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RANDOM GALOIS EXTENSIONS OF HILBERTIAN RINGS

MOSHE JARDEN and AHAROM RAZON

Abstract. Let R be a countable Hilbertian ring with quotient field K and let
L be a Galois extension of K. We generalize a result of Lior Bary-Soroker and
Arno Fehm from fields to rings and prove that, for an abundance of large Galois
extensions N of K within L, the integral closure of R in N is Hilbertian.
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1. INTRODUCTION

Let R be an integral domain with quotient field K. Let T = (T1,...,T),) be
an r-tuple of indeterminates and let X be an additional indeterminate. Given
irreducible polynomials fi, ..., fi, € K(T)[X] that are separable in X, the set
Hy(fi,..., fm;g) of all a € K" such that fi(a, X),..., fim(a, X) are defined
and irreducible in K[X] is a separable Hilbert subset of K". We say that R is
a Hilbertian ring if H N R" # () for every positive integer r and every separable
Hilbert subset H of K.

Let K be a field with a separable algebraic closure K, let e be a positive
integer and write Gal(K') = Gal(Kp/K) for the absolute Galois group of K.
For a Galois extension L/K and for an e-tuple o = (01, ...,0.) € Gal(K)° we
let

[olk = (o), | v=1,...,eand T € Gal(K))
be the closed normal subgroup of Gal(K) that is generated by oy, ...,0.. We
also consider the maximal Galois subextension

Lok ={a€L| a” =a, V7 € [o]x}

of L/K that is fixed by each o,, v = 1,...,e. Note that the group [o]x and
the field L[o|x depend on the base field K.

Since Gal(K)€ is profinite, hence compact, it is equipped with a probability
Haar measure [2, §18.5]. In [4], the first author proves that if K is a countable
Hilbertian field, then Kp|o|x is Hilbertian for almost all o € Gal(K)°, that
is for all o in Gal(K)¢ but a set of measure zero. Bary-Soroker and Fehm
generalize this result by replacing Ky, with an arbitrary Galois extension L
of K. They prove that L[o|xk is Hilbertian for almost all & € Gal(K)° [1,
Thm. 1.1]. The purpose of this work is to generalize their result to the level
of rings:
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THEOREM 1.1. Let R be a countable Hilbertian ring with quotient field K
and let Rsep be the integral closure of R in K. Let L be a Galois extension
of K in Kep and let e be a positive integer. Then Rsp N L{o|k is Hilbertian
for almost all o € Gal(K)°®.

2. PRELIMINARIES

We recall several concepts and results about linear disjointness of fields,
measure theory, and twisted wreath products of groups.

2.1. LINEAR DISJOINTNESS

Let K C K; C L be a tower of fields. We say that L/K; satisfies the K-
linearly disjoint condition if there exists an infinite linearly disjoint sequence
of finite proper extensions of K; within L of the same degree that are Galois
over K.

This condition is related to the “Lx-condition” introduced at the beginning
of Section 2 of [1]. The following four lemmas are the counterparts of the
lemmas that appear in that section.

LEMMA 2.1. Let (M;)i>1 be a linearly disjoint sequence of extensions of a
field K and let E/K be a finite Galois extension. Then M; is linearly disjoint
from E over K for all but finitely many 1.

Proof. Assume towards contradiction that there there is an increasing se-
quence i1 < i9 < i3 < --- of positive integers such that E is not linearly
disjoint from M;; over K for each j > 1. Since E/K is Galois, £ N M;; is a
proper extension of K for each j > 1. Since K has only finitely many exten-
sions in F, there are positive integers j < k such that £ N M;, = E N M;,.
In particular, M;, N M;, is a proper extension of K, contradicting the linear
disjointness of M;; and M;, over K. O

LEMMA 2.2. Let K C Ky C L be fields such that L/K is Galois, K1/K
is a finite extension and L/K; satisfies the K -linearly disjoint condition. Let
My be a finite Galois extension of K1 and let d be a positive integer. Then
there exist a finite group G with |G| > d and an infinite sequence (M;)i>1 of
extensions of Ky within L that are Galois over K such that Gal(M;/K;) = G
for every i > 1 and the sequence (M;)i>o is linearly disjoint over K.

Proof. By assumption, K; has a linearly disjoint sequence My, M5, M, . ..
of proper extensions within L of the same degree that are Galois over K.
!

For each positive integer j we set M} = G-1)d1” -+ M},;. By the linear

disjointness
(M} 2 K] = [M{;_y)qpq : Kol [Mg: Ko = (M7 Kp)9 > 27 > d.
As a compositum of Galois extensions over K, each of the fields Mj’/ is
Galois over K. In addition, the sequence M7, M}, M, ... is linearly disjoint
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over K. Since there are, up to isomorphism, only finitely many groups of order
[M] : K1]%, we may replace the sequence Mj, My, MY, ... by a subsequence
to assume the existence of a finite group G of order greater than d such that
Gal(M]'/ K1) = G for each j > 1.

Finally, we may apply induction and Lemma 2.1 to extract an infinite sub-
sequence My, My, M3, ... of M{ M}, M7, ... such that My, My, Mo, ... is lin-
early disjoint over K7, as desired. O

LEMMA 2.3. Let K C K; C Ko C L be fields such that L/K is Galois,
Ky /K is finite Galois and L/K satisfies the K-linearly disjoint condition.
Then also L]/ Ky satisfies the K -linearly disjoint condition.

Proof. By assumption, K has a linearly disjoint sequence K7, K}, K3, ...
of proper extensions within L that are Galois over K of the same degree. We
apply Lemma 2.1 to inductively construct an increasing sequence i1 < ia <
i3 < --- of positive integers such that KgK{l,KgK{Q,KgKZg, ... are linearly
disjoint proper extensions of K5. Since all of these fields are contained in L
and are Galois over K with the same degree, L/Ky satisfies the K-linearly
disjoint condition, as claimed. ([l

Recall that a Galois extension L/K is small if, for each positive integer n,
K has only finitely many extensions of degree n within L, equivalently, if, for
each positive integer n, K has only finitely many Galois extensions of degree
n within L.

LEMMA 2.4. Let L/K be a non-small Galois extension. Then K has a finite
Galois extension Ky within L such that L/ K satisfies the K-linearly disjoint
condition.

Proof. By definition, K is contained in infinitely many finite Galois exten-
sions My, Mo, M3, ... of K within L of the same degree. Let K7 be a maximal
Galois extension of K which is contained in infinitely many of the M;’s. Re-
placing the above sequence by a subsequence, we may assume that K; C M;
for all i.

We assume by induction that i1 < io < --- < i,, are positive integers such
that M;,, M;,, ..., M, arelinearly disjoint over K;. Let M = M;, M;, - -- M;, .
Since K has only fintely many extensions within M, K7 has an extension Ky
and there exist infinitely many ¢ > i, with M; N M = Ks. In particular, Ko
is Galois over K. The maximality property of K; implies that Ko = K;. Let
int+1 be the first integer greater than ¢, such that M, 1 " M = Ky = K;j.
Then M;,,---, M;,, M;, ., are linearly disjoint over K.

It follows by induction that M;,, M;,, M;,, ... is an infinite linearly disjoint
sequence of extensions of K; of the same degree within L that are Galois over
K. Thus, L/K; satisfies the K-linearly disjoint condition. O

n?
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Recall that a profinite group G is small if for each positive integer n, G
has only finitely many open subgroups of the same degree [2, p. 329, Section
16.10]. Thus, a Galois extension L/K is small if and only if Gal(L/K) is small.

LEMMA 2.5 ([2], p. 332, Prop. 16.11.1). Let L be a Galois extension of a
Hilbertian field K. Suppose Gal(L/K) is small. Then for every positive integer
r, each separable Hilbert subset H of L™ contains a separable Hilbert subset of
K". In particular, L is Hilbertian.

2.2. MEASURES

We cite two basic results about measure spaces.
For a profinite group G we denote the probability Haar measure on G by

G-

LEMMA 2.6 ([1, Lemma 3.1]). Let G be a profinite group, H < G an open
subgroup, S C G a set of representatives of G/H and ¥1,...,%; € H mea-
surable pp-independent sets. Let X7 = J, g 9%i. Then X7,..., 5} are pg-
independent.

geS

LEMMA 2.7 ([1, Lemma 3.2]). Let (Q, ) be a measure space. For eachi > 1,
let A; C B; be measurable subsets of Q. If n(A;) = u(B;) for everyi > 1, then

pUZy Ai) = n(UiZ, Bi)-

2.3. TWISTED WREATH PRODUCTS

Let A and G; < G be finite groups together with a right action of G; on
A. The set of Gi-invariant functions from G to A,

Ind% (A) = {f: G — A| f(o7) = f(0)7 forall 0 € G and 7 € G1},

forms a group under pointwise multiplication. The group G acts on Imdg1 (A)
from the right by f?(7) = f(o7), for all 0,7 € G. The twisted wreath product
is defined to be the semidirect product

Awrg, G = Indg1 (A) x G
[2, p. 253, Def. 13.7.2]. Let m: Indgl(A) — A be the projection given by
m(f) = f(1).

LEMMA 2.8 ([1, Lemma 4.1]). Let G = G; x Gy be a direct product of
finite groups, let A be a finite G1-group and let I = Indg1 (A). Assume that
|G2| > |A|. Then there exists ¢ € I such that for every g1 € G1, the normal
subgroup N of Awrg, G generated by 7 = ((, (g1, 1)) satisfies (N NI) = A.

Following [3] we say that a tower of fields
KCE CECNCN
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realizes a twisted wreath product Awrg, G if N/K is a Galois extension with
Galois group isomorphic to Awrg, G and the tower of fields corresponds to the
subgroup series

Awrg, G > Indg1 (A) x Gy > Indgl(A) > Ker(m) > 1.

In particular, we have the following commutative diagram:

Gal(N/E) = Ind& (A)

~

Gal(N/E) —~ A.

3. HILBERTIAN RINGS

We present results about Hilbertian rings needed in the proof of our main
theorem. The first one is an adjusted version of [1, Lemma 5.1].

LEMMA 3.1. Let Ky be a Hilbertian field, let x = (x1,...,xq) be a d-tuple
of variables, let 0 # g(x) € K1[x] and consider field extensions M, E, E1, N of
K1 as in the following diagram:

M — ME, — ME;(x) — MN

Ki—E B B (x) N

Assume that E, E1, M are finite Galois extensions of K1, E = MNEy, N is
a finite Galois extension of K1(x) that is reqular over Ey and lety € N.
Then there exists a separable Hilbert subset H of Kij such that for each
b € H we have g(b) # 0 and the specialization x — b extends to an Ep-place
¢ of N such that ¢(y) is finite, the residue fields of K1(x), E1(x,y) and N
are K1, E1(¢(y)) and N, respectively, where N is a Galois extension of K,
which is linearly disjoint from M over E and Gal(N/K;) = Gal(N/K1(x)).

Proof. Since M N Ey = E, M and E; are linearly disjoint over E. Since
N is regular over Ey, N is linearly disjoint from M FE; over E;. Hence, M
and N are linearly disjoint over E. Therefore, M (x) is linearly disjoint from
N over E(x), so M(x) NN = E(x).

For every b € K{l there exists a Kj-place ¢p of Kj(x) with residue field
K; and pp(x) = b. It extends uniquely to M E;(x) and the residue fields of
M (x) and Fj(x) are M and Ej, respectively.

By [FrJ08, p. 231, Lemma 13.1.1], applied to the separable extensions
Ei(x,y), N, and MN of K;(x), there exists a separable Hilbert subset H
of K¢ such that for each b € H we have g(b) # 0 and any extension ¢ of ¢y,
to M N satisfies the following: ¢(y) is finite, the residue field of Ej(x,y) is
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E1(o(y)), the residue fields MN and N of MN and N, respectively, are Ga-
lois over K, and ¢ induces isomorphisms Gal(N/K;(x)) = Gal(N/K;) and
Gal(MN/K,(x)) = Gal(M N /K;) such that the following diagram commutes:

M(x) ——— M - Eq1(x)
-~ -
T i
Ki(x) —|— E(x) El(x)iEl(va)iNé
Ky E Eq Ei(e(y)) — N MN

By Galois correspondence, the latter isomorphism induces an isomorphism of
the lattices of intermediate fields of M N/K;(x) and M N/K;. Hence, M (x)N
N = E(x) implies that M N N = E, which means that M and N are linearly
disjoint over E. O

LEMMA 3.2 ([5, Lemma 2.1]). Let R be a Hilbertian ring with quotient field
K and let L be a finite separable extension of K. Then the integral closure Ry,
of R in L is also Hilbertian.

LEMMA 3.3 ([5, Lemma 1.2]). Let R be an integral domain with quotient
field K. Suppose that each separable Hilbert subset of K of the form Hg(g)
with irreducible g € K[X,Y], separable, monic and of degree at least 2 in'Y,
has an element in R. Then R is Hilbertian.

The following result is a special case of [2, p. 235, Lemma 13.1.4].

LEMMA 3.4. Let K be an infinite field and let g € K[X,Y] be an irreducible
polynomial which is monic and separable in Y. Then there are a finite Galois
extension L of K and an absolutely irreducible polynomial f € K[X,Y] which
as a polynomial in'Y is monic and Galois over L(X) such that KN Hp(f) C
Hg(9).

4. MAIN RESULT

The following lemma is the decisive step toward our main result. It gener-
alizes [1, Lemma 6.1] to rings. Here we abuse our notation and for every field

K and every positive integer e we use pg for the normalized Haar measure of
Gal(K)°.

LEMMA 4.1. Let R be a Hilbertian ring with quotient field K and let Rsep
be the integral closure of R in Kgp. Let K C K1 C L C Kgep be a tower
of fields such that L/K is Galois, K1/K 1is finite Galois and L/K; satisfies
the K-linearly disjoint condition (Section 2). Let e be a positive integer, let
f € Kq[X,Y] be an absolutely irreducible polynomial that is monic in 'Y and
Galois over Kgep(X). Finally, let K{ be a finite separable extension of K.
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Then for almost all o € Gal(K)¢ there exists a € Rgep N L{o| g such that
f(a,Y) is irreducible over K| - L|o] k.

Proof. We break up the proof into several parts.

Part A: Diagram of fields. Let E be a finite Galois extension of K such
that K{ C F and f is Galois over F(X) and set G; = Gal(E/K1). It suffices
to prove that for almost all o € Gal(K)¢ there exists a € Reep N L]o| g such
that f(a,Y) is irreducible over E - L[o|k.

To this end we construct the following diagram of fields:

L — Kgep
E;
G2
A
G\ E— E(z) — F = E(z,y)
(1)

Ez/ G G1 G1

G\

K1 — Ki(z) — F' = Ki(x,y)

|
K

Let x be a transcendental element over K and let y be a root of f(z,Y) in a
separable algebraic closure of K (z) that contains Kgep. Let F' = Ky(z,y) and
F = E(z,y). Since f(X,Y) is absolutely irreducible, F’/K; is regular, hence
F’ is linearly disjoint from E over Kj. Therefore, F’ is linearly disjoint from
E(z) over Ki(x), so Gal(F/F') = Gal(E(x)/Ki(x)) & Gal(E/K;) = Gi.
Since f(x,Y) is Galois over E(z), the extension F/E(x) is Galois. We set
A = Gal(F/E(x)). Then

(2) Al = [F: E(z)] = deg(f(x,Y)) = degy f(X,Y).

Also, Ki(x) is the fixed field of the subgroup (A, G1) of Aut(F'). Therefore,
F/Ki(x) is a Galois extension with Gal(F/Ki(z)) = (A,G1) and G acts on
A by conjugation.

Since L/ K satisfies the K-linearly disjoint condition, we get by Lemma 2.2,
applied to My = E, that there exists a finite group Gy with d := |G3| > |A]
and a sequence (E]);>; of linearly disjoint extensions of K within L which are
Galois over K with Gal(E]/K;) = G5 such that the sequence E, E{, E), Ej, ...
is linearly disjoint over K;. Let

(3) E; = EE,.
Then E;/K is Galois and Gal(E;/K1) = G := G x G4 for every i.

Part B: Twisted wreath product. Let x = (x1,...,x4) be a d-tuple of
indeterminates and for each i choose a basis w1, ..., w;q of E!/K; such that
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Wi, - - ., w;q are integral over R. By [3, Lemma 3.1], for each i we have a tower
(4) Ki(x) C E{(x) C Ei(x) C Ni = Ei(x,5;) C N,

that realizes the twisted wreath product Awrg, G, such that N; is regular over
E;, where irr(y;, Ei(x)) = f(X%_, wiyz,,Y). In particular, Gal(N;/K;(x)) =
Awrg, G, Gal(N;/Ei(x)) = IndZ (A) and Gal(N;/E;(x)) = A.

Part C: Specialization of (4). We inductively construct an ascending se-
quence (23)5’0:1 of positive integers and for each j > 1 an E; -place ¢; of Ny,
such that for each positive integer k the following conditions hold.

(ba) For j = 1,...,k and v = 1,...,d we have ¢;(z,) € Rsp N K1, hence
d
aj = 5, Wi;p9i(Ty) € Reep N Eéj and @;(yi;) € Kep-
(6b) For j =1,...,k and for i = i;, the residue field tower of (4) under ¢;,

K\ C Ej C Ej; C M;; € M;,,

realizes the twisted wreath product Awrg, G. Moreover, f(a;,Y) is ir-

reducible over E; and M;; is generated over E;; by the root ¢;(y;;) of

f(a;,Y). Thus, [M;; : B;)] = deg(f(a;,Y)) = degy (f(X,Y)) =) |4].
(5¢) The sequence M;,, ..., M,

i, 1s linearly disjoint over E.

Indeed, suppose that 41,...,ix_1 and ¢1,...,pr—1 with the appropriate
properties have been constructed and let M = Mil e ]\Zfik_l. By Lemma 2.1,
there is i3 > i;p_1 such that E{k is linearly disjoint from M over K. Hence,
E; = EEZ’k is linearly disjoint from M over E.

Let R; be the integral closure of R in K. Since R is Hilbertian and K;/K
is finite and separable, R; is Hilbertian (Lemma 3.2). Applying Lemma 3.1
to M, E, E;, , Nik, Vi), we get a separable Hilbert subset H of K{l such that for
each b € H, the specialization x — b extends to an E; -place ¢, of le such
that (5b) and (5¢) hold for iy, - -+ ,ix_1,. Since R; is Hilbertian, there exists

b € HN R, so also (5a) is satisfied for iy, ..., 45 1,

Part D: A special element of Indg1 (A). We set I = Indgl(A)7 fix j and
make the following identifications: Gal(M;; /K1) = Awrg,G = I x (G1 x G2),
Gal(M;,;/E;;) = I and Gal(M;;/E;;) = A. The restriction map Gal(M;;/E;;)
— Gal(M;; / E;;) is thus identified with 7: [ — A and Gal(M;;/M;;) = Ker(r).

Let ¢ € I be as in Lemma 2.8, let

%5 = ({o € Gal(K1)°| g1 € Gu:
(6) v=1
O'V|]\;[Z = (C? (gllla 1)) S I X (Gl X Gz)}’

and note that the intersected sets on the right hand side of (6) are px,-ind-
ependent. Then, by that lemma, for each o € E;, the normal subgroup N
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generated by o1|y, ,...,0¢]y, in Gal(Mij /K1) satisfies
i i
(7) T(NNI)=A.
Moreover, with @ = Kgeplo|k,, we have N = Gal(Mij /MZJ nNQ).

Part E: We prove that for a fized positive integer j and for each o € D
the polynomial f(a;,Y’) is irreducible over E- L[o]k. Indeed, consider o € X7
and let P = L[o|k. Then

(8) P=LnN Ksep[U]K - Ksep[o']K - Ksep[U]Kl =Q.

By Part A, Ezfj is Galois over K. By (6), for v = 1,...,e we have 0, [, =
i

(¢, (gy1,1)) with ¢ € I and g,1 € G1. Hence, by the begining of Part D and
by Diagram (1), o, fixes E;J Therefore, K C EZ{j C Llo|x = P. It follows
from (5a) that a; € P. Moreover,

B vy D
9) E;,Q = EE;,Q=EQ 2 EP.

Since by (5b) M;; is generated by a root of f(aj;,Y’) over E;, (9) implies that
M;;Q is generated by a root of f(a;,Y) over EQ.

Keplolg, =Q ——— E;,Q = BQ ————— M;,Q ——— M;,Q
(10) M;NQ — (M;, N Q)E;; —— (M;; N Q)M;, —— M;;,
B A Ker(#)
E Eij R a Mij

Using Diagram (10), the equalities N = Gal(]\}[ij/Mij N Q) and Ker(m) =
Gal(Mij /M;;) that appear in Part D imply that
Gal(M;,Q/M;,Q) = Gal(M;, /(M;, N Q)M;,) = N N Ker(r)
and
Gal(szQ/EzJQ) = Gal(sz/(sz N Q)Ezj) =NnNnI.
Hence,

Gal(M;, Q/E;,Q) = (N N 1)/(N nKer(r)) = n(Nn1) 2 A.
Therefore, [M;,Q : E;,Q] = |A|=®) degy f(X,Y) = deg f(a;,Y). Since, by
(5b) M;,Q is generated over E;;Q by a root of f(a;j,Y), we get that f(a;,Y)
is irreducible over F; Q. It follows from (9) that f(a;,Y) is irreducible over
EP =FE - Llo]k, as claimed.
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Part F: We prove that almost all o € Gal(K;)¢ lie in infinitely many I
To this end we set
2= (o € Gal(E)*| vl = (¢, (1,1)) € I x (G1 x Ga)
(11) v=1 ’

D) Gal(d1;, /K1),

This is a coset of Gal(Mij)e in Gal(E)¢. Since, by (5¢c), the sequence (MZJ );’;1
is linearly disjoint over E, the sets Gal(]\}[i j)e are pp-independent [2, p. 378,
Lemma 18.5.1]. Thus, by [2, p. 373, Lemma 18.3.7], also the sets ¥; are pp-
independent. In addition, since Gal(Mij /K1) 2 I x (Gy x Gg), we can choose
for every positive integer j and for every g € G; =(1) Gal(E/K)) an element
g; € Gal(Ky) such that gj|y, = (1,(g,1)). Then

J

S={g;:=(g1j,---,0e;) € Gal(K1)°| g1,...,9c € G1}

is a set of representatives for the right cosets of Gal(E)¢ in Gal(K;)¢. More-
over, since (¢, (1,1))(1,(g,1)) = (¢, (g,1)) for each g € Gy, (6) and (11) imply

that X% = Ugj cs 2jg; for every j. Therefore, Lemma 2.6 implies that the sets
X7 are pk,-independent. Moreover, by (6),
Gl
¥)=+——"—==>0
ey (35) |Awrg, G|

does not depend on j, so > 72, puk, (X}) = oo. It follows from the Borel-
Cantelli lemma [2, p. 372, Lemma 18.3.5] that almost all o € Gal(K7)° lie in
infinitely many X7, as claimed.

End of proof: By Part E, for each positive integer j and for every o € X%
the polynomial f(a;,Y) is irreducible over E - L[o]x. By Part F, almost all
o € Gal(K1)¢ lie in infinitely many 7. By (5a), a; belong to Rsep N EZ{],,
hence also to Rsep N L[o]k. Therefore, for almost all o € Gal(K;)¢ there
exists a € Rgep N L]o]x such that f(a,Y) is irreducible over E - L{o|k, as
claimed. O

The following proposition is a generalization of [1, Prop. 6.2] to rings.

PROPOSITION 4.2. Let R be a countable Hilbertian ring with quotient field
K and let Rsep be the integral closure of R in Kgep. Let K C K1 C L C Kgep
be a tower of fields such that L/K is Galois, K1/K 1is finite Galois and L]/ K
satisfies the K-linearly disjoint condition. Let e be a positive integer. Then
Reep N L{o|k is Hilbertian for almost all o € Gal(K1)°.

Proof. Let F be the set of all triples (K2, K}, f), where K» is a finite ex-
tension of K within L which is Galois over K, KJ}/K> is a finite separable
extension, and f(X,Y) € K3[X,Y] is an absolutely irreducible polynomial
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that is monic in Y and Galois over Kgp(X). Since K is countable, the set F
is countable.

If (K9, K}, f) € F, then the integral closure Ry of R in Ky is Hilbertian
(Lemma 3.2) and L/ K> satisfies the K-linearly disjoint condition (Lemma 2.3).
Hence, Lemma 4.1, applied to K5 rather than to K7, yields a subset E’( KoK, f)

of Gal(K>)¢ with ,uKI(Z)’(K2 K, f)) = pr, (Gal(K2)¢) such that for every o €

E’( Ko, K3, f) there exists a € Rsep N L]0k such that f(a,Y") is irreducible over
Ké . L[O’]K. Let

(ko) = Sacy sy, ) U (Gal(K1)® N Gal(K)°)

Then pr, (X5, 15,5)) = Hrc, (Gal(K1)®). Since F is countable, it follows that
the pug,-measure of ¥ = ﬂ(KQ?Ké’f)ef X (Ko y,f) 18 1.

We consider o € ¥ and let P = Lio|x and Rp = Rsp N P. In order
to prove that Rp is Hilbertian, it suffices, by Lemma 3.3, to consider an
irreducible polynomial g € P[X,Y], separable, monic and of degree at least 2
in Y and to prove that Hp(g) has an element in Rp.

By Lemma 3.4, there exist a finite Galois extension P’ of P and an absolutely

irreducible polynomial f € P[X,Y] which as a polynomial in Y is monic and
Galois over P'(X) such that

(12) PN Hp(f) S Hp(g).

In particular, f is Galois over Kgep(X). Choose a finite extension Ky/K; which
is Galois over K such that Ko C P C L and f € K3[X,Y]. Let K} be a finite
extension of Ky such that PK), = P’. Then o € Gal(K3)°. Since, in addition,
O € Xk, K}.f)s We get that o € E’(K%Ké’f). Thus, there exists a € Rp such
that f(a,Y) is irreducible over PK) = P’, so a € Rp N Hp/(f) CU% Rp N
Hp(g), as desired. O

THEOREM 4.3. Let R be a countable Hilbertian ring with quotient field K
and let Rgep be the integral closure of R in Kgep. Let L be a Galois extension
of K in Keep and let e be a positive integer. Then Rsep N L{o| i is Hilbertian
for almost all o € Gal(K)°®.

Proof. Let F be the set of all finite Galois extensions K; of K within L for
which L/K; satisfies the K-linearly disjoint condition. Since K is countable,
so is F. Let

Y = {0 € Gal(K)°| Rsp N L[o]k is Hilbertian } .
For K, € F, let Xg, = Gal(K1)° N Y. Note that
(13) Gal(K:)® = {o € Gal(K)°| K, C Llo]x}.
By Proposition 4.2,
(14) i (k) = pr(Gal(K;)¢) for each K € F.
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Let
A =Gal(K)°~ | ] Gal(K)°
KieF

B c Qal(K)| K, Z Ljo]x for all K, € F}.
If o € A, then by Lemma 2.4, Lio|x/K is small. By Lemma 2.5, for ev-
ery positive integer r, each separable Hilbert subset H of L[o]} contains a
separable Hilbert subset Hg of K”. Since R is Hilbertian, R" N Hx # 0.
Therefore, Rep N L{o]x is Hilbertian. Thus, A C . Since Gal(K)® =
AUUg,er Gal(K1), Lemma 2.7 implies that

(14) .
pi(2) =px(ENA)U | Zk,) = px (AU | Gal(Ky)%)
KieF KieF
— pre(Gal(K)) = 1,
which concludes the proof of the theorem. O
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