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ON THE POLYNOMIAL SOLUTIONS OF GENERAL
POLYNOMIAL DIFFERENTIAL EQUATIONS

CLAUDIA VALLS

Abstract. We deal with the ordinary differential equation of the form ymdy/dx
= P (x, y) where m ≥ 2 and P (x, y) is a real polynomial in the variables x and y
of degree n in the variable y. We study the maximum number of the polynomial
solutions of this equation with respect to n. We also consider the multiplicity of
polynomial limit cycles.
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1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

Consider the ordinary differential equation of the form

(1) ym
dy

dx
= A0(x) +A1(x)y + . . .+An(x)yn

where x, y are real variables, A0Ai(x) ∈ R[x] for i = 0, 1, . . . , n and n,m are
integer numbers with n ≥ 1 and m ≥ 2. The case m = 1 was completely
studied in [7]. We recall that R[x] is the set of polynomials with real coeffi-
cients. We also assume that A0An 6≡ 0. We will denote the derivative of y
with respect to x as dy/dx or x′.

We are interested in the polynomial solutions y = p(x) of this differential
equation that is in the solutions of the form y = p(x) where p is a polyno-
mial. The computation of exact solutions (either polynomial or rational) of
a nonlinear differential equation has a remarkable role in understanding the
whole set of solutions and their dynamical properties. Rainville in [6] (1936)
was the first author to determine all the Riccati differential equations of the
form y′ = A0(x) +A1(x)y+ y2, with A0(x) and A1(x) being polynomials that
have polynomial solutions and he also provided an algorithm for the compu-
tation of these polynomial solutions. Campbell and Golomb in [2] provided
an algorithm for finding all the polynomial solutions of the generalized Riccati
differential equation of the form B(x)y′ = A0(x) + A1(x)y + A2(x)y2 where
B,Ai are polynomials in x for i = 0, 1, 2. Behloul and Cheng in [1] gave an-
other algorithm to detect either polynomial or rational solutions of equations
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of the form

B(x)y′ = A0(x) +A1(x)y +A2(x)y2 + · · ·+An(x)yn

where B,Ai are polynomials in x for i = 0, . . . , n. Giné, Grau and Llibre in
[3] study the maximum number and the multiplicity of the polynomial limit
cycles of the form y′ = A0(x) +A1(x) + . . .+An(x) where Ai are polynomials
for i = 0, . . . , n and An(x) 6= 0. In [7] the author studies the maximum number
and the multiplicity of the polynomial limit cycles of the form yy′ = A0(x) +
A1(x)+. . .+An(x) where Ai are polynomials for i = 0, . . . , n and A0An(x) 6= 0.
The fact that m ≥ 2 in (1) substantially difficult the computations in the paper
and the results are more involved.

The following theorem, which is the first main theorem in the paper, estab-
lishes the maximum number of polynomial solutions that are coprime among
each other and periodic polynomial solutions (also that are coprime among
each other) that a differential equation (3) can have. It also establishes the
solutions of that are the inverse of a polynomial. We recall that a periodic or-
bit is a solution y = ϕ(x) such that ϕ : [0, 1]→ R is C1 and ϕ(0) = ϕ(1) (here
the period is one but we could choose any period to define a periodic solution
because by an affine change in the variable x there is no loss of generality in
considering just period one).

Theorem 1.1.

(a) Any differential equation (1) has at most n solutions that are con-
stant, and there are examples of equations (1) with exactly n constant
solutions.

(b) If n = m, there are infinite polynomial solutions of equation (1).
(c) If n ≥ m+ 1, the difference between two coprime polynomial solutions

of equation (1) is a constant.
(d) If n ≥ m + 1, there are examples of differential equations (1) with n

polynomial periodic solutions that are coprime among each other.
(e) If n ≥ m + 1, any differential equation (1) has no solutions that are

the inverse of a non-constant polynomial.

The proof of Theorem 1.1 is given in Section 2.
We are also interested in a somewhat similar problem which consists in

knowing if there are polynomial equations of the form (1) that have a pre-
scribed number of polynomial solutions. This is the content of the following
theorem, the second main theorem of the paper.

Theorem 1.2.

(i) If n ≥ m + 1, given n − m + 2 non-constant polynomials that are
coprime among each other, there are infinite equations of the form (1)
with such n−m+ 2 solutions.

(ii) If n ≥ m + 1, given n + 1 non-constant polynomials that are coprime
among each other, there are no equations of the form (1) with such
n+ 1 solutions for any m ≥ 2.
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The proof of Theorem 1.2 is given in Section 3. In particular, Theorem 1.2
states that when m = 2 the maximum number of polynomial solutions is n.

We want also to study the multiplicity of the differential equations (1).
In order to define the multiplicity we will consider the so-called translation
operator. Let ψ(x; y0) be the solution of equation (1) defined for x ∈ [0, 1]
such that ψ(0; y0) = y0. The translation operator associated to (1) is the
function Ψ: R → R such that Ψ(y0) = ψ(1; y0) − y0. Note that Ψ(y0) = 0 if
and only if equation (1) has a periodic solution starting at y0 and so there is a
one-to-one correspondence between the zeros of the translation operator and
the periodic solutions of system (1). Following Lloyd [4, 5], the multiplicity
of a limit cycle of (3) associated to the isolated zero y0 of the translation
operator is the multiplicity of y0 as a zero of Ψ(y0). A periodic solution of
multiplicity 1 is called hyperbolic.

Theorem 1.3. Consider system (1) and assume that y = ϕ(x) is a periodic
orbit of this equation. Assume also that Aj = ϕm+3−jAj with Aj ∈ R[x] for
j = 0, . . . ,m− 1. Then ϕ is:

(i) a hyperbolic limit cycle if and only if A1(1) 6= 0;
(ii) a limit cycle of multiplicity two if and only if A1(1) = 0 and A2(1) 6= 0;
(iii) a limit cycle of multiplicity three if and only if A1(1) = A2(1) = 0 and

A3(1) 6= 0;
(iv) a limit cycle of multiplicity greater than or equal to four, or it belongs

to a continuum of periodic orbits if A1(1) = A2(1) = A3(1) = 0,

where

A1(x) = −
∫ x

0

(
ϕ3(σ)

m−1∑
j=0

Aj(σ)− ∂F

∂y
(σ, ϕ(σ))

)
dσ,

A2(x) =

∫ x

0
eA1(σ)

(
ϕ2(σ)

m−1∑
j=0

Aj(σ) +
1

2

∂2F

∂y2
(σ, ϕ(σ))

)
dσ,

and

A3(x) = −
∫ x

0
e2A1(σ)

(
ϕ(σ)

m−1∑
j=0

Aj(σ)− 1

6

∂3F

∂y3
(σ, ϕ(σ)

)
dσ.

2. PROOF OF THEOREM 1.1

Let y = p(x) = ξ be a polynomial solution of system (1) which is constant.
Then the polynomial in y, A0(x) + A1(x)y + . . . + An(x)yn = 0 is divisible
by y − ξ and since, its degree in y is n we get that it has at most n different
constant roots. So, there are at most n different constant solutions of system
(1). The differential equation

(2) ym
dy

dx
= (y − 1)(y − 2) . . . (y − n)
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is of the form (1) and has exactly n constant solutions. This proves statement
(a).

Now let y = p(x) be a polynomial solution of system (1) which is not a
constant, that is,

pm(x)
dp

dx
= A0(x) +A1(x)p+ . . .+An(x)pn.

Since p divides the left-hand side of the above equation, it must also divide
the right-hand side and so A0(x) = Ã0(x)p(x) for some polynomial Ã0(x). In
this way equation (1) becomes

(3) pm−1(x)
dp

dx
= (A0(x) +A1(x)) +A2(x)p+ . . .+An(x)pn−1.

Note that since m ≥ 2, the polynomial p still divides the left-hand side of the
above equation and so it must also divide the right-hand side, which means
that Ã0(x) = A∗0(x)p(x) and A1(x) = A∗1(x)p(x) for some polynomials A∗0, A

∗
1.

Proceeding inductively we get that

Ai(x) = pm−iAi(x), i = 0, . . . ,m− 1,

for some polynomials Ai(x) for i = 0, . . . ,m− 1. So, if n = m, then Aj(x) = 0

for j ≥ m and system (1) becomes
dp

dx
=

m−1∑
j=0

Aj(x) +Am(x). Hence,

p(x) =

∫ (m−1∑
j=0

Aj(s) +Am(s)
)

ds+ c,

where c is any constant. This proves statement (b).
Now assume n ≥ m+1 and let q(x) be another solution of (1). Then we must

have that Aj(x) = q(x)Ãj(x) for some polynomials Ãj(x) for j = 0, . . . ,m−1.
In short, since p(x) and q(x) are coprime (i.e., gcd{p(x), q(x)} = 1) we must
have Aj(x) = p(x)q(x)Āj(x) for some polynomial Āj(x) and j = 0, . . . ,m− 1.
We consider the change w = q − p and we transform equation (1) into the
equation

dw

dx
=

dq

dx
− dp

dx
=

m−1∑
j=0

Āj(x)p(x) +Am(x) + . . .+An(x)q(x)n−m

−
m−1∑
j=0

Āj(x)q(x)−Am(x)− . . .−An(x)p(x)n−m

=
(
−
m−1∑
j=0

Ā0(x) +Am+1(x)
)
z +Am+2(x)q2(x) + . . .+An(x)q(x)n−m

−Am+2(x)p2 − . . .−An(x)p(x)n−m

= A0(x)∗w +A∗m+1(x)w2 + . . .+An(x)wn−m
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where each A∗i is a polynomial depending on Aj(x) and Āj(x) for j = i, . . . , n
and some powers of p(x), for i = m + 1, . . . , n − 1. Let w = r(x) be another
polynomial solution of equation (2) different than w = 0, that is,

r′(x) = Ãm+1(x)r(x) + Ãm+2(x)r(x)2 + . . .+An(x)r(x)n−m.

Then, since r(x) divides the right-hand side of the above equation, it must
also divide the left-hand side. Therefore, r|r′ which implies that r = ξ ∈ R is
a constant. So any polynomial solution of equation (2) must be a constant.
In short, the difference of two coprime polynomial solutions of (3) must be a
constant. Hence, statement (c) is proved.

The proof of statement (d) is a direct consequence of statement (c) and
equation (2), as any constant solution is a periodic orbit.

Finally, we prove statement (e), that is, we study the solutions that are the
inverse of a polynomial. Let z = 1

y(x) where y is the inverse of a polynomial,

and so z is a polynomial. Then we have

dz

dx
= −dy

dx

1

y
= −A0(x)

ym+1
− A1(x)

ym+2
− · · · − An(x)

yn+m+1

= −A0(x)zm+1 −A1(x)zm+2 − · · · −An(x)zn+m+1.

Hence,

(4)
dz

dx
= −A2(x)zm+1 −A1(x)zm+2 − · · · −An(x)zn+m+1.

Note that the constant solution z = 0 does not correspond to any solution
which is the inverse of a polynomial. Let z = q(x) be a polynomial solution
different from zero. Then

q′ =
dq

dx
= −qm+1(A2(x) +A1(x)q + · · ·+An(x)qn).

Then, since q divides the right-hand side of the latter expression, we have that
it also must divide the left-hand side, that is, q|q′. Hence, q is a constant. So
any polynomial solution of (4) needs to be a constant. This proves statement
(e) and concludes the proof of Theorem 1.1.

3. PROOF OF THEOREM 1.2

We start proving statement (i). To this end, assume that system (3) has
n −m + 2 non-constant polynomial solutions pj(x) for j = 1, . . . , n, that are
coprime among each other. In view of statement (c) in Theorem 1.1, since the
difference among two coprime polynomial solutions is constant, we can write
pk(x) = pj(x) + ck,j with ck,j ∈ R for k 6= j and j = 1, . . . , n−m+ 2. We have

pj(x)m
dpj
dx

= A0 +A1pj(x) + · · ·+An(x)pj(x)n.



94 C. Valls 6

Since pj(x) divides the left-hand side of the above equation, it must also divide

A0(x) for any pj(x), j = 1, . . . , n. Hence, Ai(x) =
n−m+2∏
j=1

pj(x)m−iAi(x), where

Ai(x) ∈ R[x] for i = 0, . . . ,m− 1. So, we have the system

dpj
dx

=
n−m+2∏
k=1,k 6=j

pk(x)mA0 +
n−m+2∏
k=1,k 6=j

pk(x)m−1A1(x) + . . .+
n−m+2∏
k=1,k 6=j

pk(x)Am−1(x)

+Am(x) +Am+1(x)pj + . . .+An(x)pn−mj .

Again, by Theorem 1.1 (c), we have that

dpj(x)

dx
=

dpi(x)

dx
for any j 6= i := B(x).

So we have a system of n−m+ 2 equations with the unknowns A0, . . . , Am−1,
Am, An. They satisfy

(
B(x)−

m−2∑
i=0

n−m+2∏
k=1,k 6=j

pk(x)m−iAi(x)
)

1
1
...
1

 = M


Am−1
Am

...
An(x)


where M is the matrix

M =


∏n−m+2
k=2 pk(x) 1 p1(x) p1(x)2 · · · p1(x)n−m∏n−m+2
k=1,k 6=2 pk(x) 1 p2(x) p2(x)2 · · · p2(x)n−m

...
...

...
...

. . .
...∏n−m+1

k=1 pk(x) 1 pn−m+2(x) pn−m+2(x)2 · · · pn−m+2(x)n−m

 .

The solution is just

(5)


Am−1
Am

...
An(x)

 = M−1
(
B(x)−

m−2∑
i=0

n−m+2∏
k=1,k 6=j

pk(x)m−iAi(x)
)

1
1
...
1


in case M−1 exists. We take the notation

P `j =

n−m+2∏
k=`,k 6=j

pk(x) and P `j1,j2 =

n−m+2∏
k=`,k 6=j1,k 6=j2

pk(x).

Then we can write

M =


P 1
1 1 p1 p21 · · · pn−m1

P 1
2 1 p2 p22 · · · pn−m2
...

...
...

...
. . .

...
P 1
n−m+2 1 pn−m+2 p2n−m+2 · · · pn−mn−m+2

 ,
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where we have dropped the dependence in x to obtain a lighter notation. We
claim that

detM = (−1)(n−m+1)(n−m+2)/2
∏

1≤i<j≤n−m+2

(pi − pj)

= (−1)(n−m+1)(n−m+2)/2
∏

1≤i<j≤n−m+2

ci,j ∈ R.
(6)

We prove the claim by induction over the dimension n ≥ m+ 1 of the matrix
M . Assume n = m+ 1. Then M becomes the 3× 3 matrixp2p3 1 p1

p1p3 1 p2
p2p3 1 p3

 = −(p1 − p2)(p1 − p3)(p2 − p3) = −c1,2c1,3c2,3 ∈ R.

Next, we assume it is true for n = 1, . . . ,m + ` − 2 and we will prove it for
n = m+ `−1 (obtaining an (`+1)× (`+1)-matrix M). For i = 2, . . . , `, let ri
be the ith row. We substract to each row fi the first row r1 and we get that

M =


P 1
1 1 p1 p21 · · · p`−11

P 1
2 − P 1

1 0 p2 − p1 p22 − p21 · · · p`−12 − p`−11
...

...
...

...
. . .

...

P 1
`+1 − P 1

1 0 p`+1 − p1 p2`+1 − p21 · · · p`−1`+1 − p
`−1
1



=


P 1
1 1 p1 p21 · · · p`−11

(p1 − p2)P 1
1,2 0 p2 − p1 p22 − p21 · · · p`−12 − p`−11

...
...

...
...

. . .
...

(p1 − p`+1)P
1
1,`+1 0 p`+1 − p1 p2`+1 − p21 · · · p`−1`+1 − p

`−1
1

 .

Let ci be the i-th column. For each i = 3, . . . , ` + 1, we multiply the column
ci by −p1(x) and we add it to the column ci+1. Then M is equal to

P 1
1 1 p1 0 · · · p`−11

(p1 − p2)P 1
1,2 0 p2 − p1 p2(p2 − p1) · · · p`−22 (p2 − p1)

...
...

...
...

. . .
...

(p1 − p`+1)P
1
1,`+1 0 p`+1 − p1 p`+1(p`+1 − p1) · · · p`−2`+1(p`+1 − p1).


By the Laplace theorem for determinants we obtain that detM = −det M̃
where M̃ is the `× ` matrix (p1 − p2)P 1

1,2 p2 − p1 p2(p2 − p1) · · · p`−22 (p2 − p1)
...

...
...

. . .
...

(p1 − p`+1)P
1
1,`+1 p`+1 − p1 p`+1(p`+1 − p1) · · · p`−2`+1(pm+1 − p1)

 .
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Clearly, detM = −det M̃ =
`+1∏
j=2

(pj − p1)M = (−1)`
`+1∏
j=2

(p1 − pj)M , where

M =

 P 1
1,2 1 p2 p22 · · · p`−22
...

...
...

...
. . .

...

P 1
1,`+1 1 p`+1 p2`+1 · · · p`−2`+1



=

 P 2
2 1 p2 p22 · · · p`−22
...

...
...

...
. . .

...

P 2
`+1 1 p`+1 p2`+1 · · · p`−2`+1


where it is again a ` × ` matrix M (starting in p2 instead of p1). By the
induction hypotheses we have that

detM = (−1)`
`+1∏
j=2

(p1 − pj)M

= (−1)`
`+1∏
j=2

(p1 − pj)(−1)(`−1)`/2
∏

2≤i<j≤`+1

(pi − pj)

= (−1)`(`+1)/2
∏

1≤i<j≤`+1

(pi − pj) = (−1)`(`+1)/2
∏

1≤i<j≤`+1

ci,j ,

which proves (6). Now it is clear that statement (i) follows directly from
the definition of the inverse of M together with (5), (6) and the fact that
any polynomial solution depends on Ai(x) for i = 0, . . . ,m − 2 and we have
a polynomial solution in (Am−1(x), Am(x), . . . , An(x)) for any polynomials
Ai(x) with i = 0, . . . ,m− 2.

Now, we prove statement (ii). We will prove only the case m = 2 and at
the end we will say how to adapt it to the case m ≥ 3. The fact is that the
proof follows exactly the same lines. When m = 2, we consider the matrix

A0

A1(x)
A2
...

An(x)

 = M−12 B(x)


1
1
1
...
1


where, with the notation

P
`,(j3)
j1

=

n∏
k=`,k 6=j1

pk(x)j3 and P
`,(j3)
j1,j2

=
n∏

k=`,k 6=j1,k 6=j2

pk(x)j3 ,
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M1 is equal to
P

1,(2)
1 P

1,(1)
1 1 p1(x) p1(x)2 · · · p1(x)n−3

P
1,(2)
2 P

1,(1)
2 1 p2(x) p2(x)2 · · · p2(x)n−3

...
...

...
...

...
. . .

...

P
1,(2)
n P

1,(1)
n 1 pn(x) pn(x)2 · · · pn(x)n−3

 .

Here we have dropped the dependence in x to obtain a lighter notation. We
claim that

detM1 = (−1)n(n−1)/2
n∏
i=1

pi
∏

1≤i<j≤n
(pi − pj)

= (−1)n(n−1)/2
n∏
i=1

pi
∏

1≤i<j≤n
ci,j .

(7)

We prove the claim by induction over the dimension n ≥ 3 of the matrix M1.
Assume n = 3. Then M1 becomes the 3× 3 matrixp22p23 p2p3 1
p21p

2
3 p1p3 1

p21p
2
2 p1p2 1

 = −p1p2p3(p1 − p2)(p1 − p3)(p2 − p3) = −p1p2p3c1,2c1,3c2,3.

Next, we assume it is true for n = 1, . . . , ` − 1 and we will prove it for n = `
(obtaining an ` × `-matrix M1). For i = 2, . . . , `, let ri be the ith row. We
substract to each row ri the first row r1 and we get that M1 is equal to

P
1,(2)
1 P

1,(1)
1 1 p1 p21 · · · p`−31

P
1,(2)
2 −P 1,(2)

1 P
1,(1)
2 −P 1,(1)

1 0 p2−p1 p22−p21 · · · p`−12 −p`−31
...

...
...

...
...

. . .
...

P
1,(2)
` −P 1,(2)

1 P
1,(1)
` −P 1,(1)

1 0 p`−p1 p2`−p21 · · · p`−3` −p
`−3
1



=


P

1,(2)
1 P

1,(1)
1 1 p1 p21 · · · p`−31

(p21−p22)P
1,(2)
1,2 (p1−p2)P 1,(1)

1,2 0 p2−p1 p22−p21 · · · p`−12 −p`−31
...

...
...

...
...

. . .
...

(p21−p2` )P
1,(2)
1,` (p1−p`)P

1,(1)
1,` 0 p`−p1 p2`−p21 · · · p`−3` −p

`−3
1


Let ci be the i-th column. We multiply the column ci by −p1(x) and we add it
to the column ci+1 for i = 3, . . . , `. On the other hand, we multiply the second

column by −P 1,(1)
1 and we add it to the first column. Then M1 is equal to

P
1,(2)
1 P

1,(1)
1 1 0 0 · · · 0

p1(p1−p2)P 1,(2)
1,2 (p1−p2)P 1,(1)

1,2 0 p2−p1 p2(p2−p1) · · · p`−32 (p2−p1)
...

...
...

...
...

. . .
...

p1(p1−p`)P
1,(2)
1,` (p1−p`)P

1,(1)
1,` 0 p`−p1 p`(p`−p1) · · · p`−3` (p`−p1)


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So, by the Laplace theorem for determinants we obtain that detM1 = det M̃1

where M̃1 is the `× ` matrix
p1(p1 − p2)P 1,(2)

1,2 (p1 − p2)P 1,(1)
1,2 p2 − p1 · · · p`−32 (p2 − p1)

...
...

...
. . .

...

p1(p1 − p`)P
1,(2)
1,` (p1 − p`)P

1,(1)
1,` p` − p1 · · · p`−3` (p` − p1)

 .

Clearly,

detM1 = det M̃1 = p1
∏̀
j=2

(pj − p1)M1 = (−1)`−1p1
∏̀
j=2

(p1 − pj)M1

where

M1 =


P

1,(2)
1,2 P

1,(1)
1,2 1 p2 p22 · · · p`−32

...
...

...
...

...
. . .

...

P
1,(2)
1,` P

1,(1)
1,` 1 p` p2` · · · p`−3`



=

P
2,(2)
2 P

2,(1)
2 1 p2 p22 · · · p`−32

...
...

...
...

...
. . .

...

P
2,(2)
` P

2,(1)
` 1 p` p2` · · · p`−3`


where it is again a (`− 1)× (`− 1) matrix M1 (starting in p2 instead of p1).
By the induction hypotheses, we conclude that

detM1 = (−1)`−1p1
∏̀
j=2

(p1 − pj)M1

= (−1)`−1p1
∏̀
j=2

(p1 − pj)(−1)(`−1)(`−2)/2
∏̀
i=2

pi
∏

2≤i<j≤`
(pi − pj)

= (−1)(`−1)`/2
∏̀
i=1

pi
∏

1≤i<j≤`
(pi − pj)

= (−1)(`−1)`/2
∏̀
i=1

pi
∏

1≤i<j≤`
ci,j ,

which proves (7).
Now we want to compute the inverse of M1. We compute the first row of

the matrix M−11 = (m−1i,j )1≤i≤j≤n, that is, (m−11,j )1≤j≤n, and we will show that
it is equal to

(8) (−1)n−1
1∏

1≤k≤n,k 6=j pk(pj − pk)
.
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Indeed, note that m−11,j =
1

detM1
(−1)j+1n1,j , where

n1,1 = detN1 = det

P
1,(1)
2 1 p2 p22 · · · pn−32
...

...
...

...
. . .

...

P
1,(1)
n 1 pn p2n · · · pn−3n

 ,

n1,n = detNn = det

P
1,(1)
1 1 p1 p21 · · · pn−31
...

...
...

...
. . .

...

P
1,(1)
n−1 1 pn−1 p2n−1 · · · pn−3n−1

 ,

and, for j 6∈ {1, n} we have

n1,j = detNj = det



P
1,(1)
1 1 p1 p21 · · · pn−31
...

...
...

...
. . .

...

P
1,(1)
j−1 1 pj−1 p2j−1 · · · pn−3j−1
P

1,(1)
j+1 1 pj+1 p2j+1 · · · pn−3j+1
...

...
...

...
. . .

...

P
1,(1)
n 1 pn p2n · · · pn−3n


.

Using (6) we obtain

detNj = (−1)(n−1)(n−2)/2pj
∏

1≤i<l≤n,i 6=j,l 6=j
(pi − pl)

and so

m−11,j = (−1)j+1
(−1)(n−1)(n−2)/2pj

∏
1≤i<l≤n,i 6=j,l 6=j(pi − pl)

(−1)n(n−1)/2
∏n
i=1 pi

∏
1≤i<l≤n(pi − pl)

=
(−1)j+1(−1)n−1

(−1)j−1
∏

1≤k≤n,k 6=j pk(pj − pk)

= (−1)n−1
1∏

1≤k≤n,k 6=j pk(pj − pk)
,

which proves (8). Hence, it follows from it that

A0 = (m−11,1, . . . ,m
−1
1,n) · (1, 1, . . . , 1)∗

= (−1)n−1
n∑
j=1

1∏
1≤k≤n,k 6=j pk(pj − pk)

(9)

We claim that

(10)

n∑
j=1

1∏
1≤k≤n,k 6=j pk(pj − pk)

= 0.
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We prove the claim by induction over the number of elements n. If n = 2 it is
clear. Now assume it is true for n− 1 and we will show it for n. We write the
left hand side of (10) as

n∑
j=1

1∏
1≤k≤n,k 6=j pk(pj − pk)

=
1

pn − pn−1

( n∑
j=1

pj − pn−1∏
1≤k≤n,k 6=j pk(pj − pk)

−
n∑
j=1

pj − pn∏
1≤k≤n,k 6=j pk(pj − pk)

)
.

(11)

Each of the sums in (11) now has the form of the original sum in (10), except
on n− 1 elements, and the values turn out nicely by induction. Indeed,

n∑
j=1

pj − pn∏
1≤k≤n,k 6=j pk(pj − pk)

=
1

pn

n−1∑
j=1

1∏
1≤k≤n−1,k 6=j pk(pj − pk)

and
n∑
j=1

pj − pn−1∏
1≤k≤n,k 6=j pk(pj − pk)

=
1

pn−1

n∑
j=1,j 6=n−1

1∏
1≤k≤n,k 6∈{j,n−1}(pj − pk)

which are both zero by induction hypotheses.
Hence, in view of equations (9) and (10) we have that A0 = 0. But then

A0(x) = 0, which is not possible. This proves statement (ii) when m = 2.
When m ≥ 3 the proof is the same. First, using the same arguments as in
case m = 2, we can prove that

detM1 = (−1)n(n−1)/2
n∏
i=1

p
m(m−1)/2
i

∏
1≤i<j≤n

(pi − pj),

where M1 is the corresponding matrix. Denoting again M−11 =(m−1i,j )1≤i≤j≤n,

we compute the first row of the inverse of the matrix M1, that is, m−11,j for
j = 1, . . . , n. Proceeding as we did for the case m = 2, we get that

m−11,j = (−1)n−1
1∏

1≤k≤n,k 6=j p
m(m−1)/2
k (pj − pk)

.

So,

A0 = (m−11,1, . . . ,m
−1
1,n) · (1, 1, . . . , 1)∗

= (−1)n−1
n∑
j=1

1∏
1≤k≤n,k 6=j p

m(m−1)/2
k (pj − pk)

.
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Now, analog arguments as the ones used for the case m = 2 guarantee that

n∑
j=1

1∏
1≤k≤n,k 6=j p

m(m−1)/2
k (pj − pk)

= 0.

So A0 = 0, i.e., A0 = 0, which is not possible. This concludes the proof of
statement (ii) and in its turn the proof of Theorem 1.2.

4. PROOF OF THEOREM 1.3

We consider the differential equation ymdy/dx = ϕm+3A0(x) + A1(x)y +
. . . + An(x)yn := F (x, y) and we assume that y = ϕ(x) is a periodic solution
of this equation. We take the following change of the independent variable
z = y − ϕ(x) and we obtain the differential equation

dz

dx
=
F (x, z + ϕ(x))

(z + ϕ(x))m
− F (x, ϕ(x))

ϕ(x)m
.

The periodic orbit y = ϕ(x) is transformed into the constant periodic solution
z = 0. Note that

dz

dx
=

m−1∑
j=0

ϕm+3−jAj(x)

(z + ϕ)m−j
− ϕ3

m−1∑
j=0

Aj(x) +Am+1(x)z

+Am+2(x)[(z + ϕ)2 − ϕ2] + . . .+An(x)[(z + ϕ)n−m − ϕn−m].

Note that the right-hand side of the above equation is 0 when z = 0. We
denote by ψ(x; z0) the solution of the above equation with initial condition
z0. Note that ψ(x; 0) = 0. We want to study the behavior of the solutions
of this equation around z = 0. We define the translation operator Ψ(z0) =
ψ(1; z0) − ψ(0; z0) = ψ(1; z0) − z0 and we study it near z0 = 0. If Ψ(z0) is
identically zero, then the periodic orbit belongs to a continuum of periodic
orbits. If Ψ(z0) is not identically zero, then the multiplicity of z0 = 0 as a zero
of Ψ(z0) is the multiplicity of z = 0 as a limit cycle of the differential equation
and by the change of variables this multiplicity is the multiplicity of y = ϕ(x)
for the initial differential equation (1).

We expand ψ(x; z0) in Taylor series in a neighborhood of z0 = 0 and we get

ψ(x; z0) = h1(x)z0 + h2(x)z20 + h3(x)z30 +O(z40),

where hi(x) are differentiable functions for i = 1, 2, 3 and h1(0) = 1 while
h2(0) = h3(0) = 0, because ψ(0; z0) = z0. We have that ψ(x; z0) satisfies the
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equality

∂ψ(x; z0)

∂x
=

m−1∑
j=0

ϕm+3−jAj(x)

(ψ(x; z0) + ϕ)m
− ϕ3

m−1∑
j=0

Aj(x)

+Am+1(x)ψ(x; z0) +Am+2(x)[(ψ(x; z0) + ϕ)2 − ϕ2]

+ . . .+An(x)[(ψ(x; z0) + ϕ)n−m − ϕn−m]

=
m−1∑
j=0

ϕm+3−jAj(x)

(ψ(x; z0) + ϕ)m
− ϕ3

m−1∑
j=0

Aj(x)

+ F(x, ψ(x; z0) + ϕ)− F(x, ϕ),

where

F(x, y) = Am+1(x)y +Am+2(x)y2 + · · ·+An(x)yn−m.

Now we expand this equation in Taylor series in a neighborhood of z0 = 0.
Since this identity needs to be satisfied for any value of z0 in the considered
neighborhood, we can equate the coefficients of the same powers of z0. Thus
we obtain the following system of differential equations for the functions hi(x)
for i = 1, 2, 3 (we dropped the dependency of hi, ϕ,A0 in x for simplicity of
the notation):

h′1 = −
(
ϕ3

m−1∑
j=0

Aj −
∂F

∂y
(x, ϕ)

)
h1,

h′2 = −
(
ϕ3

m−1∑
j=0

Aj −
∂F

∂y
(x, ϕ)

)
h2 +

(
ϕ2

m−1∑
j=0

Aj +
1

2

∂2F

∂y2
(x, ϕ)

)
h21,

h′3 = −
(
ϕ3

m−1∑
j=0

Aj −
∂F

∂y
(x, ϕ)

)
h3 +

(
2ϕ2

m−1∑
j=0

Aj +
∂2F

∂y2
(x, ϕ)

)
h1h2

−
(
ϕ

m−1∑
j=0

Aj −
1

6

∂3F

∂y3
(x, ϕ)

)
h31.

The solution of this system of differential equations satisfies

h1(x) = eA1(x),

h2(x) = h1(x)A2(x),

h3(x) = h1(x)A3(x) +
h2(x)2

h1(x)
,

where the functions Ai(x) for i = 1, . . . , 3 are the ones in the statement of the
theorem. We observe that h1(x) is strictly positive for any value of x and so
the former expressions are well-defined for any value of x. These expressions
imply that h1(1) = 1 if and only if A1(1) = 0. Moreover, for fixed k ∈ {2, 3}
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we have that h1(1) = 1 and hi(1) = 0 for all i such that 2 ≤ i ≤ k if and only
if, Ai(1) = 0 for all i such that 1 ≤ i ≤ k.

We note that the translation operator reads as

Ψ(z0) = (h1(1)− 1)z0 + h2(1)z20 + h3(1)z30 +O(z40),

and so z0 = 0 is a limit cycle of multiplicity m ∈ {1, 2} if and only if Ai(1) = 0
for all i such that 1 ≤ i < m and Am(1) 6= 0.

Finally, if A1(1) = A2(1) = A3(1) = 0, we have that either z = 0 is a limit
cycle of multiplicity greater than or equal to 4 or it belongs to a continuum of
periodic orbits. This concludes the proof of the theorem.
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