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ON THE SUBCENTRAL AUTOMORPHISMS
OF FINITE GROUPS

PARISA SEIFIZADEH and MOHAMMAD MEHDI NASRABADI*

Abstract. Let G be a group and let M be a characteristic subgroup of G. We
denote by Aut}?(G) the set of all automorphisms of G' which centralize G /M
and M. In this paper, we give necessary and sufficient conditions for the equality
of Aut}](G) with Aut™ (G) and CAM%(G)(Z(G)).
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1. INTRODUCTION

/

In this paper, p denotes a prime number. Let us denote by ®(G), G,
Z(G), Aut(G) and Inn(G), respectively, the Frattini subgroup, commutator
subgroup, the center, the full automorphism group and the inner automor-
phism group of G. An automorphism «a of G is called a central automorphism
if z7la(x) € Z(G) for x € G. All the elements of the central automorphism
group of G, denoted by Aut? (G)(G), form a normal subgroup of Aut(G).

There has been a number of results on the central automorphisms of a group.
Curran and McCaughan [5] proved that, for any non-abelian finite group G,

Autgggg((}) >~ Hom(G /G Z(G), Z(@)), where Autggg;(G) is the group of all
those central automorphisms which preserve the center Z(G) elementwise.
Also, they showed that if G is a purely non-abelian finite p-group, of nilpo-
tent class 2, then |Aut?(@ (@) : Inn(G)| > p" @Y, where r = rank(G/Z(G))
and d = rank(G'), see [4]. Adney and Yen [1] proved that if a finite group
G has no abelian direct factor, then there is a one-to-one and onto map be-
tween Aut?(@ (@) and Hom(G, Z(G)). Ghumde and Ghate [6] proved that
for a finite group G, Autdi(G) = Hom(G /KM, M). Also they proved that
if G is a purely non-abelian finite group, then |[Aut™(G)| = |Hom(G, M)).
In [8] Shabani Attar characterized all finite p-groups G for which the equal-

ity Aut?(@(@) = Autgggg(G) holds. Kaboutari Farimani and Nasrabadi
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[7] showed necessary and sufficient conditions on finite p-groups such that
Auty(G) = Cauy () (Z(G)).
In this paper, we give necessary and sufficient conditions for G such that

Aut}7(G) = Aut™ (G) and Auti}(G) = Cy () (Z(G)).
2. PRELIMINARY LEMMAS

Let M be a characteristic subgroup of G. By Aut™(G) we mean the sub-
group of Aut(G) consisting of all automorphisms which induce identity on
G/M. By Auty(G) we mean the subgroup of Aut(G) consisting of all au-
tomorphisms which restrict to the identity on M. So we have Aut}(G) =
AutM (@) N Autps(G). From now on, M will be a characteristic central sub-
group and the elements of Aut? (G) will be called subcentral automorphisms of
G (with respect to the subcentral subgroup M). Tt can be seen that Aut™ (G)
is a normal subgroup of Aut?(@)(@).

We further let C* be the set {a € Auty(G) : a8 = Ba, ¥V B € AutM(G)}.
Clearly, C* is a normal subgroup of Aut(G). Every inner automorphism com-
mutes with the elements of Aut?(%)(G), therefore Inn(G) < C*. Let

P={(g,al:9g€G, acC*, wherelg,a]=gtalg).
It is easy to check that P is a characteristic subgroup of G.

We call a group G purely non-abelian if it does not have an abelian direct
factor. Now we state some results that will be used in the proof of the main
theorems.

LemmMa 2.1 ([6]). Aut™(G) acts trivially on P.

Let E* be any normal subgroup of Aut(G) contained in C* and
K = (g,a]: g€ G, a€E").

In particular, when E* = Inn(G), we get K = G'. Since K is a subgroup of
P, it is invariant under the action of Aut(G). It is easy to see that K is a
characteristic subgroup of G and hence it is a normal subgroup of G.

LEMMA 2.2 ([6]). If G is a purely non-abelian finite group, then

|AutM™ (@)| = |Hom(G, M)|.
LEMMA 2.3 ([6]). For a finite group G, Autit(G) = Hom(G /KM, M).

LEMMA 2.4 ([6]). Let G be a purely non-abelian finite group. Then for each
a € Hom(G, M) and each x € K, we have a(x) = 1. Furthermore,

Hom(G/K, M) = Hom(G, M).
DEFINITION 2.5. A finite p-group G is special if G is elementary abelian

or Z(G) = G' = ®(G) and a non-abelian special p-group G is extraspecial if
Z(G) =G = d(G) = C,.

LEMMA 2.6 ([4]). Suppose H is an abelian p-group of exponent p© and K is
a cyclic group of order divisible by p°. Then Hom(H, K) is isomorphic to H.
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COROLLARY 2.7 ([4]). Let G be a purely non-abelian p-group of nilpotent
class 2. Then

[Hom(G/Z(G),G)| > 1G/Z(G)|prY,
where 7 = rank(G/Z(G)) and s = rank(G').
LEMMA 2.8 ([2]). Let G be a group, and let M and N be two normal sub-
groups of G such that M < Z(G) N N. Then Aut¥ (G) = Hom(G /N, M).

3. MAIN RESULT

We note that in this section M is a central characteristic subgroup.

THEOREM 3.1. Let G be a finite group. Then G/M is abelian if and only
if Inn(G) < AutM(G).

Proof. Suppose that G/M is abelian. Thus G' < M. Let = € G. Then for
the inner automorphism 6, induced by = and every g € G we have, g~ 10,(g) =
[9,2] € G C M. So for every o € Inn(G), g~'a(g) € M. This means Inn(G) C
AutM(@). Hence Inn(G) < AutM(G).

Conversely, suppose that Inn(G) < Aut™(G). Hence it is clear that G’
M, and so G/M is abelian.

COROLLARY 3.2. Let G be a finite p-group. If M = ®(G), then Inn(G)
AutM(@).

Proof. Since G is a p-group and M = ®(G) = G'GP, G' < M. Hence, by
Theorem 3.1, we have Inn(G) < AutM(G). O

REMARK 3.3. If G is a purely non-abelian finite p-group, then Q(M) <
o(G).

Proof. Suppose that 1 #m € Q(M) \ ®(G). Therefore there exists a max-
imal subgroup D such that m ¢ D, so we have G = (m) x D. Thus G is not
purely non-abelian. O

IA OIN

THEOREM 3.4. Suppose that G is a purely non-abelian finite p-group for
which G/M is abelian. Then

|Aut™ (@) : Tnn(G)| > pr==Y,
where r = rank(G/Z(G)) and s = rank(G').

Proof. Using Lemma 2.2, |[Aut™ (G)| = [Hom(G, M)|. Since G/M is abe-
lian, G < M < Z(@), thus G is nilpotent of class 2. Now, by Corollary 2.7,
we have

|Hom(G, M)| > |Hom(G/Z(G), M)|
> [Hom(G/Z(G), &)
> |G/Z(G)|p"Y.

Hence, [Aut™ (G)| > |G/Z(G)|p"*~), and thus



84 P. Seifizadeh and M.M. Nasrabadi 4

[Aut (@) : Ton(G)| = [Aut™ (G)] > |G/Z(G)] = ),
which finishes the proof. 0

QUESTION 3.5. Find necessary and sufficient conditions on a finite p-group
G such that Authf(G) = AutM(@G).

Let G be a non-abelian finite p-group. Let

G/K = Cpar x Cpaa x ... X Cpap,
where Cja; is a cyclic group of order p*, 1 <i < k,anda; > az > ... > a; > 1.
Let

G/KM = Cpy X Cppy x ... x Cppy
and

M = Cper X Cpea X ... X Cpem,

where by > by >...>0>1landc; > ¢y > ... > ¢y > 1. Since G/KM is a
quotient of G/K, we have | < k and b; < a; for all 1 <i <.

THEOREM 3.6. Let G be a purely non-abelian finite p-group (p odd). Then
Autd(@) = AutM™(G) if and only if M < K or M < ®(Q), k=1 and c¢; < by,
where t is the largest integer between 1 and k such that a; > by.

Proof. Let M < K. By Lemma 2.1 and since K < P, every a € Aut™(Q)
fixes M, and so AutM(G) < Autd (@), since Autii(G) < AutM(G). Thus
Autd(@) = AutM(G). Now suppose that M < ®(G), k =1 and ¢; < b;. Since
G is purely non-abelian, by Lemmas 2.2 and 2.4, we have

Aut™ (G)] = [Hom(G, M)| = [Hom(G/K, M) =[] primtmesd,
1<i<k,1<j<m

On the other hand, using Lemma 2.3, we have

Autd(G)] = [Hom(G/KM M) = T priniesd,

1<i<l1<j<m
Since b; > c¢1, we have
b1 >2by>...2b12>2by>c1>2c0>...>¢cpy > 1.

Therefore, ¢; < b; < a; for all 1 < j < m and 1 <4 < ¢, whence min {a;,c;}
= ¢; = min {b;,¢;} forall 1 < j <mand 1 <i <t Since a; = b; for all
i > t, we have min{a;, ¢;} = min{b;,¢;} forall1 <j<mandt+1<i<k.
Thus min{b;, ¢;} = min {a;,¢;} for all 1 < j <m and 1 <i < k. So we have
Autd(@) = AutM(@).

Conversely, let Aut}f(G) = AutM(G) and M £ K. We claim that M <
®(G). Assume contrarily that M is not contained in ®(G). Then there exists
a maximal subgroup D of G such that M £ D. The maximality of D implies
that G = DM and D < (. Hence we assume that |G/D| = p, where p is a
prime number. Next, we consider the following two cases.
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Case 1: p||M N D|. Choose z € M N D such that o(z) = p and fix g €
M\D. 1t is clear that G = D < g >. Consider the map « defined on G
by a(dg’) = dg'z* for every d € D and every i € {0,1,2,...,p — 1}. Then
a € Aut™(@). By the given hypothesis, g = a(g) = gz, whence z = 1, which
is a contradiction. Hence M < ®(G).

Case 2: pt|M N D|. In this case, since

p=|G/D|=|DM/D| = |M/M 0 DJ,

we see that p divides |M| and we may choose z € M such that o(z) = p
and z ¢ D. Hence G = (D, z) = D x (z). Consider the map a : G — G,
where a(dz') = dz? for every d € D and every i € {0,1,2,...,p — 1}. Then
a e AutM (G). By the given hypothesis and since z € M, it is clear that
z = a(z) = a(l.z') = 22, a contradiction. The proof of the theorem is now
complete. O

DEeFINITION 3.7. If G is a group and M is a characteristic central subgroup
of G, then G is called M-almost semicomplete if Aut}}(G) = Inn(G).

THEOREM 3.8. Let G be a finite p-group such that G/M is abelian. Then
the following are equivalent:

(1) G is M-almost semicomplete.
(2) Hom(G/M,M) = G/Z(G).
(3) M is cyclic and Hom(G/M, M) = Hom(G/Z(G), M).

Proof. (1) = (2) By Lemma 2.8 and since G is M-almost semicomplete, we
have

Hom(G/M, M) = Inn(G) = G/Z(G).

(2) = (1) By Lemma 2.8 and since Hom(G/M, M) = G/Z(G), we have
Autt(G) = Inn(G). Also, since G/M is abelian, we have G' < M, and so
Inn(G) < Aut™(G). For every a € Inn(G) and m € M, we have a(m) = m.
Therefore Inn(G) < Aut}}(G), and so G is M-almost semicomplete.

(1) = (3) Since G is M-almost semicomplete, every f € Autd(G) is an
inner one, and so it fixes each element of Z(G). Therefore, for every f €
Auth}(G), the map oy : G/Z(G) — M defined by o(gZ(G)) = g~ f(g) is
well defined. Now, consider the map o : f — 0. It is easy to check that o is
an isomorphism from Auti4(G) onto Hom(G/Z(G), M), thus

Hom(G/Z(G), M) = G/Z(G).

Next, we show that M is cyclic. Assume contrarily that M is not cyclic and
exp(M) = p°. Then M = Cpe x N, where Cpe is cyclic subgroup of M and N
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is a non-trivial proper subgroup of M. We have
G/2(G)| = [Hom(G/Z(G), M)|
= |Hom(G/Z(G),Cpe x N)|
— [Hom(G/Z(G), Cye)||Hom(G/Z(G), V)|

Since G/M is abelian, we have G' < M < Z(G), so G is nilpotent of class 2
and exp(G/Z(G)) = exp(G'). Now, by Lemma 2.6, we have
[Hom(G/Z(G), Cpe)| = |G/Z(G)-
Therefore
G/Z(G)| = [Hom(G/Z(G), M)| = |G/Z(G)|[Hom(G/Z(G), N)|,
which is a contradiction. Hence M is cyclic.

(3) = (1) Since M is cyclic, G/Z(G) is an abelian p-group of exponent |G’ |
and G’ is cyclic, by Lemma 2.6, it follows that Hom(G/Z(G), M) = G/Z(Q).
Using Lemma 2.8, we have Aut}/(G) = Hom(G/M, M). Since G/M is abelian,
by Theorem 3.1, we have Inn(G) < Aut™ (G). On the other hand, M < Z(G),
so Inn(G) < Autys(G). Thus Inn(G) < Autd(G). Therefore, G is M-almost
semicomplete. O

EXAMPLE 3.9. Let G be an extraspecial p-group and M = G’ & Cp. Then
G is cyclic and

Hom(G/G',G') = Hom(G/Z(G),G").
So, by Theorem 3.8, G is a G -almost semicomplete.

COROLLARY 3.10. Suppose that G is a finite p-group such that G/M s
abelian. Then CAut%(G)(Z(G)) = Inn(G) if and only if M is cyclic.

Proof. We first prove that CAut%(G)(Z(G)) = Hom(G/Z(G),M). Since
every element of C Aut%(G)(Z (G@)) fixes each element of Z(G), for each f €
CAut%(G)(Z(G))v the map o5 : G/Z(G) — M defined by 04(9ZG)) = g f(g)
is well defined. Now, as in the proof of Theorem 3.8, it is easy to see that the
map f +— o is an isomorphism of CAut%(G)(Z(G)) onto Hom(G/Z(G), M). If
CAut%(G)(Z(G)) = Inn(G), then Hom(G/Z(G), M) = G/Z(G), by the proof
of Theorem 3.8. Since G/M is abelian, M is cyclic.

Conversely, assume that M is cyclic. Since G/M is abelian, we have

Cawlt()(4(G))| = Hom(G/Z(G), M)| = |G/Z(G)| = [Ilnn(G)].
It follows from Inn(G) < CAut%(G)(Z(G)) that CAut%(G)(Z(G» =Inn(G). O

REMARK 3.11. Let G be a finite p-group and let o € Aut}h(G) and p" =
exp(M). Since g 'a(g) € M, a(g) = gm for m € M, we have

a(g”) = g m?"[g.m] (2).
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Now since M < Z(G), [g,m] = 1. Also m?" = 1. Therefore, a(g*") = g?" for
every g € G.

THEOREM 3.12. Let G be a non-abelian finite p-group. Then Autii(G) =
CAut%(G)(Z(G)) if and only if Z(G)G' C G' MGP", where p* = exp(M).

Proof. Suppose that Z(G)G/ C G'MGP", where p" = exp(M). We know
that

Crui () (Z(@)) < Autd(G).

Now, assume that o € Aut}}(G) and = € Z(G). We can write x = abg?" for
some a € G, be M, and g € G. According to Remark 3.11, o(g"") = g*"
and o(b) = b. Also, Aut} (@) acts trivially on G'. Hence, o(z) = z, and so
o€ CAut%(G)(Z(G)). This shows that Aut}}(G) < C’Aut%(G)(Z(G)), whence
Autif(G) = Cy () (2(Q)).

To prove the converse, suppose that Autd(G) = CAut%(G)(Z(G)) and

Z(G)G' ¢ G'MGP". Thus there exists = € Z(G), which is not in G' MGP".
Let

G/G'M = (x1G'M) x...x (x;,G'M),

where z1, 29, ...,z € G. Therefore, G M = x’fth/M...xitk G'M for some
ti,t2,...,t,. Since z ¢ G MGP", we have a:fti ¢ GP", and so pt < p" for
some i. Next, select m € M, where o(m) = min(p”,o(a:i)GlM), and define
f: G/G,M — M by 2;G'M — m and ij/M — 1, for ¢ # j. Then f can be
considered as a homomorphism. Now, consider the map o : G — G defined by
of(a) = af(aG M). Clearly, oy is an endomorphism of G. Next, suppose that
x € Ker(oy). Then f(zG' M) = 2!, Also, o acts trivially on the elements of
M, so we can write 27! = oy(z~!) = 27 f(z7'G'M) = 7'z = 1. Therefore,
x = 1. This shows that oy is one-to-one, and, since G is finite, one can see
that the homomorphism o is a bijection. Hence o; € Aut}}(G). Moreover,
f(zG' M) = f(x’fth/M...:cith/M), and so f(zG' M) = f(a:ftiG/M) = mP".
We have p'i < p", and therefore mP" is a non-trivial element of M. Hence
or ¢ CAut%(G)(Z(G)), which is a contradiction. O

COROLLARY 3.13. Let G be a non-abelian finite p-group such that G/M s
abelian. Then Autil(G) = CAut%(G)(Z(G)) if and only if Z(G) = MGP",
where p™ = exp(M).

Proof. Suppose that Aut}(G) = CAutM(G)(Z(G))' Using Theorem 3.12 and
since G/M is abelian, Z(G) C MGP". Also, since G < M, for every a,b € G,
we have [a,b]P" = 1, whence [a”",b] = 1. This means that for every a € G,
a?" € Z(G) and GP" < Z(G). Therefore, MGP" < Z(G), and so Z(G) =
MGP". The converse holds by Theorem 3.12. g
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