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ON THE SUBCENTRAL AUTOMORPHISMS
OF FINITE GROUPS

PARISA SEIFIZADEH and MOHAMMAD MEHDI NASRABADI*

Abstract. Let G be a group and let M be a characteristic subgroup of G. We
denote by AutMM (G) the set of all automorphisms of G which centralize G/M
and M. In this paper, we give necessary and sufficient conditions for the equality
of AutMM (G) with AutM (G) and CAutM

M
(G)(Z(G)).

MSC 2010. Primary: 20D45; Secondary: 20D15.

Key words. Characteristic subgroup, finite p-groups, Frattini subgroup, inner
automorphism, subcentral automorphism.

1. INTRODUCTION

In this paper, p denotes a prime number. Let us denote by Φ(G), G
′
,

Z(G), Aut(G) and Inn(G), respectively, the Frattini subgroup, commutator
subgroup, the center, the full automorphism group and the inner automor-
phism group of G. An automorphism α of G is called a central automorphism
if x−1α(x) ∈ Z(G) for x ∈ G. All the elements of the central automorphism

group of G, denoted by AutZ(G)(G), form a normal subgroup of Aut(G).
There has been a number of results on the central automorphisms of a group.

Curran and McCaughan [5] proved that, for any non-abelian finite group G,

Aut
Z(G)
Z(G)(G) ∼= Hom(G/G

′
Z(G), Z(G)), where Aut

Z(G)
Z(G)(G) is the group of all

those central automorphisms which preserve the center Z(G) elementwise.
Also, they showed that if G is a purely non-abelian finite p-group, of nilpo-
tent class 2, then |AutZ(G)(G) : Inn(G)| ≥ pr(d−1), where r = rank(G/Z(G))

and d = rank(G
′
), see [4]. Adney and Yen [1] proved that if a finite group

G has no abelian direct factor, then there is a one-to-one and onto map be-
tween AutZ(G)(G) and Hom(G,Z(G)). Ghumde and Ghate [6] proved that
for a finite group G, AutMM (G) ∼= Hom(G/KM,M). Also they proved that
if G is a purely non-abelian finite group, then |AutM (G)| = |Hom(G,M)|.
In [8] Shabani Attar characterized all finite p-groups G for which the equal-

ity AutZ(G)(G) = Aut
Z(G)
Z(G)(G) holds. Kaboutari Farimani and Nasrabadi
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[7] showed necessary and sufficient conditions on finite p-groups such that
Autl(G) = CAutl(G)(Z(G)).

In this paper, we give necessary and sufficient conditions for G such that
AutMM (G) = AutM (G) and AutMM (G) = CAutMM (G)(Z(G)).

2. PRELIMINARY LEMMAS

Let M be a characteristic subgroup of G. By AutM (G) we mean the sub-
group of Aut(G) consisting of all automorphisms which induce identity on
G/M . By AutM (G) we mean the subgroup of Aut(G) consisting of all au-
tomorphisms which restrict to the identity on M . So we have AutMM (G) =
AutM (G) ∩ AutM (G). From now on, M will be a characteristic central sub-
group and the elements of AutM (G) will be called subcentral automorphisms of
G (with respect to the subcentral subgroup M). It can be seen that AutM (G)

is a normal subgroup of AutZ(G)(G).
We further let C∗ be the set {α ∈ AutM (G) : αβ = βα, ∀ β ∈ AutM (G)}.

Clearly, C∗ is a normal subgroup of Aut(G). Every inner automorphism com-

mutes with the elements of AutZ(G)(G), therefore Inn(G) ≤ C∗. Let

P = 〈[g, α] : g ∈ G, α ∈ C∗〉, where [g, α] = g−1α(g).

It is easy to check that P is a characteristic subgroup of G.
We call a group G purely non-abelian if it does not have an abelian direct

factor. Now we state some results that will be used in the proof of the main
theorems.

Lemma 2.1 ([6]). AutM (G) acts trivially on P.

Let E∗ be any normal subgroup of Aut(G) contained in C∗ and

K = 〈[g, α] : g ∈ G, α ∈ E∗〉.
In particular, when E∗ = Inn(G), we get K = G

′
. Since K is a subgroup of

P, it is invariant under the action of AutM (G). It is easy to see that K is a
characteristic subgroup of G and hence it is a normal subgroup of G.

Lemma 2.2 ([6]). If G is a purely non-abelian finite group, then

|AutM (G)| = |Hom(G,M)|.

Lemma 2.3 ([6]). For a finite group G, AutMM (G) ∼= Hom(G/KM,M).

Lemma 2.4 ([6]). Let G be a purely non-abelian finite group. Then for each
α ∈ Hom(G,M) and each x ∈ K, we have α(x) = 1. Furthermore,

Hom(G/K,M) ∼= Hom(G,M).

Definition 2.5. A finite p-group G is special if G is elementary abelian
or Z(G) = G

′
= Φ(G) and a non-abelian special p-group G is extraspecial if

Z(G) = G
′

= Φ(G) ∼= Cp.

Lemma 2.6 ([4]). Suppose H is an abelian p-group of exponent pc and K is
a cyclic group of order divisible by pc. Then Hom(H,K) is isomorphic to H.
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Corollary 2.7 ([4]). Let G be a purely non-abelian p-group of nilpotent
class 2. Then

|Hom(G/Z(G), G
′
)| ≥ |G/Z(G)|pr(s−1),

where r = rank(G/Z(G)) and s = rank(G
′
).

Lemma 2.8 ([2]). Let G be a group, and let M and N be two normal sub-
groups of G such that M ≤ Z(G) ∩N . Then AutMN (G) ∼= Hom(G/N,M).

3. MAIN RESULT

We note that in this section M is a central characteristic subgroup.

Theorem 3.1. Let G be a finite group. Then G/M is abelian if and only
if Inn(G) ≤ AutM (G).

Proof. Suppose that G/M is abelian. Thus G
′ ≤ M . Let x ∈ G. Then for

the inner automorphism θx induced by x and every g ∈ G we have, g−1θx(g) =

[g, x] ∈ G′ ⊆M. So for every α ∈ Inn(G), g−1α(g) ∈M . This means Inn(G) ⊆
AutM (G). Hence Inn(G) ≤ AutM (G).

Conversely, suppose that Inn(G) ≤ AutM (G). Hence it is clear that G
′ ⊆

M , and so G/M is abelian. �

Corollary 3.2. Let G be a finite p-group. If M = Φ(G), then Inn(G) ≤
AutM (G).

Proof. Since G is a p-group and M = Φ(G) = G
′
Gp, G

′ ≤ M . Hence, by
Theorem 3.1, we have Inn(G) ≤ AutM (G). �

Remark 3.3. If G is a purely non-abelian finite p-group, then Ω(M) ≤
Φ(G).

Proof. Suppose that 1 6= m ∈ Ω(M) \ Φ(G). Therefore there exists a max-
imal subgroup D such that m /∈ D, so we have G ∼= 〈m〉 ×D. Thus G is not
purely non-abelian. �

Theorem 3.4. Suppose that G is a purely non-abelian finite p-group for
which G/M is abelian. Then

|AutM (G) : Inn(G)| ≥ pr(s−1),
where r = rank(G/Z(G)) and s = rank(G

′
).

Proof. Using Lemma 2.2, |AutM (G)| = |Hom(G,M)|. Since G/M is abe-

lian, G
′ ≤ M ≤ Z(G), thus G is nilpotent of class 2. Now, by Corollary 2.7,

we have

|Hom(G,M)| ≥ |Hom(G/Z(G),M)|

≥ |Hom(G/Z(G), G
′
)|

≥ |G/Z(G)|pr(s−1).

Hence, |AutM (G)| ≥ |G/Z(G)|pr(s−1), and thus
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|AutM (G) : Inn(G)| = |AutM (G)| ≥ |G/Z(G)| ≥ pr(s−1),

which finishes the proof. �

Question 3.5. Find necessary and sufficient conditions on a finite p-group
G such that AutMM (G) = AutM (G).

Let G be a non-abelian finite p-group. Let

G/K = Cpa1 × Cpa2 × . . .× Cpak ,

where Cpai is a cyclic group of order pai , 1 ≤ i ≤ k, and a1 ≥ a2 ≥ . . . ≥ ak ≥ 1.
Let

G/KM = Cpb1 × Cpb2 × . . .× Cpbl

and

M = Cpc1 × Cpc2 × . . .× Cpcm ,

where b1 ≥ b2 ≥ . . . ≥ bl ≥ 1 and c1 ≥ c2 ≥ . . . ≥ cm ≥ 1. Since G/KM is a
quotient of G/K, we have l ≤ k and bi ≤ ai for all 1 ≤ i ≤ l.

Theorem 3.6. Let G be a purely non-abelian finite p-group (p odd). Then
AutMM (G) = AutM (G) if and only if M ≤ K or M ≤ Φ(G), k = l and c1 ≤ bt,
where t is the largest integer between 1 and k such that at > bt.

Proof. Let M ≤ K. By Lemma 2.1 and since K ≤ P, every α ∈ AutM (G)
fixes M , and so AutM (G) ≤ AutMM (G), since AutMM (G) ≤ AutM (G). Thus
AutMM (G) = AutM (G). Now suppose that M ≤ Φ(G), k = l and c1 ≤ bt. Since
G is purely non-abelian, by Lemmas 2.2 and 2.4, we have

|AutM (G)| = |Hom(G,M)| = |Hom(G/K,M)| =
∏

1≤i≤k,1≤j≤m
pmin{ai,cj}.

On the other hand, using Lemma 2.3, we have

|AutMM (G)| = |Hom(G/KM,M)| =
∏

1≤i≤l,1≤j≤m
pmin{bi,cj}.

Since bt ≥ c1, we have

b1 ≥ b2 ≥ . . . ≥ bt−1 ≥ bt ≥ c1 ≥ c2 ≥ . . . ≥ cm ≥ 1.

Therefore, cj ≤ bi ≤ ai for all 1 ≤ j ≤ m and 1 ≤ i ≤ t, whence min {ai, cj}
= cj = min {bi, cj} for all 1 ≤ j ≤ m and 1 ≤ i ≤ t. Since ai = bi for all
i > t, we have min{ai, cj} = min{bi, cj} for all 1 ≤ j ≤ m and t + 1 ≤ i ≤ k.
Thus min{bi, cj} = min {ai, cj} for all 1 ≤ j ≤ m and 1 ≤ i ≤ k. So we have

AutMM (G) = AutM (G).
Conversely, let AutMM (G) = AutM (G) and M � K. We claim that M ≤

Φ(G). Assume contrarily that M is not contained in Φ(G). Then there exists
a maximal subgroup D of G such that M � D. The maximality of D implies
that G = DM and D ≤ G. Hence we assume that |G/D| = p, where p is a
prime number. Next, we consider the following two cases.
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Case 1: p||M ∩ D|. Choose z ∈ M ∩ D such that o(z) = p and fix g ∈
M\D. It is clear that G = D < g >. Consider the map α defined on G
by α(dgi) = dgizi for every d ∈ D and every i ∈ {0, 1, 2, . . . , p − 1}. Then
α ∈ AutM (G). By the given hypothesis, g = α(g) = gz, whence z = 1, which
is a contradiction. Hence M ≤ Φ(G).

Case 2: p - |M ∩D|. In this case, since

p = |G/D| = |DM/D| = |M/M ∩D|,

we see that p divides |M | and we may choose z ∈ M such that o(z) = p
and z /∈ D. Hence G = 〈D, z〉 = D × 〈z〉. Consider the map α : G → G,
where α(dzi) = dz2i for every d ∈ D and every i ∈ {0, 1, 2, . . . , p − 1}. Then
α ∈ AutM (G). By the given hypothesis and since z ∈ M , it is clear that
z = α(z) = α(1.z1) = z2, a contradiction. The proof of the theorem is now
complete. �

Definition 3.7. If G is a group and M is a characteristic central subgroup
of G, then G is called M -almost semicomplete if AutMM (G) = Inn(G).

Theorem 3.8. Let G be a finite p-group such that G/M is abelian. Then
the following are equivalent:

(1) G is M -almost semicomplete.
(2) Hom(G/M,M) ∼= G/Z(G).
(3) M is cyclic and Hom(G/M,M) ∼= Hom(G/Z(G),M).

Proof. (1)⇒ (2) By Lemma 2.8 and since G is M -almost semicomplete, we
have

Hom(G/M,M) ∼= Inn(G) ∼= G/Z(G).

(2) ⇒ (1) By Lemma 2.8 and since Hom(G/M,M) ∼= G/Z(G), we have

AutMM (G) ∼= Inn(G). Also, since G/M is abelian, we have G
′ ≤ M , and so

Inn(G) ≤ AutM (G). For every α ∈ Inn(G) and m ∈ M , we have α(m) = m.
Therefore Inn(G) ≤ AutMM (G), and so G is M -almost semicomplete.

(1) ⇒ (3) Since G is M -almost semicomplete, every f ∈ AutMM (G) is an
inner one, and so it fixes each element of Z(G). Therefore, for every f ∈
AutMM (G), the map σf : G/Z(G) → M defined by σf (gZ(G)) = g−1f(g) is
well defined. Now, consider the map σ : f → σf . It is easy to check that σ is

an isomorphism from AutMM (G) onto Hom(G/Z(G),M), thus

Hom(G/Z(G),M) ∼= G/Z(G).

Next, we show that M is cyclic. Assume contrarily that M is not cyclic and
exp(M) = pe. Then M = Cpe ×N , where Cpe is cyclic subgroup of M and N
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is a non-trivial proper subgroup of M . We have

|G/Z(G)| = |Hom(G/Z(G),M)|
= |Hom(G/Z(G), Cpe ×N)|
= |Hom(G/Z(G), Cpe)||Hom(G/Z(G), N)|.

Since G/M is abelian, we have G
′ ≤ M ≤ Z(G), so G is nilpotent of class 2

and exp(G/Z(G)) = exp(G
′
). Now, by Lemma 2.6, we have

|Hom(G/Z(G), Cpe)| = |G/Z(G)|.

Therefore

|G/Z(G)| = |Hom(G/Z(G),M)| = |G/Z(G)||Hom(G/Z(G), N)|,

which is a contradiction. Hence M is cyclic.
(3)⇒ (1) Since M is cyclic, G/Z(G) is an abelian p-group of exponent |G′ |

and G
′

is cyclic, by Lemma 2.6, it follows that Hom(G/Z(G),M) ∼= G/Z(G).
Using Lemma 2.8, we have AutMM (G) ∼= Hom(G/M,M). Since G/M is abelian,
by Theorem 3.1, we have Inn(G) ≤ AutM (G). On the other hand, M ≤ Z(G),
so Inn(G) ≤ AutM (G). Thus Inn(G) ≤ AutMM (G). Therefore, G is M -almost
semicomplete. �

Example 3.9. Let G be an extraspecial p-group and M = G
′ ∼= Cp. Then

G
′

is cyclic and

Hom(G/G
′
, G

′
) ∼= Hom(G/Z(G), G

′
).

So, by Theorem 3.8, G is a G
′
-almost semicomplete.

Corollary 3.10. Suppose that G is a finite p-group such that G/M is
abelian. Then CAutMM (G)(Z(G)) = Inn(G) if and only if M is cyclic.

Proof. We first prove that CAutMM (G)(Z(G)) ∼= Hom(G/Z(G),M). Since

every element of CAutMM (G)(Z(G)) fixes each element of Z(G), for each f ∈
CAutMM (G)(Z(G)), the map σf : G/Z(G)→M defined by σf (gZG)) = g−1f(g)

is well defined. Now, as in the proof of Theorem 3.8, it is easy to see that the
map f 7→ σf is an isomorphism of CAutMM (G)(Z(G)) onto Hom(G/Z(G),M). If

CAutMM (G)(Z(G)) = Inn(G), then Hom(G/Z(G),M) ∼= G/Z(G), by the proof

of Theorem 3.8. Since G/M is abelian, M is cyclic.
Conversely, assume that M is cyclic. Since G/M is abelian, we have

|CAutMM (G)(Z(G))| = |Hom(G/Z(G),M)| = |G/Z(G)| = |Inn(G)|.

It follows from Inn(G) ≤ CAutMM (G)(Z(G)) that CAutMM (G)(Z(G)) = Inn(G). �

Remark 3.11. Let G be a finite p-group and let α ∈ AutMM (G) and pn =
exp(M). Since g−1α(g) ∈M, α(g) = gm for m ∈M , we have

α(gp
n
) = gp

n
mpn [g,m]

(
pn

2

)
.
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Now since M ≤ Z(G), [g,m] = 1. Also mpn = 1. Therefore, α(gp
n
) = gp

n
for

every g ∈ G.
Theorem 3.12. Let G be a non-abelian finite p-group. Then AutMM (G) =

CAutMM (G)(Z(G)) if and only if Z(G)G
′ ⊆ G′

MGpn, where pn = exp(M).

Proof. Suppose that Z(G)G
′ ⊆ G

′
MGpn , where pn = exp(M). We know

that

CAutMM (G)(Z(G)) ≤ AutMM (G).

Now, assume that σ ∈ AutMM (G) and x ∈ Z(G). We can write x = abgp
n

for

some a ∈ G′
, b ∈ M, and g ∈ G. According to Remark 3.11, σ(gp

n
) = gp

n

and σ(b) = b. Also, AutMM (G) acts trivially on G
′
. Hence, σ(x) = x, and so

σ ∈ CAutMM (G)(Z(G)). This shows that AutMM (G) ≤ CAutMM (G)(Z(G)), whence

AutMM (G) = CAutMM (G)(Z(G)).

To prove the converse, suppose that AutMM (G) = CAutMM (G)(Z(G)) and

Z(G)G
′ * G

′
MGpn . Thus there exists x ∈ Z(G), which is not in G

′
MGpn .

Let

G/G
′
M = 〈x1G

′
M〉 × . . .× 〈xkG

′
M〉,

where x1, x2, . . . , xk ∈ G. Therefore, xG
′
M = xp

t1

1 G
′
M . . . xp

tk

k G
′
M for some

t1, t2, . . . , tk. Since x /∈ G
′
MGpn , we have xp

ti

i /∈ Gpn , and so pti < pn for

some i. Next, select m ∈ M , where o(m) = min(pn, o(xi)G
′
M), and define

f : G/G
′
M →M by xiG

′
M 7→ m and xjG

′
M 7→ 1, for i 6= j. Then f can be

considered as a homomorphism. Now, consider the map σf : G→ G defined by

σf (a) = af(aG
′
M). Clearly, σf is an endomorphism of G. Next, suppose that

x ∈ Ker(σf ). Then f(xG
′
M) = x−1. Also, σf acts trivially on the elements of

M , so we can write x−1 = σf (x−1) = x−1f(x−1G
′
M) = x−1x = 1. Therefore,

x = 1. This shows that σf is one-to-one, and, since G is finite, one can see

that the homomorphism σf is a bijection. Hence σf ∈ AutMM (G). Moreover,

f(xG
′
M) = f(xp

t1

1 G
′
M . . . xp

tk

k G
′
M), and so f(xG

′
M) = f(xp

ti

i G
′
M) = mpti .

We have pti < pn, and therefore mpti is a non-trivial element of M . Hence
σf /∈ CAutMM (G)(Z(G)), which is a contradiction. �

Corollary 3.13. Let G be a non-abelian finite p-group such that G/M is
abelian. Then AutMM (G) = CAutMM (G)(Z(G)) if and only if Z(G) = MGpn,

where pn = exp(M).

Proof. Suppose that AutMM (G) = CAutMM (G)(Z(G)). Using Theorem 3.12 and

since G/M is abelian, Z(G) ⊆MGpn . Also, since G
′ ≤M , for every a, b ∈ G,

we have [a, b]p
n

= 1, whence [ap
n
, b] = 1. This means that for every a ∈ G,

ap
n ∈ Z(G) and Gpn ≤ Z(G). Therefore, MGpn ≤ Z(G), and so Z(G) =

MGpn . The converse holds by Theorem 3.12. �



88 P. Seifizadeh and M.M. Nasrabadi 8

REFERENCES

[1] J.E. Adney and T. Yen, Automorphisms of a p-group, Illinois J. Math., 9 (1965), 137–
143.

[2] Z. Azhdari and M. Akhavan-Malayeri, On automorphisms fixing certain groups, J. Al-
gebra Appl., 12 (2013), 1250163-1–17.

[3] R.D. Carmichael, Groups of finite order, Dover Publications, New York, 1965.
[4] M.J. Curran and D.J. McCaughan, Central automorphisms that are almost inner,

Comm. Algebra, 29 (2001), 2081–2087.
[5] M.J. Curran and D.J. McCaughan, Finite groups with central automorphism group of

minimal order, Math. Proc. R. Ir. Acad., 104A (2004), 223–229.
[6] R.G. Ghumde and S.H. Ghate, Group of automorphisms preserving cosets of a central

charactristic subgroup and related results, Acta Math. Univ. Comenian., 2 (2016), 181–
189.

[7] Z. Kaboutari Farimani and M.M. Nasrabadi, On absolute central automorphisms fixing
the center elementwise, J. Algebr. Syst., 2 (2016), 127–131.

[8] M. Shabani Attar, Finite p-groups in which each central automorphism fixes centre
elementwise, Comm. Algebra, 40 (2012), 1096–1102.

Received March 17, 2019

Accepted July 21, 2019

University of Birjand

Department of Mathematics

Birjand, Iran

E-mail: paris.seifizadeh@birjand.ac.ir

E-mail: jparis.seifizade@gmail.com

E-mail: mnasrabadi@birjand.ac.ir


