
MATHEMATICA, 62 (85), No 1, 2020, pp. 47–60

COMMON FIXED POINTS FOR GENERALIZED
CONTRACTIONS IN UNIFORM SPACES

ENDOWED WITH A GRAPH

BOSHRA HOSSEINI and ALIREZA KAMEL MIRMOSTAFAEE*

Abstract. In this paper, we will define a new kind of generalized contractions
to establish some common fixed point theorems for self-mappings on Hausdorff
uniform spaces endowed with a graph. This new notion enables us to extend
some known results in the literature. We also show that our results can be
applied to a homotopy theorem. Related examples are also given to support our
main results.
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1. INTRODUCTION

In 2004, Ran and Reurings [17] established an extension of Banach’s fixed
point theorem for continuous self-mappings on complete metric spaces en-
dowed with a partial ordering.

Jachymski [12] noticed that every partially ordered metric space (X, d,�)
can be considered as the metric space (X, d) endowed with the graph

V (G) = X and E(G) = {(x, y) ∈ X ×X : x � y}.
This observation led to some generalizations of some fixed point theorems in
partial ordered spaces (see e.g. [4, 8, 14, 15, 16]).

In 1965, Knill [13] generalized the notion of contractive mappings for uni-
form spaces and established some fixed point theorems in uniform spaces.
This motivated some mathematicians to study different kinds of contractions
in uniform spaces (see e.g. [2, 3, 5, 7, 11, 18]).

In this paper, we define a new generalized contraction for two self-mappings
on a Hausdorff uniform space endowed with a graph. We will show that, under
certain circumstances, these functions have a unique common fixed point.
Our results lead to genuine generalization of some old results such as Aamri’s
theorem [1], Jachymski’s fixed point theorem [12] and Edelstein’s fixed point
theorem [10]. We also provide some examples to support our main results.
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Moreover, we will show that under certain conditions common fixed points of
self-mappings in uniform spaces remain invariant under a homotopy.

2. PRELIMINARIES

Following [6], a uniform space (X, υ) is a nonempty set X endowed with a
uniformity υ that is a special kind of filter on X ×X such that

υ1) for each U ∈ υ, ∆ = {(x, x) : x ∈ X} ⊆ U ,
υ2) U ∈ υ and U ⊆W ⊆ X ×X imply W ∈ υ,
υ3) U ∈ υ and W ∈ υ imply U ∩W ∈ υ,
υ4) U ∈ υ implies U−1 ∈ υ,
υ5) if U ∈ υ, then there exists V ∈ υ with V ◦ V ⊆ U (the composition of

two subsets V and U of X × X is defined by V ◦ U = {(x, z) : ∃y ∈
X : (x, y) ∈ V, (y, z) ∈ U}).

Every element of υ is called an entourage. U ∈ υ is called symmetric if
U = U−1 = {(y, x); (x, y) ∈ U}. Since each entourage U contains a symmetric
entourage that is U ∩ U−1, we can assume that all the members of υ are
symmetric. A uniformity υ induces a unique topology τ(υ) on X in which the
neighborhoods of x ∈ X are the sets V (x) = {y ∈ X : (x, y) ∈ V }, where
V ∈ υ.

A uniform space (X, υ) is said to be Hausdorff if and only if the intersection
of all members of υ reduces to the diagonal ∆ of X. This guarantees the
uniqueness of the limits of sequences.

Intuition about uniformities is provided by the following example of metric
space: if (X, d) is a metric space, the sets

Uε = {(x, y) ∈ X ×X : d(x, y) ≤ ε} where ε > 0,

form a fundamental system of entourages for the standard uniform structure
of X. Then x and y are Uε-close when the distance between x and y is at most
ε.

There are other kinds of distances which can be attached to a uniformity.
The following definitions introduce two kinds of these distances.

Definition 2.1 ([1]). Let (X, υ) be a uniform space. We call a function
ρ : X ×X → R≥0 an A-distance, if for any U ∈ υ there exists δ > 0 such that
if ρ(z, x) ≤ δ and ρ(z, y) ≤ δ for some z ∈ X, then (x, y) ∈ U. The function ρ
is said to be an E-distance, if

1) ρ is an A-distance,
2) ρ(x, y) ≤ ρ(x, z) + ρ(z, y) for each x, y, z ∈ X.

Example 2.2. Let (X, d) be a metric space, then the metric d is an E-
distance for the uniformity generated by the metric.

Example 2.3. Let X = [0, 1] be endowed with usual uniformity. For each
x, y ∈ X define ρ : X ×X → R≥0 by ρ(x, y) = y, where R≥0 = [0,+∞). Then
ρ is an E-distance on X which is not a metric.
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We also need the following notions.

Definition 2.4 ([1]). Let (X, υ) be a uniform space endowed with an A-
distance ρ.

(1) A sequence {xn}n∈N in X is called ρ-Cauchy if limn,m→∞ ρ(xn, xm) =
0.

(2) A sequence {xn}n∈N in X is said to be ρ-convergent to a point x ∈ X
if

lim
n→∞

ρ(xn, x) = 0.

(3) X is called S-complete provided that every ρ-Cauchy sequence in X is
ρ-convergent.

(4) f : X → X is called ρ-continuous if

limn→∞ ρ(xn, x) = 0 implies limn→∞ ρ(fxn, fx) = 0.

The following lemma implies the uniqueness of the limit of ρ-convergent
sequences in Hausdorff uniform spaces.

Lemma 2.5 ([1]). Let (X, υ) be a Hausdorff uniform space and ρ be an
A-distance on X. Let {xn} be an arbitrary sequence in X. Then for each
x, y, z ∈ X the following hold:

(a) If limn→∞ ρ(xn, y) = 0 and limn→∞ ρ(xn, z) = 0 then y = z. In par-
ticular, if ρ(x, y) = 0 and ρ(x, z) = 0, then y=z.

(b) If limn,m→∞ ρ(xn, xm) = 0 for all m > n, then {xn} is a Cauchy
sequence in (X, υ).

Consider a directed graph G such that V (G) = X and E(G) ⊇ ∆. We
assume G has no parallel edges, so we can identify G by the pair (V (G), E(G)).
By G−1 we denote the conversion of a graph G. That is V (G−1) = V (G) and

E(G−1) = {(x, y) ∈ X ×X : (y, x) ∈ E(G)}.

The letter G̃ denotes the undirected graph obtained from G by ignoring the

direction of the edges. Actually, it will be more convenient for us to treat G̃
as a directed graph for which the set of its edges is symmetric. Under this

convention, E(G̃) = E(G) ∪ E(G−1).
A graph G is called connected if there is a path between any two of its

vertices. G is weakly connected if G̃ is connected. If G is such that E(G)
is symmetric and x is a vertex in G, then the subgraph Gx consisting of all
edges and vertices which are contained in a path beginning at x is called the
component of G containing x. In this case, V (Gx) = [x]G, where [x]G is the
equivalence class of the following relation R defined on V (G) by the rule:

yRx if there is a path in G from x to y.

Clearly, Gx is connected.
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3. FIXED POINTS IN UNIFORM SPACES ENDOWED WITH E−E−E−DISTANCES

Throughout this section, we will assume that R≥0 = [0,+∞) and (X, υ)
is a Hausdorff uniform space endowed with an E-distance ρ and with a di-
rected graph G, i.e. V (G) = X and E(G) ⊇ ∆. We denote by Ψ the set of
all non-decreasing functions ψ : R≥0 → R≥0 with ψ(0) = 0, ψ(r) > 0 and
Σ∞n=1ψ

n(r) < ∞ for each r > 0. It follows from the definition that ψ(r) < r
for all ψ ∈ Ψ and r > 0.

Definition 3.1. Let (X, υ) be a Hausdorff uniform space endowed with a
graph G and let ρ : X ×X → R≥0 be an E-distance. Assume that ψ ∈ Ψ and
f, g : X → X. We say that f is a (ρ, ψ,G)-contraction with respect to g if the
following conditions hold:

(1) If x ∈ X is such that fx, gx ∈ [x]
G̃

, then there exists y ∈ [x]
G̃

such
that fx = gy.

(2) f and g are G-invariant, that is (x0, y0) ∈ E(G) implies that (fx0, fy0),
(gx0, gy0) ∈ E(G). Moreover, if fx0 = gx1 and fy0 = gy1, then
(x1, y1) ∈ E(G).

(3) If (x0, y0) ∈ E(G), then ρ(fx0, fy0) ≤ ψ(ρ(gx0, gy0)).

We denote by fix{f, g} the set of common fixed points of f and g.

Example 3.2. Let (X, d) be a metric space and let f : X → X be a mapping
such that for some 0 ≤ α < 1 satisfies

d(fx, fy) ≤ αd(x, y) for all x, y ∈ X.
Define graph G0 by V (G0) = X and E(G0) = X ×X. Then f is a (d, ψ,G0)-
contraction with respect to the identity function, where ψ : R≥0 → R≥0 is
defined by ψ(r) = αr.

Definition 3.3. Two sequences {xn} and {yn} are said to be ρ-Cauchy
equivalent, if each of them is a ρ-Cauchy and limn→∞ ρ(xn, yn) = 0.

In order to state our main results we need the following result.

Lemma 3.4. Let (X, υ) be a Hausdorff uniform space endowed with a graph
G and E-distance ρ. Assume that ψ ∈ Ψ and f, g : X → X where f is a
(ρ, ψ,G)− contraction with respect to g. Let fx0, gx0 ∈ [x0]G̃ for an x0 ∈ X.
Then [x0]G̃ is both f and g invariant and f |[x0]G̃

is a (ρ, ψ,Gx0)−contraction
with respect to g |[x0]G̃

, where Gx0 is the directed subgraph of G containing all

the edges and vertices contained in a path beginning at x0.

Proof. Let x ∈ [x0]G̃. There exists a path {ri}Ni=0 in G̃ from x0 to x, i.e.,

r0 = x0 , rN = x and (ri−1, ri) ∈ E(G̃) for all 1 ≤ i ≤ N. By Definition 3.1

(2), (fri−1, fri) ∈ E(G̃) for all 1 ≤ i ≤ N. It means that {fri}Ni=0 is a path

in G̃ from fx0 to fx. It follows that fx ∈ [fx0]G̃ = [x0]G̃. Similarly, one can
show that gx ∈ [x0]G̃.
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Suppose that (x0, y0) ∈ E(Gx0), then (x0, y0) ∈ E(G). Since f is (ρ, ψ,G)-
contraction with respect to g, (fx0, fy0), (gx0, gy0), (x1, y1) ∈ E(G).

Since [x0]G̃ is f and g invariant (fx0, fy0), (gx0, gy0) ∈ E(Gx0). By the
definition, x1, y1 ∈ [x0]G̃. Thus, (x1, y1) ∈ E(Gx0). Moreover, if (x0, y0) ∈
E(Gx0), then (x0, y0) ∈ E(G). It follows that ρ(fx0, fy0) ≤ ψ(ρ(gx0, gy0)).

�

Remark 3.5. Let x0 be such that fx0, gx0 ∈ [x0]G̃. By Lemma 3.4, [x0]G̃ is
both f and g invariant. Definition 3.1 (1) implies that there exists x1 ∈ [x0]G̃
such that fx0 = gx1. Similarly, since fx1, gx1 ∈ [x0]G̃ = [x1]G̃, there exists
x2 ∈ [x0]G̃ such that fx1 = gx2. By continuing this procedure, we can obtain a
sequence {fxn} such that xn ∈ [x0]G̃ and fxn−1 = gxn. Moreover, since [x0]G̃
is both f and g invariant, for each y0 ∈ [x0]G̃, we have fy0, gy0 ∈ [y0]G̃. Hence
we may construct a sequence {fyn} with yn ∈ [y0]G̃ = [x0]G̃ and fyn−1 = gyn,
for each n ≥ 1.

In what follows, whenever x0 ∈ X with fx0, gx0 ∈ [x0]G̃ and y0 ∈ [x0]G̃,
{fxn} and {fyn} will be the sequences described above.

The following result shows that under certain circumstances, for each y0 ∈
[x0]G̃, the corresponding sequences {fxn} and {fyn} are ρ-Cauchy equivalent.

Lemma 3.6. Let (X, υ) be a Hausdorff uniform space endowed with a graph
G and E-distance ρ. Assume that ψ ∈ Ψ and f, g : X → X where f is a
(ρ, ψ,G)− contraction with respect to g. Let fx0, gx0 ∈ [x0]G̃ for an x0 ∈ X.
Then, for each y0 ∈ [x0]G̃, the sequences {fxn} and {fyn} are ρ-Cauchy
equivalent, where fxn−1 = gxn and fyn−1 = gyn for each n ∈ N.

Proof. First, we will show that, for all y0 ∈ [x0]G̃, the sequences {fxn} and

{fyn} are ρ-equivalent. By the definition, we can find a path {ti0}Mi=0 in G̃

from x0 to y0, i.e. t00 = x0, t
M
0 = y0 and (ti−10 , ti0) ∈ E(G̃) for each 1 ≤ i ≤M .

For each 1 ≤ i ≤ M , construct a sequence
{
tin
}∞
n=0

such that ftin = gtin+1.

By Definition 3.1 (2), (ti−1n , tin) ∈ E(G̃) for each n ≥ 0 and for all 1 ≤ i ≤M .

Thus, for each n ≥ 0, {tin}Mi=0 is a path in G̃ from xn to yn. Since ρ is an
E-distance and by Definition 3.1 (1), for each n ≥ 0 we get

ρ(fxn, fyn) ≤ ρ(fxn, ft
1
n) + ρ(ft1n, ft

2
n) + · · ·+ ρ(ftM−1n , fyn)

≤ ψρ(fxn−1, ft
1
n−1) + ψρ(ft1n−1, ft

2
n−1) + · · ·+

ψρ(ftM−1n−1 , fyn−1)

...

≤ ψnρ(fx0, ft
1
0) + ψnρ(ft10, ft

2
0) + · · ·+ ψnρ(ftM−10 , fy0).

Letting n→∞, we have ρ(fxn, fyn)→ 0. It follows that the sequences {fxn}
and {fyn} are ρ-equivalent.

Since fx0, gx0 ∈ [x0]G̃ and f is (ρ, ψ,G)-contraction with respect to g, by

Definition 3.1 (1), x1 ∈ [x0]G̃. Let {ti}M
′

i=0 be a path from x0 to x1, i.e. x0 = t0,
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x1 = tM ′ and (ti−1, ti) ∈ E(G̃) for each 1 ≤ i ≤ M ′. By the above argument,
for each m > n we have

ρ(fxn, fxn+m) ≤ ρ(fxn, fxn+1) + · · ·+ ρ(fxn+m−1, fxn+m)

≤ [ψnρ(fx0, ft1) + ψnρ(ft1, ft2) + · · ·+
ψnρ(ftM ′−1, ftM ′)] + · · ·+
[ψn+m−1ρ(fx0, ft1) + ψn+m−1ρ(ft1, ft2) + · · ·+
ψn+m−1ρ(ftM ′−1, ftM ′)]

= Σn+m−1
k=n ψkρ(fx0, ft1) + Σn+m−1

k=n ψkρ(ft1, ft2) + · · ·+
Σn+m−1
k=n ψkρ(ftM ′−1, ftM ′).

Hence limn,m→∞ ρ(fxn, fxn+m) = 0. This means that {fxn} is ρ-Cauchy. �

Now, we are ready to state one of the main results of this section.

Theorem 3.7. Let (X, υ) be a Hausdorff uniform space endowed with a
graph G and an E-distance ρ. Assume that X is S-complete and ψ ∈ Ψ. Let
f, g : X → X be commuting ρ-continuous functions such that f is a (ρ, ψ,G)−
contraction with respect to g and the triple (X, ρ,G) has the following property:
(∗) For any sequence {xn}n∈N in X with

lim
n→∞

ρ(xn, x) = 0 and (xn, xn+1) ∈ E(G) for each n ∈ N,

there exists a subsequence {xkn}n∈N of {xn}n∈N such that (xkn , x) ∈ E(G) for
each n ∈ N.

Let Xf,g = {x0 ∈ X : fx0, gx0 ∈ [x0]G̃ and (gxn, fxn) ∈ E(G) for all n ∈
N}. Then, for any x0 ∈ Xf,g, f |[x0]G̃

and g |[x0]G̃
have a unique common fixed

point. In particular, if X(f,g) 6= ∅ and G is weakly connected, then f and g
have a unique common fixed point.

Proof. Let x0 ∈ Xf,g. Then (fxn−1, fxn), (gxn, gxn+1) ∈ E(G), where
fxn−1 = gxn, for each n ∈ N. Since fx0, gx0 ∈ [x0]G̃, by Lemma 3.4, [x0]G̃ is
both f and g invariant. Therefore, fxn, gxn ∈ [x0]G̃ for each n ≥ 0. Lemma
3.6 implies that, for each y0 ∈ [x0]G̃, the sequences {fyn} and {fxn} are ρ-
Cauchy equivalent, where fxn−1 = gxn and fyn−1 = gyn for each natural
number n. Since X is S-complete, there exists u ∈ X such that

lim
n→∞

ρ(fxn, u) = lim
n→∞

ρ(gxn, u) = 0.

Thanks to ρ-continuity of f and g, we get

lim
n→∞

ρ(gfxn, gu) = lim
n→∞

ρ(fgxn, fu) = 0.

Since f and g also commute, limn→∞ ρ(gfxn, gu) = limn→∞ ρ(gfxn, fu) = 0.
Therefore, by Lemma 2.5 (a), fu = gu. By property (∗), there exists a
subsequence {fxkn} of {fxn} such that (fxkn , u) ∈ E(G) for each n ≥ 1
Therefore, there exists a path fx0, fx1, · · · , fxk1 , u from fx0 to u in G. Thus,
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u ∈ [fx0]G̃ = [x0]G̃. Since fu = gu, we get a sequence u = u0 = u1 = · · · , for
each n ≥ 0. By Lemma 3.6, limn→∞ ρ(fxn, fun) = limn→∞ ρ(fxn, fu) = 0.

Since limn→∞ ρ(fxn, u) = 0, Lemma 2.5 (a) implies that fu = u. Therefore,
gu = fu = u is a common fixed point of f and g.

Next, we will show that u is a unique common fixed point of f |[x0]G̃
and

g |[x0]G̃
. Indeed, if a0, b0 ∈ fix{f, g} ∩ [x0]G̃, then fa0 = ga0 = a0 and

fb0 = gb0 = b0. We get a0 = a1 = · · · and b0 = b1 = · · · . Lemma 3.6 implies
that the sequences {fan}n≥1 and {fbn}n≥1 are ρ-Cauchy equivalent. Hence
ρ(a0, b0) = limn→∞ ρ(fan, fbn) = 0 and ρ(b0, a0) = limn→∞ ρ(fbn, fan) = 0.
Since ρ is an E-distance we have ρ(a0, a0) ≤ ρ(a0, b0) + ρ(b0, a0). Therefore,
ρ(a0, a0) = 0. By Lemma 2.5 (a), a0 = b0.

Let x0 ∈ Xf,g 6= ∅ and G be weakly connected. Then [x0]G̃ = X. By the
above argument, f and g have a unique common fixed point. �

The following result shows that one can replace continuity of f by continuity
of the E-distance ρ in Theorem 3.7, provided that ρ(x, x) = 0 for all x ∈ X.

Theorem 3.8. Let (X, υ) be a Hausdorff uniform space endowed with a
graph G and a continuous E-distance ρ such that ρ(x, x) = 0 for each x ∈ X.
Assume that X is S-complete and ψ ∈ Ψ. Let f, g : X → X be commuting
functions such that f is a (ρ, ψ,G)- contraction with respect to g and let g be
ρ-continuous. Assume that the triple (X, ρ,G) has the following property:
(∗) For any sequence {xn}n∈N in X, if

lim
n→∞

ρ(xn, x) = 0 and (xn, xn+1) ∈ E(G)

for each n ∈ N, then there exists a subsequence {xkn}n∈N of {xn}n∈N such that
(xkn , x) ∈ E(G) for each n ∈ N.

Let Xf,g = {x0 ∈ X : fx0, gx0 ∈ [x0]G̃ and (gxn, fxn) ∈ E(G) for all n ∈
N}. Then, for any x0 ∈ Xf,g, f |[x0]G̃

and g |[x0]G̃
have a unique common fixed

point. In particular, if X(f,g) 6= ∅ and G is weakly connected, then f and g
have a unique common fixed point.

Proof. Let x0 ∈ Xf,g. Then (fxn−1, fxn), (gxn, gxn+1) ∈ E(G), where
fxn−1 = gxn, for each n ∈ N.

Since fx0, gx0 ∈ [x0]G̃, by Lemma 3.4, [x0]G̃ is both f and g invariant. Thus,
fxn, gxn ∈ [x0]G̃ for each n ≥ 0 and, for each y0 ∈ [x0]G̃, the sequences {fyn}
and {fxn} are ρ-Cauchy equivalent, where fxn−1 = gxn and fyn−1 = gyn for
each n ∈ N. Since X is S-complete, there exists u ∈ X such that

lim
n→∞

ρ(fxn, u) = lim
n→∞

ρ(gxn, u) = 0.

By (∗) there exists a subsequence {gxkn} of {gxn} such that (gxkn , u) ∈ E(G)
for each n ≥ 1. By continuity of ρ and by ρ-continuity of g for each n ≥ 1, we
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get

lim
n→∞

ρ(fgxkn , fu) ≤ lim
n→∞

ψ(ρ(ggxkn , gu)) < lim
n→∞

ρ(ggxkn , gu)

= ρ(g lim
n→∞

gxkn , gu) = ρ(gu, gu) = 0.

Also, for each n ∈ N,

lim
n→∞

ρ(fgxkn , gu) = lim
n→∞

ρ(gfxkn , gu)) = ρ(g lim
n→∞

fxkn , gu) = ρ(gu, gu) = 0.

By Lemma 2.5 (a), fu = gu. Now, we will show that u is a common fixed point
of f and g. By (∗) there exists a subsequence {fxkn} of {fxn} such that for
each n ∈ N, (fxkn , u) ∈ E(G). Thus, we can find a path fx0, fx1, · · · , fxk1 , u
from fx0 to u in G. Hence u ∈ [x0]G̃. Since fu = gu, we get a sequence
u = u0 = u1 = · · · , for each n ≥ 0. By Lemma 3.6, limn→∞ ρ(fu, fxn) = 0.
So by continuity of ρ we have

ρ(fu, u) = ρ(fu, lim
n→∞

fxn) = lim
n→∞

ρ(fu, fxn) = 0.

Lemma 2.5 (a) implies that fu = u. Thus u is a common fixed point of f and
g. Moreover, u is a unique common fixed point of f |[x0]G̃

and g |[x0]G̃
. Indeed,

if a0, b0 ∈ fix{f, g} ∩ [x0]G̃, then fa0 = ga0 = a0 and fb0 = gb0 = b0. We
get a0 = a1 = · · · and b0 = b1 = · · · . Lemma 3.6 implies that the sequences
{fan}n≥1 and {fbn}n≥1 are ρ-Cauchy equivalent. Therefore,

ρ(a0, b0) = limn→∞ ρ(fan, fbn) = 0 and ρ(b0, a0) = limn→∞ ρ(fbn, fan) = 0.

Also, we have ρ(b0, b0) = ρ(a0, a0) = 0. By Lemma 2.5 (a), a0 = b0.
Finally, if x0 ∈ Xf,g 6= ∅ and G is weakly connected, [x0]G̃ = X. The

argument that was used shows that f and g have a unique fixed point. �

Next, we will show that the following extension of Jachymski’s Theorem
[12, Theorem 3.2] follows from our main result.

Corollary 3.9. Let (X, d) be a complete metric space endowed with a
graph G and let the triple (X, d,G) have the following property:
(∗) For any sequence {xn}n∈N in X, if

lim
n→∞

d(xn, x) = 0 and (xn, xn+1) ∈ E(G), n ∈ N,

then there exists a subsequence {xkn}n∈N of {xn}n∈N with (xkn , x) ∈ E(G) for
each n ∈ N.

Assume that f : X → X satisfies the following conditions:

1. For all x, y ∈ X, (x, y) ∈ E(G) implies that (fx, fy) ∈ E(G).
2. There is ψ ∈ Ψ such that (x, y) ∈ E(G) implies that

d(fx, fy) ≤ ψ(d(x, y)).

If Xf = {x ∈ X : (x, fx) ∈ E(G)}, then, for any x ∈ Xf , f |[x]
Ĝ

has a unique

fixed point. Moreover, if Xf 6= ∅ and G is weakly connected, then f has a
unique fixed point.
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Proof. As in Example 2.2, the metric d generates a Hausdorff uniformity
on X and at the same time is an E-distance on X. By our assumption, X is
S-complete. Clearly, d is continuous, the identity map I is d-continuous and
f and I are commuting. Moreover, we have the following:

(1) Let fx ∈ [x]
G̃

. Put y = fx. Then there exists y ∈ [x]
G̃

such that
fx = gy, where g = I.

(2) (x0, y0) ∈ E(G) implies that (fx0, fy0), (Ix0, Iy0) = (x0, y0), (x1, y1) =
(fx0, fy0) ∈ E(G).

(3) If (x0, y0) ∈ E(G), then d(fx0, fy0) ≤ ψ(d(x0, y0)).

It follows that f is (d, ψ,G)-contraction with respect to the identity map on
X. Moreover, by our assumption, the triple (X, d,G) satisfies property (∗) of
Theorem 3.8 and

Xf = {x0; (x0, fx0) ∈ E(G)}
⊆ Xf,I = {x0 ∈ X : fx0, Ix0 ∈ [x0]G̃ and (Ixn, fxn) ∈ E(G), n ∈ N}.

Let x0 ∈ Xf ⊆ Xf,I . Then, by Theorem 3.8, the functions f |[x0]G̃
and I |[x0]G̃

have a unique common fixed point. This means that f |[x0]G̃
have a unique

fixed point. Let x0 ∈ Xf 6= ∅ and G be weakly connected. Then [x0]G̃ = X.
By the above argument, f has a unique fixed point. �

In 2004, Aamri and El Moutawakil [1] obtained the following result.

Theorem 3.10 ([1, Theorems 3.1 and 3.2]). Let (X, υ) be a Hausdorff uni-
form spaces and ρ be an A-distance on X. Suppose X is ρ-bounded and S-
complete. Suppose that ψ : R≥0 → R≥0 satisfies

ψ(t) > 0 and limn→∞ ψ
n(t) = 0 for each t > 0.

Let f and g be commuting ρ-continuous or τ(υ)-continuous self-mappings of
X such that

(1) f(X) ⊆ g(X),
(2) ρ(f(x), f(y)) ≤ ψ(ρ(g(x), g(y))), for all x, y ∈ X.

Then f and g have a common fixed point. Moreover, if ρ is an E-distance,
then f and g have a unique common fixed point.

Theorem 3.7 enables us to omit the condition of ρ-boundedness of X in
Theorem 3.10, provided that ψ ∈ Ψ. We present this extension in the following
corollary.

Corollary 3.11. Let (X, υ) be a Hausdorff uniform spaces and ρ be an
E-distance on X. Suppose that X is S-complete. Let f and g be ρ-continu-
ous commuting mappings on X and let ψ ∈ Ψ. Assume that the followings
conditions hold:

(1) f(X) ⊆ g(X),
(2) ρ(f(x), f(y)) ≤ ψ(ρ(g(x), g(y))), for all x, y ∈ X.

Then f and g have a unique common fixed point.
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Proof. Assume that G is a graph such that V (G) = X and E(G) = X ×X.
Then G is weakly connected and the following conditions hold:

(1) By our assumption f(X) ⊆ g(X), so for each x ∈ X, with fx, gx ∈
[x]

G̃
= X, there exists y ∈ [x]

G̃
= X such that fx = gy.

(2) Let (x0, y0) ∈ E(G) = {(x, y) : x, y ∈ X}. Then both f and g are G-
invariant and (x1, y1) ∈ E(G) = {(x, y) : x, y ∈ X}, where fx0 = gx1
and fy0 = gy1.

(3) If (x0, y0) ∈ E(G) = {(x, y) : x, y ∈ X}, then

ρ(fx0, fy0) ≤ ψ(ρ(gx0, gy0)).

Hence, we may consider f as a (ρ, ψ,G)- contraction with respect to g. By
our assumption, f and g are ρ-continuous commuting mappings. Moreover,
Xf,g = X 6= ∅. By Theorem 3.7, f and g have a unique common fixed
point. �

Definition 3.12. Let (X, d) be a metric space and ε > 0. Then X is called
ε-chainable if for each x, y ∈ X, there exist N ∈ N and x0 = x, x1, · · · , xN =
y ∈ X such that d(xi−1, xi) < ε for all 1 ≤ i ≤ N.

In 1961, Edelstein [10] proved the following extension of the Banach fixed
point theorem.

Theorem 3.13 (Edelstein’s Theorem). Let (X, d) be a complete ε-chainable
metric space for an ε > 0. Assume that f : X → X for some 0 ≤ α < 1
satisfies

d(x, y) < ε⇒ d(fx, fy) < αd(x, y).

Then f has a unique fixed point

The following result, which is an extension of Edelstein’s Theorem for two
self-mappings, is a consequence of Theorem 3.8.

Corollary 3.14. Let (X, d) be a complete ε-chainable metric space for an
ε > 0 and ψ ∈ Ψ. Assume that f and g are commuting self mappings on X
such that g is continuous and the following conditions hold:

1. f(X) ⊆ g(X);
2. d(x0, y0) < ε ⇒ d(fx0, fy0), d(gx0, gy0), d(x1, y1) < ε, for some x0,
y0 ∈ X where fx0 = gx1 and fy0 = gy1;

3. d(x0, y0) < ε⇒ d(fx0, fy0) < ψ(d(gx0, gy0)).

Then f and g have a unique common fixed point.

Proof. By Example 2.2, the metric d generates a Hausdorff uniformity on
X and at the same time is an E-distance on X. Define a graph G by

V (G) = X and E(G) = {(x, y) ∈ X ×X : ρ(x, y) < ε}.
Since X is ε-chainable, G is weakly connected. Therefore, f is a (d, ψ,G)-
contraction with respect to g.
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Let {xn}n≥0 be a sequence in X such that limn→∞ d(xn, x
∗) = 0, for an

x∗ ∈ X and d(xn, xn+1) < ε for each n ∈ N. Since {xn} is convergent to x∗,
there exists n0 ∈ N such that d(xn, x

∗) < ε for each n ≥ n0. Therefore, for
the subsequence {xn0+k}∞k=0 of {xn}∞n=0, we have (xn0+k, x) ∈ E(G) for each
k ≥ 0. This means that property (∗) of Theorem 3.8 holds.

Since G is weakly connected, fx, gx ∈ [x]
G̃

for each x ∈ X. Fix x0 ∈ X.
By Lemma 3.6, the sequence {fxn} is Cauchy, where fxn−1 = gxn, for each
n ≥ 0. Therefore, limn,m→∞ d(fxn, fxm) = 0. Let M ∈ N be such that
d(fxn, fxm) < ε for all n,m ≥M. Put z0 = xM . One can see that z0 ∈ Xf,g.
Since [z0]G̃ = X, by Theorem 3.8, f |[z0]G̃= f and g |[z0]G̃= g have a unique

common fixed point on [z]
G̃

= X. �

The next example shows that our results are different from Theorem 3.10.

Example 3.15. Let X = { 1n : n ≥ 1} ∪ {0, 23} be endowed with usual
uniformity and graph G, where V (G) = X and

E(G) = ∆(X) ∪ {( 1

n
,

1

n+ 1
) : n ≥ 2} ∪ {( 1

n
, 0) : n ≥ 2} ∪ {(2

3
, 0), (0,

2

3
)}.

Define ψ : R≥0 → R≥0 by ψ(r) = r
2 and define ρ : X ×X → R≥0 by

(1) ρ(x, y) =

 1 x = 2
3 , y 6= x

0 x = y = 2
3

y otherwise
.

Then ρ is an E-distance on X. One can easily verify that X is S-complete.
Define f, g : X → X by

(2) fx =

{
2
3 if x = 1,
0 if x 6= 1.

(3) gx =


0 if x = 0, 23 ,
2
3 if x = 1,

1
1+n if x = 1

n , n ≥ 2.

Then fgx = gfx, for all x ∈ X, and f(X) = {0, 23} ⊆ g(X) = {0, 23 ,
1
3 ,

1
4 , · · · }.

We show that f and g are ρ-continuous. Assume that {xn}n∈N is a sequence
in X such that limn→∞ ρ(xn, x) = 0 for an x ∈ X. By the definition of ρ, x = 0
or x = 2

3 .

If x = 2
3 , there exists N0 ∈ N such that xn = 2

3 for each n ≥ N0.

Thus, limn→∞ ρ(fxn, fx) = ρ(f 2
3 , f

2
3) = ρ(0, 0) = 0 and limn→∞ ρ(gxn, gx) =

ρ(g 2
3 , g

2
3) = ρ(0, 0) = 0.

If x = 0, then limn→∞ ρ(fxn, fx) = limn→∞ ρ(fxn, f0) = limn→∞ ρ(fxn, 0)
= 0 and limn→∞ ρ(gxn, gx) = limn→∞ ρ(gxn, g0) = limn→∞ ρ(gxn, 0) = 0.
Therefore, f and g are ρ-continuous. Moreover, the following conditions hold:

(1) For each x ∈ X with fx, gx ∈ [x]
G̃

, there exists y ∈ [x]
G̃

= X such
that fx = gy.
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(2) If (x0, y0) ∈ E(G), then (fx0, fy0), (gx0, gy0), (x1, y1) ∈ E(G), where
fx0 = gx1 and fy0 = gy1.

(3) If (x0, y0) ∈ E(G), then ρ(fx0, fy0) ≤ ψ(ρ(x0, y0)).

Now, we show that the triple (X, ρ,G) satisfies property (∗) of Theorem 3.7.
Let {xn} be a sequence inX such that limn→∞ ρ(xn, x) = 0 and (xn, xn+1) ∈

E(G) for all n ∈ N. Then x = 0 or x = 2
3 .

If x = 2
3 , there exists n0 ∈ N such that xn = 2

3 for n ≥ n0. In this case,
(xn, x) ∈ E(G) for all n ≥ n0. If x = 0, then there is n1 ∈ N such that
xn 6= 2

3 for all n ≥ n1. Hence, for each n ≥ n1, xn ∈ { 1k}k≥1 ∪ {0}. Therefore,
(xn, x) ∈ E(G) for each n ≥ n1.

Also, 0 ∈ Xf,g 6= ∅. By Theorem 3.7, f and g have a unique common fixed

point on [0]
G̃

= { 1n ;n ≥ 2} ∪ {0, 23}, that is x = 0. However, Aamri’s Theorem
(Theorem 3.10) can’t be used, since

ρ(f(
1

2
), f(1)) = ρ(0,

2

3
) =

2

3
� ψ(ρ(g(

1

2
), g(1))) = ψ(ρ(

1

3
,
2

3
)) = ψ(

2

3
) =

1

3
.

4. HOMOTOPY RESULTS IN HAUSDORFF UNIFORM SPACES

Homotopy of continuous functions plays an important role in topology, since
some known topological properties are homotopy invariant. In this section we
are going to apply our results to get a homotopy theorem. We start by recalling
some definitions.

Definition 4.1 ([9]). Let X and Y be two topological spaces and let f, g :
X → Y be two continuous mappings. A homotopy from f to g is a continuous
function H : X × [0, 1] → Y such that H(x, 0) = fx and H(x, 1) = gx for all
x ∈ X. In this case, f and g are called homotopic mappings.

Definition 4.2. Let (X, υ) be a uniform space and let ρ : X ×X → R≥0
be an E-distance. A function H : X × [0, 1] → X is called ρ-continuous at
(x, t) ∈ X × [0, 1] if ρ(xn, x)→ 0 and | tn − t |→ 0 imply that

ρ(H(xn, tn), H(x, t))→ 0,

where {xn} ⊆ X and {tn} ⊆ [0, 1].

Theorem 4.3. Let (X, υ) be a uniform space endowed with a graph G and
E-distance ρ : X × X → R≥0. Assume that X is S-complete and the triple
(X, ρ,G) satisfies property (∗) in Theorem 3.7. Let ψ : R≥0 → R≥0 be an
element of Ψ and let f : X → X and H : X × [0, 1] → X be commuting ρ-
continuous mappings. Assume that [fx]

G̃
= [H(x, 1)]

G̃
implies that H(x, 0) ∈

[fx]
G̃

for each x ∈ X. Assume that H satisfies the following property: For
each t1, t2 ∈ [0, 1], if t1 < t2 then H(., t1) is a (ρ, ψ,G)−contraction with
respect to H(., t2). Let f is (ρ, ψ,G)−contraction with respect to H(., 0). Then
f is also a (ρ, ψ,G)−contraction with respect to H(., 1). Moreover, if u is a
common fixed point of f and H(., 0) such that there is x0 ∈ XH(.,0),H(.,1) such
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that {H(xn, 0)} is ρ-convergent to u, where H(xn−1, 0) = H(xn, 1) for each
natural n, then u is also a unique common fixed point of f and H(., 1) on [u]

G̃
.

Proof. Suppose that f is a (ρ, ψ,G)-contraction with respect to H(., 0). Let
x ∈ X be such that f(x), H(x, 1) ∈ [x]

G̃
.

By our hypothesis, H(x, 0) ∈ [x]
G̃

. f is (ρ, ψ,G)-contraction with respect to
H(., 0) and H(., 0) is (ρ, ψ,G)-contraction with respect to H(., 1). By Lemma
3.4, [x]

G̃
is f and H(., 0) and H(., 1) invariant. Moreover, there exists y ∈

[x]
G̃

such that fx = H(y, 0). So H(y, 0), H(y, 1) ∈ [y]
G̃

. Thus, there exists
z ∈ [y]

G̃
= [x]

G̃
such that H(y, 0) = H(z, 1). Therefore, there is z ∈ [x]

G̃
such

that fx = H(z, 1).
Suppose that (x0, y0) ∈ E(G). f is (ρ, ψ,G)-contraction with respect to

H(., 0) and H(., 0) is (ρ, ψ,G)-contraction with respect to H(., 1), hence

(fx0, fy0), (H(x0, 0), H(y0, 0)), (H(x0, 1), H(y0, 1)) ∈ E(G).

Moreover, (z, w) ∈ E(G) where fx0 = H(z, 0) and fy0 = H(w, 0). There
exist z′, w′ ∈ X such that H(z, 0) = H(z′, 1) and H(w, 0) = H(w′, 1) and,
since H(., 0) is (ρ, ψ,G)-contraction with respect to H(., 1), (z′, w′) ∈ E(G).
Put x1 = z′ and y1 = w′. Thus, (x1, y1) ∈ E(G).

Let (x, y) ∈ E(G). We have

ρ(fx, fy) ≤ ψ(ρ(H(x, 0), H(y, 0))) ≤ ρ(H(x, 0), H(y, 0))

≤ ψ(ρ(H(x, 1), H(y, 1))).

Therefore, f is a (ρ, ψ,G)-contraction with respect to H(., 1).
Let u be a common fixed point of f and H(., 0) and let x0 ∈ XH(.,0),H(.,1)

be such that {H(xn, 0)} is ρ-convergent to u, where H(xn−1, 0) = H(xn, 1) for
each n ≥ 1. Property (∗) in Theorem 3.7 implies that u ∈ [x0]G̃. Since H(., 0)
is a (ρ, ψ,G)−contraction with respect toH(., 1) and since x0 ∈ XH(.,0),H(.,1) 6=
∅, Theorem 3.7 implies that H(., 0) |[x0]G̃=[u]

G̃
and H(., 1) |[x0]G̃=[u]

G̃
have a

unique common fixed point that is u. Thus, u is a unique common fixed point
of f |[u]

G̃
and H(., 1) |[u]

G̃
. �
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