GROUP GRADED ENDOMORPHISM ALGEBRAS AND MORITA EQUIVALENCES

ANDREI MARCUS and VIRGILIUS-AURELIAN MINUȚĂ

Abstract

We prove a group graded Morita equivalences version of the "butterfly theorem" on character triples. This gives a method to construct an equivalence between block extensions from another related equivalence. MSC 2010. 20C20, 20C05, 16W50, 16S35. Key words. Block extension, centralizer subalgebra, crossed product, group graded Morita equivalence.

1. INTRODUCTION AND PRELIMINARIES

The Butterfly theorem, as stated by B. Späth in [3, Theorem 2.16], gives the possibility to construct certain relations between character triples. The result is very useful in obtaining reduction methods for the local-global conjectures in modular representation theory of finite groups. In this paper, we consider group graded Morita equivalences between block extensions and we obtain an analogue of [3, Theorem 2.16]. Our main result, Theorem 4.2, shows how to construct a group graded Morita equivalence from a given one, under very similar assumptions to those in [3].

In general, our notations and assumptions are standard and follow [2]. To introduce our context, let G be a finite group, N a normal subgroup of G, and denote by \bar{G} the factor group G / N. Let $A=\bigoplus_{\bar{g} \in \bar{G}} A_{\bar{g}}$ be a strongly \bar{G}-graded \mathcal{O}-algebra with the identity component $B:=A_{1}$, where $(\mathcal{K}, \mathcal{O}, \mathcal{K})$ is a p-modular system. For a subgroup \bar{H} of \bar{G}, we denote by $A_{\bar{H}}:=\bigoplus_{\bar{g} \in \bar{H}} A_{\bar{g}}$ the truncation of A from \bar{G} to \bar{H}.

For the sake of simplicity, in this article we will mostly consider only crossed products, also because the generalization of the statements to the case of strongly graded algebras is a mere technicality. Recall that, if A is a crossed product, we can chose an invertible homogeneous element $u_{\bar{g}}$ in the component $A_{\bar{g}}$, for all $\bar{g} \in \bar{G}$.

Our main example for a \bar{G}-graded crossed product is obtained as follows: Regard $\mathcal{O} G$ as a \bar{G}-graded algebra with the 1-component $\mathcal{O} N$. Let $b \in Z(\mathcal{O} N)$ be a \bar{G}-invariant block idempotent. We denote $A:=b \mathcal{O} G$ and $B:=b \mathcal{O} N$. Then the block extension A is a \bar{G}-graded crossed product, with 1-component B.

The paper is organized as follows. In Section 2, we recall from [2] the main facts on group graded Morita equivalences and we state a graded variant of the second Morita Theorem [1, Theorem 12.12]. In Section 3, we show that there is a natural map, compatible with Morita equivalences, from the centralizer $C_{A}(B)$ of B in A to the endomorphism algebra of a \bar{G}-graded A module induced from a B-module. In the last section, we prove that a Morita equivalence between the 1-components of two block extensions always lifts to a graded equivalence between certain centralizer algebras. This is the main ingredient in the proof of our main result, Theorem 4.2.

2. GROUP GRADED MORITA EQUIVALENCES

Let $A=\bigoplus_{\bar{g} \in \bar{G}} A_{\bar{g}}$ and $A^{\prime}=\bigoplus_{\bar{g} \in \bar{G}} A_{\bar{g}}^{\prime}$ be strongly \bar{G}-graded algebras, with the 1-components B and B^{\prime} respectively.

It is clear that $A \otimes_{\mathcal{O}} A^{\prime \mathrm{op}}$ is a $\bar{G} \times \bar{G}$-graded algebra. Let

$$
\delta(\bar{G}):=\{(\bar{g}, \bar{g}) \mid \bar{g} \in \bar{G}\}
$$

be the diagonal subgroup of $\bar{G} \times \bar{G}$, and let Δ be the diagonal subalgebra of $A \otimes_{\mathcal{O}} A^{\prime \text { op }}$

$$
\Delta:=\left(A \otimes_{\mathcal{O}} A^{\prime \mathrm{op}}\right)_{\delta(\bar{G})}=\bigoplus_{\bar{g} \in \bar{G}} A_{\bar{g}} \otimes A_{\bar{g}^{-1}}^{\prime}
$$

Then Δ is a \bar{G}-graded algebra, with 1-component $\Delta_{1}=B \otimes_{\mathcal{O}} B^{\prime o p}$.
Let M be a $\left(B, B^{\prime}\right)$-bimodule, or, equivalently, M is a $B \otimes_{\mathcal{O}} B^{\prime o p}$-module, thus a Δ_{1}-module. Let $M^{*}:=\operatorname{Hom}_{B}(M, B)$ be its B-dual. Note that if B is a symmetric algebra, then we have the isomorphism

$$
M^{*}:=\operatorname{Hom}_{B}(M, B) \simeq \operatorname{Hom}_{\mathcal{O}}(M, \mathcal{O})
$$

where $\operatorname{Hom}_{\mathcal{O}}(M, \mathcal{O})$, is the \mathcal{O}-dual of M.
Definition 2.1. We say that the \bar{G}-graded $\left(A, A^{\prime}\right)$-bimodule \tilde{M} induces a \bar{G}-graded Morita equivalence between A and A^{\prime}, if $\tilde{M} \otimes_{A^{\prime}} \tilde{M}^{*} \simeq A$ as \bar{G}-graded (A, A)-bimodules and that $\tilde{M}^{*} \otimes_{A} \tilde{M} \simeq A^{\prime}$ as \bar{G}-graded $\left(A^{\prime}, A^{\prime}\right)$-bimodules, where the A-dual $\tilde{M}^{*}=\operatorname{Hom}_{A}(\tilde{M}, A)$ of \tilde{M} is a \bar{G}-graded $\left(A^{\prime}, A\right)$-bimodule.

By [2, Theorem 5.1.2], the following statements are equivalent:
(1) between B and B^{\prime} we have a Morita equivalence given by the $\Delta_{1^{-}}$ module M and M extends to a Δ-module;
(2) $\tilde{M}:=A \otimes_{B} M$ is a \bar{G}-graded $\left(A, A^{\prime}\right)$-bimodule and $\tilde{M}^{*}:=A^{\prime} \otimes_{B^{\prime}} M^{*}$ is a \bar{G}-graded $\left(A^{\prime}, A\right)$-bimodule, which induce a \bar{G}-graded Morita equivalence between A and A^{\prime}, given by the functors:

$$
A \xlongequal[A^{\prime}]{\stackrel{\tilde{M}_{A^{\prime}} \otimes_{A^{\prime}}-}{\rightleftarrows} \otimes_{A}-} A^{\prime} .
$$

In this case, by [2, Lemma 1.6.3], we have the natural isomorphisms of \bar{G}-graded bimodules

$$
\tilde{M}:=A \otimes_{B} M \simeq M \otimes_{B^{\prime}} A^{\prime} \simeq\left(\left(A \otimes_{\mathcal{O}} A^{\prime \mathrm{op}}\right) \otimes_{\Delta} M\right) .
$$

Assume that B and B^{\prime} are Morita equivalent. Then, by the second Morita Theorem [1, Theorem 12.12], we can choose the bimodule isomorphisms

$$
\varphi: M^{*} \otimes_{B} M \rightarrow B^{\prime}, \quad \psi: M \otimes_{B^{\prime}} M^{*} \rightarrow B .
$$

such that

$$
\psi\left(m \otimes m^{*}\right) n=m \varphi\left(m^{*} \otimes n\right), \quad \forall m, n \in M, m^{*} \in M^{*}
$$

and that

$$
\varphi\left(m^{*} \otimes m\right) n^{*}=m^{*} \psi\left(m \otimes n^{*}\right), \quad \forall m^{*}, n^{*} \in M^{*}, m \in M .
$$

By the surjectivity of this functions, we may choose finite sets I and J and the elements $m_{j}^{*}, n_{i}^{*} \in M^{*}$ and $m_{j}, n_{i} \in M$, for all $i \in I, j \in J$ such that:

$$
\varphi\left(\sum_{j \in J} m_{j}^{*} \otimes_{B} m_{j}\right)=1_{B^{\prime}}, \quad \psi\left(\sum_{i \in I} n_{i} \otimes_{B} n_{i}^{*}\right)=1_{B} .
$$

Assume that \tilde{M} and \tilde{M}^{*} give a \bar{G}-graded Morita equivalence between A and A^{\prime}. As above, by [1, Theorem 12.12], we can choose the isomorphisms

$$
\tilde{\varphi}: \tilde{M}^{*} \otimes_{A} \tilde{M} \rightarrow A^{\prime}, \quad \tilde{\psi}: \tilde{M} \otimes_{A^{\prime}} \tilde{M}^{*} \rightarrow A
$$

of \bar{G}-graded bimodules such that

$$
\tilde{\psi}\left(\tilde{m} \otimes \tilde{m}^{*}\right) \tilde{n}=\tilde{m} \tilde{\varphi}\left(\tilde{m}^{*} \otimes \tilde{n}\right), \quad \forall \tilde{m}, \tilde{n} \in \tilde{M}, \tilde{m}^{*} \in \tilde{M}^{*}
$$

and that

$$
\tilde{\varphi}\left(\tilde{m}^{*} \otimes \tilde{m}\right) \tilde{n}^{*}=\tilde{m}^{*} \tilde{\psi}\left(\tilde{m} \otimes \tilde{n}^{*}\right), \quad \forall \tilde{m}^{*}, \tilde{n}^{*} \in \tilde{M}^{*}, \tilde{m} \in \tilde{M} .
$$

Actually, $\tilde{\varphi}_{1}$ and $\tilde{\psi}_{1}$ are the same with φ and ψ from before and are Δ-linear isomorphisms. Moreover, we have that $1_{A}=1_{B} \in B$ and $1_{A^{\prime}}=1_{B^{\prime}} \in B^{\prime}$. Henceforth, we may choose the same finite sets I and J and the same elements $m_{j}^{*}, n_{i}^{*} \in M^{*}$ and $m_{j}, n_{i} \in M, \forall i \in I, j \in J$ such that:

$$
\tilde{\varphi}\left(\sum_{j \in J} m_{j}^{*} \otimes_{B} m_{j}\right)=1_{B^{\prime}}, \quad \tilde{\psi}\left(\sum_{i \in I} n_{i} \otimes_{B} n_{i}^{*}\right)=1_{B} .
$$

3. CENTRALIZERS AND GRADED ENDOMORPHISM ALGEBRAS

We will assume that A and A^{\prime} are \bar{G}-graded crossed products, although the results of this section can be generalized to strongly graded algebras. Let $U \in B-\bmod$ and $U^{\prime} \in B^{\prime}-$ mod such that $U^{\prime}=M^{*} \otimes_{B} U$. We denote

$$
E(U):=\operatorname{End}\left(A \otimes_{B} U\right)^{\mathrm{op}}, \quad E\left(U^{\prime}\right):=\operatorname{End}\left(A^{\prime} \otimes_{B^{\prime}} U^{\prime}\right)^{\mathrm{op}}
$$

the \bar{G}-graded endomorphism algebras of the modules induced from U and U^{\prime}.

We will prove that there exists a natural \bar{G}-graded algebra homomorphism between the centralizer of B in A and $E(U)$, compatible with \bar{G}-graded Morita equivalences.

Lemma 3.1. The map

$$
\theta: C_{A}(B) \rightarrow E(U), \quad \theta(c)(a \otimes u)=a c \otimes u
$$

where $c \in C_{A}(B), a \in A$ and $u \in U$ is a homomorphism of \bar{G}-graded algebras.
Proof. We first need to show that the map is well-defined. For $c \in C_{A}(B)$, $a \in A, b \in B$ and $u \in U$, we have:

$$
\theta(c)\left(a b \otimes_{B} u\right)=a b \cdot c \otimes_{B} u=a c b \otimes_{B} u=a c \otimes_{B} b u=\theta(c)\left(a \otimes_{B} b u\right) .
$$

To show that $\theta(c)$ is A-linear, let $a^{\prime} \in A$; we have:

$$
\theta(c)\left(a^{\prime} a \otimes_{B} u\right)=a^{\prime} a c \otimes_{B} u=a^{\prime}\left(a c \otimes_{B} u\right)=a^{\prime} \theta(c)\left(a \otimes_{B} u\right) .
$$

To prove that the map is a ring homomorphism, let $c, c^{\prime} \in C_{A}(B)$; we have:

$$
\begin{aligned}
\left(\theta(c) \cdot \theta\left(c^{\prime}\right)\right)\left(a \otimes_{B} u\right) & =\left(\theta\left(c^{\prime}\right) \circ \theta(c)\right)\left(a \otimes_{B} u\right) \\
& =\theta\left(c^{\prime}\right)\left(\theta(c)\left(a \otimes_{B} u\right)\right) \\
& =\theta\left(c^{\prime}\right)\left(a c \otimes_{B} u\right)=a c c^{\prime} \otimes_{B} u \\
& =\theta\left(c c^{\prime}\right)\left(a \otimes_{B} u\right) .
\end{aligned}
$$

Finally, we check that θ is grade-preserving. Let $a_{\bar{g}} \otimes_{B} u \in A_{\bar{g}} \otimes_{B} U$ and $c \in$ $C_{A}(B)_{\bar{h}}$, where $\bar{g}, \bar{h} \in \bar{G}$. Then the definition of θ says that

$$
\theta(c)\left(a_{\bar{g}} \otimes_{B} u\right)=a_{\bar{g}} \cdot c \otimes_{B} u \in A_{\bar{g} \bar{h}} \otimes_{B} U .
$$

If follows that $\theta(c)$ belongs to $E(U)_{\bar{h}}$. The other properties are obvious.
By [2, Lemma 1.6.3], we have

$$
A \otimes_{B} M \simeq M \otimes_{B^{\prime}} A^{\prime}
$$

and we will need an explicit isomorphism between the two. We will choose invertible elements $u_{\bar{g}} \in U(A) \cap A_{\bar{g}}$ and $u_{\bar{g}}^{\prime} \in U(A) \cap A_{\bar{g}}^{\prime}$ of degree $\bar{g} \in \bar{G}$. We have that an arbitrary element $a_{\bar{g}}^{\prime} \in A_{\bar{g}}^{\prime}$ can be written uniquely in the form $a_{\bar{g}}^{\prime}=u_{\bar{g}}^{\prime} b^{\prime}$, where $b^{\prime} \in B^{\prime}$. The desired \bar{G}-graded bimodule isomorphism is:

$$
\varepsilon: M \otimes_{B^{\prime}} A^{\prime} \rightarrow A \otimes_{B} M \quad m \otimes_{B^{\prime}} a_{\bar{g}}^{\prime} \mapsto u_{\bar{g}} \otimes_{B} u_{\bar{g}}^{-1} m a_{\bar{g}}^{\prime}
$$

for $m \in M$. We will also need the explicit isomorphism of \bar{G}-graded bimodules

$$
\beta: A^{\prime} \otimes_{B^{\prime}} M^{*} \rightarrow M^{*} \otimes_{B} A \quad a_{\bar{g}}^{\prime} \otimes_{B^{\prime}} m^{*} \mapsto a_{\bar{g}}^{\prime} m^{*} u_{\bar{g}}^{-1} \otimes_{B} u_{\bar{g}}
$$

for $m^{*} \in M^{*}$. Henceforth we consider the isomorphism of \bar{G}-graded A^{\prime} modules

$$
\beta \otimes_{B} i d_{U}: A^{\prime} \otimes_{B^{\prime}} M^{*} \otimes_{B} U \rightarrow M^{*} \otimes_{B} A \otimes_{B} U .
$$

Proposition 3.2. Assume that \tilde{M} and \tilde{M}^{*} give a \bar{G}-graded Morita equivalence between A and A^{\prime}. Then the diagram

is commutative, where the maps are defined as follows:

$$
\begin{aligned}
\theta(c)(a \otimes u) & =a c \otimes u \\
\theta^{\prime}\left(c^{\prime}\right)\left(a^{\prime} \otimes u^{\prime}\right) & =a^{\prime} c^{\prime} \otimes u^{\prime} \\
\varphi_{1}(f) & =\left(\beta \otimes_{B} i d_{U}\right)^{-1} \circ\left(i d_{\tilde{M}^{*}} \otimes f\right) \circ\left(\beta \otimes_{B} i d_{U}\right), \\
\varphi_{2}(c) & =\tilde{\varphi}\left(\sum_{j \in J} m_{j}^{*} c \otimes_{B} m_{j}\right) .
\end{aligned}
$$

for all $a \in A, a^{\prime} \in A^{\prime}, c \in C_{A}(B), c^{\prime} \in C_{A^{\prime}}\left(B^{\prime}\right), u \in U, u^{\prime} \in U^{\prime}$ and $f \in E(U)$.
Proof. According to Lemma 3.1, we have that θ, θ^{\prime} are homomorphisms of \bar{G}-graded algebras. Moreover, φ_{1} and φ_{2} are the algebra isomorphisms induced by the \bar{G}-graded Morita equivalence.

To prove that the diagram is commutative, let $c \in C_{A}(B)_{\bar{h}}$, where $\bar{h} \in \bar{G}$. We consider arbitrary elements $a_{\bar{g}}^{\prime} \in A_{\bar{g}}^{\prime}$, where $\bar{g} \in \bar{G}$ and $u^{\prime}=m^{*} \otimes_{B} u \in$ $U^{\prime}=M^{*} \otimes_{B} U$. By the above remarks, for all $f \in E(U)$, we have

$$
\varphi_{1}(f)\left(a_{\bar{g}}^{\prime} \otimes_{B^{\prime}} m^{*} \otimes_{B} u\right)=a_{\bar{g}}^{\prime} m^{*} u_{\bar{g}}^{-1} \otimes_{B} f\left(u_{\bar{g}} \otimes_{B} u\right)
$$

hence, for $f=\theta(c) \in E(U)$ we get

$$
\varphi_{1}(\theta(c))\left(a_{\bar{g}}^{\prime} \otimes_{B^{\prime}} m^{*} \otimes_{B} u\right)=a_{\bar{g}}^{\prime} m^{*} u_{\bar{g}}^{-1} \otimes_{B} u_{\bar{g}} c \otimes_{B} u
$$

On the other hand, $c^{\prime}:=\varphi_{2}(c) \in C_{A^{\prime}}\left(B^{\prime}\right)_{h}$, hence, via the identification given by the isomorphism β, we have

$$
\begin{aligned}
\theta^{\prime}\left(\varphi_{2}(c)\right) & \left(a_{\bar{g}}^{\prime} \otimes_{B^{\prime}} m^{*} \otimes_{B} u\right)=a_{\bar{g}}^{\prime} c^{\prime} m^{*} u_{\bar{h}}^{-1} u_{\bar{g}}^{-1} \otimes_{B} u_{\bar{g}} u_{\bar{h}} \otimes_{B} u \\
& =a_{\bar{g}}^{\prime} \tilde{\varphi}\left(\sum_{j} m_{j}^{*} c \otimes_{B} m_{j}\right) m^{*} u_{\bar{h}}^{-1} u_{\bar{g}}^{-1} \otimes_{B} u_{\bar{g}} u_{\bar{h}} \otimes_{B} u \\
& =a_{\bar{g}}^{\prime} \sum_{j} m_{j}^{*} c \psi\left(m_{j} \otimes_{B^{\prime}} m^{*}\right) u_{\bar{h}}^{-1} u_{\bar{g}}^{-1} \otimes_{B} u_{\bar{g}} u_{\bar{h}} \otimes_{B} u \\
& =a_{\bar{g}}^{\prime} \sum_{j} m_{j}^{*} \psi\left(m_{j} \otimes_{B^{\prime}} m^{*}\right) u_{\bar{g}}^{-1} u_{\bar{g}} c u_{\bar{h}}^{-1} u_{\bar{g}}^{-1} \otimes_{B} u_{\bar{g}} u_{\bar{h}} \otimes_{B} u \\
& =a_{\bar{g}}^{\prime} \varphi\left(\sum_{j} m_{j}^{*} \otimes_{B} m_{j}\right) m^{*} u_{\bar{g}}^{-1} \otimes_{B} u_{\bar{g}} c u_{\bar{h}}^{-1} u_{\bar{g}}^{-1} u_{\bar{g}} u_{\bar{h}} \otimes_{B} u \\
& =a_{\bar{g}}^{\prime} m^{*} u_{\bar{g}}^{-1} \otimes_{B} u_{\bar{g}} c \otimes_{B} u .
\end{aligned}
$$

Thus the statement is proved.

4. THE BUTTERFLY THEOREM FOR \bar{G}-GRADED MORITA EQUIVALENCES

Let N be a normal subgroup of G, G^{\prime} a subgroup of G, and N^{\prime} a normal subgroup of G^{\prime}. We assume that $N^{\prime}=G^{\prime} \cap N$ and $G=G^{\prime} N$, hence $\bar{G}:=G / N \simeq G^{\prime} / N^{\prime}$. Let $b \in Z(\mathcal{O N})$ and $b^{\prime} \in Z\left(\mathcal{O} N^{\prime}\right)$ be \bar{G}-invariant block idempotents. We denote

$$
A:=b \mathcal{O} G, \quad A^{\prime}:=b^{\prime} \mathcal{O} G^{\prime}, \quad B:=b \mathcal{O} N, \quad B^{\prime}:=b^{\prime} \mathcal{O} N^{\prime} .
$$

Then A and A^{\prime} are strongly \bar{G}-graded algebras, with 1-components B and B^{\prime} respectively.

Additionally, assume that $C_{G}(N) \subseteq G^{\prime}$, and denote $\bar{C}_{G}(N):=N C_{G}(N) / N$. We consider the algebras

If M induces a Morita equivalence between B and B^{\prime}, the question that arises is what can we deduce without the additional hypothesis that M extends to a Δ-module. One answer is given by the following proposition.

Proposition 4.1. Assume that:
(1) $C_{G}(N) \subseteq G^{\prime}$.
(2) M induces a Morita equivalence between B and B^{\prime}.
(3) $z m=m z$ for all $m \in M$ and $z \in Z(N)$.

Then there is a $\bar{C}_{G}(N)$-graded Morita equivalence between C and C^{\prime}, induced by the $\bar{C}_{G}(N)$-graded $\left(C, C^{\prime}\right)$-bimodule

$$
C \otimes_{B} M \simeq M \otimes_{B^{\prime}} C^{\prime} \simeq\left(C \otimes C^{\prime \mathrm{op}}\right) \otimes_{\Delta\left(C \otimes C^{\prime \circ \mathrm{op}}\right)} M .
$$

Proof. Firstly, it is easy to see that our assumption implies that $N C_{G}(N) / N$ is isomorphic to $N^{\prime} C_{G}(N) / N^{\prime}$. Thus both C and C^{\prime} are indeed strongly $\bar{C}_{G}(N)$-graded algebras.

Now, we prove that there is a $\bar{C}_{G}(N)$-graded Morita equivalence between C and C^{\prime}. It suffices to prove that $C \otimes_{B} M$ is actually a $\bar{C}_{G}(N)$-graded $\left(C, C^{\prime}\right)$ bimodule.

In view of Lemma 3.1, there exists a \bar{G}-graded algebra homomorphism between $C_{A}(B)$ and $\operatorname{End}_{A}\left(A \otimes_{B} M\right)^{\mathrm{op}}$. Moreover, note that $A \otimes_{B} M$ is a \bar{G} graded $\left(A, \operatorname{End}_{A}\left(A \otimes_{B} M\right)^{\mathrm{op}}\right)$-bimodule, hence by restricting the scalars we obtain that $A \otimes_{B} M$ is a \bar{G}-graded $\left(A, C_{A}(B)\right.$)-bimodule. We truncate to
the subgroup $\bar{C}_{G}(N)$ of \bar{G}, and we obtain that $A_{\bar{C}_{G}(N)} \otimes_{B} M$ is a $\bar{C}_{G}(N)$ graded $\left(A_{\bar{C}_{G}(N)}, C_{A}(B)_{\bar{C}_{G}(N)}\right)$-bimodule, but $A_{\bar{C}_{G}(N)}=b \mathcal{O} N C_{G}(N)=C$, hence $\hat{M}:=C \otimes_{B} M$ is a $\bar{C}_{G}(N)$-graded $\left(C, C_{A}(B)_{\bar{C}_{G}(N)}\right)$-bimodule.

We have that $\mathcal{O} C_{G}(N)$ is $\bar{C}_{G}(N)$-graded with the 1-component $\mathcal{O} Z(N)$ and there is an algebra homomorphism from $\mathcal{O} C_{G}(N)$ to $C_{A}(B)$, whose image is evidently included in $C_{A}(B)_{\bar{C}_{G}(N)}$. Hence, by restricting the scalars, we obtain that \hat{M} is a $\bar{C}_{G}(N)$-graded $\left(C, \mathcal{O} C_{G}(N)\right)$-bimodule. Finally, since M is $\left(B, B^{\prime}\right)$-bimodule, where $B^{\prime}=b^{\prime} \mathcal{O} N^{\prime}$, we may define on \hat{M} a structure of a $\bar{C}_{G}(N)$-graded $\left(C, b^{\prime} \mathcal{O} N^{\prime} C_{G}(N)\right.$)-bimodule, as follows. Let $c \in C, m \in M$, $c^{\prime} \in C_{G}(N) \subseteq C^{\prime}$ and $n \in N$ and define $(c \otimes m) c^{\prime} n=c c^{\prime} \otimes m n$. To see that this is well-defined, let $z \in Z(N)$, so $c^{\prime} n=\left(c^{\prime} z\right)\left(z^{-1} n\right)$. Then, by assumption (3), we have

$$
(c \otimes m)\left(c^{\prime} z\right)\left(z^{-1} n\right)=c c^{\prime} z \otimes m z^{-1} n=c c^{\prime} \otimes z m z^{-1} n=c c^{\prime} \otimes m n
$$

Consequently, \hat{M} is a $\bar{C}_{G}(N)$-graded $\left(C, C^{\prime}\right)$-bimodule.
Our main result is a version for Morita equivalences of the so-called "butterfly theorem" [3, Theorem 2.16].

ThEOREM 4.2. Let \hat{G} be another group with normal subgroup N such that the block b is also \hat{G}-invariant. Assume that:
(1) $C_{G}(N) \subseteq G^{\prime}$;
(2) \tilde{M} induces a \bar{G}-graded Morita equivalence between A and A^{\prime};
(3) $z m=m z$ for all $m \in M$ and $z \in Z(N)$;
(4) the conjugation maps $\varepsilon: G \rightarrow \operatorname{Aut}(N)$ and $\hat{\varepsilon}: \hat{G} \rightarrow \operatorname{Aut}(N)$ satisfy $\varepsilon(G)=\hat{\varepsilon}(\hat{G})$.
Denote $\hat{G}^{\prime}=\hat{\varepsilon}^{-1}\left(\varepsilon\left(G^{\prime}\right)\right)$. Then there is a \hat{G} / N-graded Morita equivalence between $\hat{A}:=b \mathcal{O} \hat{G}$ and $\hat{A}^{\prime}:=b^{\prime} \mathcal{O} \hat{G}^{\prime}$.

Proof. Consider the following diagram:

By the proof of [3, Theorem 2.16], we have that $C_{\hat{G}}(N) \leq \hat{G}^{\prime}, \hat{G}=N \hat{G}^{\prime}$ and $N^{\prime}=N \cap \hat{G}^{\prime}$. Note that $N C_{G}(N)$ is the kernel of the map $G \rightarrow \operatorname{Out}(N)$ induced by conjugation. Hence the hypothesis $\varepsilon(G)=\hat{\varepsilon}(\hat{G})$ implies that $G / N C_{G}(N) \simeq \hat{G} / N C_{\hat{G}}(N)$. It follows that $\bar{G} / \bar{C}_{G}(N) \simeq \overline{\hat{G}} / \bar{C}_{\hat{G}}(N)$.

Let C and C^{\prime} be as in Proposition 4.1 and denote $\hat{C}=b \mathcal{O} N C_{\hat{G}}(N)$ and $\hat{C}^{\prime}=b^{\prime} \mathcal{O} N^{\prime} C_{\hat{G}^{\prime}}(N)$. By Proposition 4.1, we know that the Morita equivalence between B and B^{\prime} induced by M extends to a $\bar{C}_{\hat{G}}(N)$-graded Morita equivalence between \hat{C} and \hat{C}^{\prime}, induced by $\hat{C} \otimes_{B} M$.

Let $\mathcal{T} \subseteq G^{\prime}$ be a complete set of representatives for the cosets of $N^{\prime} C_{G}(N)$ in G^{\prime}. Because $G=N G^{\prime}, \mathcal{T}$ is a complete set of representatives for the cosets of $N C_{G}(N)$ in G.

For any $t \in \mathcal{T}$, we choose $\hat{t} \in \hat{G}^{\prime}$ such that $\varepsilon(t)=\hat{\varepsilon}(\hat{t})$. Thus, we obtain a complete set $\hat{\mathcal{T}}$ of representatives of $N^{\prime} C_{\hat{G}}(N)$ in \hat{G}^{\prime}, so $\hat{\mathcal{T}}$ is also a complete set of representatives for the cosets of $N C_{\hat{G}}(N)$ in \hat{G}.

We need to define a $\hat{\Delta}:=\Delta\left(\hat{A} \otimes \hat{A}^{\prime o p}\right)$-module structure on M, knowing that M is $\Delta\left(A \otimes A^{\prime \text { op }}\right)$-module and a $\Delta\left(\hat{A}_{\bar{C}_{\hat{G}}(N)} \otimes \hat{A}_{\bar{C}_{\hat{G}}(N)}^{\prime \text { op }}\right)$-module, where

$$
\Delta\left(\hat{A}_{\bar{C}_{\hat{G}}(N)} \otimes \hat{A}_{\bar{C}_{\hat{G}}(N)}^{\prime \mathrm{op}}\right) \simeq \Delta\left(\hat{A} \otimes \hat{A}^{\prime \mathrm{op}}\right)_{\bar{C}_{\hat{G}}(N)}
$$

We define $\left(\hat{t} \otimes \hat{t}^{\circ}\right) \cdot m=\left(t \otimes t^{\circ}\right) \cdot m$. It is a routine to verify that this definition does not depend on the choices we made and that it gives the required $\hat{\Delta}$ module structure on M.

Alternatively, one may argue as follows: The cohomology class [$\hat{\alpha}$] from $H^{2}\left(\hat{G} / N, Z(B)^{\times}\right)$associated to the $\hat{\Delta}_{1}$-module M satisfies $\operatorname{Res}_{\bar{C}_{\hat{G}}(N)}^{\hat{G} / N}[\hat{\alpha}]=1$, because M extends to a $\hat{\Delta}_{\bar{C}_{\hat{G}}(N)}$-module. It follows that $[\hat{\alpha}] \in \operatorname{ImInf}_{N C_{\hat{G}}(N)}^{\hat{G}}$. On the other hand, the class $[\alpha] \in H^{2}\left(\bar{G}, Z(B)^{\times}\right)$associated to the Δ_{1}-module M is trivial, since M extends to a Δ-module. It is easy to see that $\left(t \otimes t^{\circ}\right) \otimes M \simeq$ $\left(\hat{t} \otimes \hat{t}^{\circ}\right) \otimes M$ as (B, B)-bimodules, and, since $G / N C_{G}(N) \simeq \hat{G} / N C_{\hat{G}}(N)$, we deduce that $[\hat{\alpha}]$ is also trivial, hence M extends to a $\hat{\Delta}$-module.

REFERENCES

[1] C. Faith, Algebra: Rings, Modules and Categories I, Vol. 190, Springer-Verlag, Berlin, 1973.
[2] A. Marcus, Representation theory of group-graded algebras, Nova Science, 1999.
[3] B. Späth, Reduction theorems for some global-local conjectures, in Local Representations Theory and Simple Groups, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2018, pp. 23-61.

Received March 19, 2019
Accepted June 26, 2019

Babes-Bolyai University
Department of Mathematics
Str. Mihail Kogălniceanu nr. 1
400084 Cluj-Napoca, Romania
E-mail: marcus@math.ubbcluj.ro
E-mail: minuta.aurelian@math.ubbcluj.ro

