with (3.2) and the continuity of v, yield that
v(fw(p)) = 0. Since p ∈ V0 was arbitrarily chosen, the equality (3.1) follows.
But w ∈ Wm was also arbitrary, so, taking into account that, by definition,
Vm :=

⋃
w∈Wm

fw(V0), we get from (3.1) that v|Vm = 0. Since m ∈ N∗ was
arbitrary, we obtain v|Vm = 0, ∀m ∈ N∗. The above relations lead, in con-
nection with V0 ⊆ V1 (which follows from (2.3)) and with (2.4), to v|V∗ = 0.
Since V∗ is dense in K (as noted in the previous section), we conclude, by the
continuity of v, that v = 0. �

Remark 3.5. Theorem 3.4 shows that the h-recoverability property is a
sufficient condition that leads to the fact that harmonic functions on K are
not zero divisors in the algebra C(K). We do not know at the moment whether
this condition is also necessary. Furthermore, Theorem 3.4 offers an answer
to the question (Q) raised in the Introduction.

4. APPLICATIONS AND CONCLUSIONS

We denote by | · | the Euclidean norm on the spaces Rn, n ∈ N∗. In what
follows, the spaces Rn are endowed with the topology induced by | · |.

First we recall the definition of the Sierpinski gasket (SG) in Rn. Let n ∈ N∗
and p1, . . . , pn+1 ∈ Rn with |pi−pj | = 1 for i 6= j. For every i ∈ {1, . . . , n+1},
define fi : Rn → Rn by

fi(x) =
1

2
x+

1

2
pi, , ∀x ∈ Rn.

The SG in Rn is the self-similar set with respect to {f1, . . . , fn+1}, i.e., the
unique non-empty compact subset V of Rn that satisfies the equality

V = f1(V ) ∪ · · · ∪ fn+1(V ).

The existence of such a set is a consequence of the Banach fixed-point theorem.
A straightforward computation yields that (SG, {1, . . . , n+ 1}, {fi}i=1,n+1)

is a p. c. f. self-similar structure. The case n = 2 can be found in [10, Examples
1.2.8 and 1.3.15]. We note that in this case the SG becomes the Sierpinski
triangle, one of the most well-known fractals, constructed in 1915 by the Polish
mathematician W. Sierpinski.

The harmonic extension procedure on the SG in Rn (briefly described in
[2, section 2], and presented in detail in [1, section 3]) actually corresponds to
a harmonic structure on (SG, {1, . . . , n + 1}, {fi}i=1,n+1) that induces the h-

recoverability property. This follows from the formulas in [2, section 2] (resp.,
more detailed, from the formulas in the proof of [1, Theorem 3.1]). More
exactly, it can be readily seen that the n+ 1 real matrices of dimension (n+
1)×(n+1) that correspond in this case to the operators Ai, i ∈ {1, . . . , n+1},
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defined according to (2.5), are invertible. For simplicity, we present here the
case n = 2, that can be found in [10, Examples 3.1.5 and 3.2.6]. In this case
the three matrices, denoted with the same letters as the operators, are

A1 =
1

5

 5 0 0
2 2 1
2 1 2

 , A2 =
1

5

 2 2 1
0 5 0
1 2 2

 , A3 =
1

5

 2 1 2
1 2 2
0 0 5

 ,

hence they are invertible. Thus, [2, Theorem 3.3] is a consequence of Theorem
3.4.

As a conclusion, Theorem 3.4 gives a new insight on the results in [2], and it
emphasizes the close relationship between harmonic functions on p. c. f. self-
similar structures and the harmonic structure. Moreover, the property of har-
monic functions pointed out by Theorem 3.4 has consequences on the energy
defined on these structures, a fact that will be needed for further researches
in this area (see also the footnote in the introduction).
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