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ASYMPTOTICALLY DOUBLE λ2-STATISTICALLY EQUIVALENT
SEQUENCES OF INTERVAL NUMBERS

AYHAN ESI, SHYAMAL DEBNATH, and SUBRATA SAHA

Abstract. In this paper we have introduced the concept of λ2 - asymptotically
double statistical equivalent of interval numbers and strong λ2 - asymptotically
double statistical equivalent of interval numbers. We have investigated the rela-
tions related to these spaces.
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1. INTRODUCTION

Interval arithmetic was first suggested by Dwyer [8] in 1951. Development
of interval arithmetic as a formal system and evidence of its value as a compu-
tational device was provided by Moore [26] in 1959 and Moore and Yang [27]
in 1962. Furthermore, Moore and others [9, 20] have developed applications
to differential equations.

Chiao in [4] introduced sequences of interval numbers and defined usual
convergence of sequences of interval numbers. Sengonul and Eryilmaz in [32]
introduced and studied bounded and convergent sequence spaces of interval
numbers and showed that these spaces are complete metric spaces.

Recently, Esi [10, 11] introduced and studied strongly almost λ-convergence
and statistically almost λ-convergence of interval numbers and lacunary se-
quence spaces of interval numbers, respectively. For more information about
interval numbers, one may refer to Esi [12–18], Debnath and Saha [7], Debnath
et al. [5, 6].

The idea of statistical convergence for ordinary sequences was introduced by
Fast [19] in 1951. Schoenberg [31] studied statistical convergence as a summa-
bility method and listed some elementary properties of statistical convergence.
Both of these authors noted that if a bounded sequence is statistically con-
vergent, then it is Cesaro summable. Existing work on statistical convergence
appears to have been restricted to real or complex sequences, but several au-
thors extended the idea to apply it to sequences of fuzzy numbers and also
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introduced and discussed the concept of statistical sequences of fuzzy numbers.
For some very interesting investigations concerning statistical convergence, one
may consult the papers of Cakalli [3], Miller [25] , Maddox [23] and many oth-
ers [1, 2, 22], where more references on this important summability method
can be found.

In 1993, Marouf [24] presented definitions for asymptotically equivalent se-
quences and asymptotic regular matrices. In 2003, Patterson [29] extended
these concepts by presenting as an asymptotically statistical equivalent analog
of these definitions and natural regularity conditions for non-negative summa-
bility matrices.

2. PRELIMINARIES

We denote the set of all real valued closed intervals by IR. Any element of IR
is called interval number and denoted by A = [xl, xr] . Let xl and xr be the first
and last points of the x interval number, respectively. For A1, A2 ∈IR, we have
A1 = A2 ⇔ x1l=x2l ,x1r=x2r . A1 +A2 = {x ∈ R : x1l + x2l ≤ x ≤ x1r + x2r} ,
and if α ≥ 0, then αA = {x ∈ R : αx1l ≤ x ≤ αx1r} and if α < 0, then

αA = {x ∈ R : αx1r ≤ x ≤ αx1l} , A1.A2 = set of real numbers x such that
min

{
x1l .x2l , x1l .x2r , x1r .x2l , x1r .x2r

}
≤x≤max

{
x1l .x2l , x1l .x2r , x1r .x2l , x1r .x2r

}
.

The set of all interval numbers IR is a complete metric space defined by

d
(
A1, A2

)
= max {|x1l − x2l | , |x1r − x2r |} .

In the special case A1 = [a, a] and A2 = [b, b] , we obtain the usual metric of
R. Let us define the transformation f : N → R by k → f (k) = x, x = (xk) .
Then x = (xk) is called a sequence of interval numbers. The xk is called the
kth term of the sequence x = (xk) . w

i denotes the set of all interval numbers
with real terms.

A sequence x = (xk) is said to be statistically convergent to the number L
if, for every ε > 0, limn

1
n |{k ≤ n : |xk − L| ≥ ε}| = 0, where the vertical bars

indicate the number of elements in the enclosed set.

Definition 2.1 ([10]). A sequence x = (xk) of interval numbers is said
to be convergent to the interval number xo if for each ε > 0 there exists a
positive integer ko such that d (xk, xo) < ε for all k ≥ ko and we denote it by
limk xk = xo. Thus, limk xk = xo ⇔ limk xkl = xol and limk xkr = xor .

Definition 2.2 ([24]). Two non-negative sequences x = (xk) and y = (yk)
are said to be asymptotically equivalent if limk

xk
yk

= 1 (denoted by x ∼ y).

Definition 2.3 ([21]). The sequence x = (xk) has statistical limit L, de-
noted by st− limx = L provided that for every ε > 0

limn
1
n{the number of k ≤ n : |xk − L| ≥ ε} = 0.

Definition 2.4 ([29]). Two non-negative sequences x = (xk) and y = (yk)
are said to be asymptotically statistical equivalent of multiple L provided that
for every ε > 0
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limn
1
n{the number of k ≤ n : |xkyk − L| ≥ ε} = 0

(denoted by x
SLv y) and simply asymptotically statistical equivalent if L = 1.

Definition 2.5 ([15]). Two non-negative sequences of interval numbers x
= (xk) and y = (yk) 6= 0 = [0,0] are said to be asymptotically sλ-statistical
equivalent of multiple L provided that for every ε > 0

limn
1
λn

∣∣∣{k ∈ In : d(xkyk
, L)|) ≥ ε

}∣∣∣ = 0

(denoted by x
sLλv y) and simply asymptotically sλ statistical equivalent if L=1.

Definition 2.6 ([15]). Two non-negative sequences of interval numbers x
= (xk) and y = (yk) 6= 0 = [0,0] are said to be asymptotically statistical
equivalent of multiple L provided that for every ε > 0

limn
1
n

∣∣∣{k ∈ n : d(xkyk
, L)|) ≥ ε

}∣∣∣ = 0

(denoted by x
sL
v y) and simply asymptotically s statistical equivalent if L = 1.

Definition 2.7 ([15]). Two non-negative sequences of interval numbers
x = (xk) and y = (yk) 6= 0 = [0,0] are said to be strongly asymptotically
λ-equivalent of multiple L provided that for every ε > 0

limn
1
λn

Σk∈In : d(xkxk , L) = 0

and simply strongly λ-asymptotically equivalent if L = 1.

A double sequence of real numbers is a function x : N ×N → R. We shall
use the notation x = (xk,l).

A double sequence x = (xk,l) has a Pringsheim limit L (denoted by P −
limx = L) provided that, given an ε > 0, there exists an n0 ∈ N such that
|(xk,l)− L, | < ε, whenever k, l > n0. We shall describe such an x = (xk,l)
briefly as “P -convergent”. The double sequence x = (xk,l) is bounded if there
exists a positive number M such that |(xk,l)| < M for all k and l and

‖x‖ = supk,l |xk,l| <∞.
Let p = (pk,l) be a double sequence of positive real numbers. If 0 < h =

infk,l pk,l ≤ pk,l ≤ H = supk,l pk,l < ∞ and D = max(1, 2H−1), then, for all
ak,l, bk,l ∈ C for all k, l ∈ N , we have

|ak,l + bk,l|pk,l ≤ D (|ak,l|pk,l + |bk,l|pk,l).
We should note that, in contrast to the case of single sequences, convergent
double sequences need not to be bounded.

Later, Mursaleen and Edely [28] defined the statistical analogue for double
sequence x = (xk,l) as follows:

A real double sequence x = (xk,l) is said to be P -statistical convergence to
L provided that for each ε > 0

P − limm,n
1
mn |{(k, l) : k < m, l < n; |xk,l − L| ≥ ε}| = 0.

In this case, we write St2 − limk,l xk,l = L and we denote the set of all P -
statistical convergent double sequences by St2.
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Let the double sequence λ2 = (λrs) of positive real numbers be tending to
infinity such that

λ(r+1)s ≤ λrs + 1, λr(s+1) ≤ λrs + 1,

λrs − λ(r+1)s ≤ λr(s+1) − λ(r+1)(s+1), λ11 = 1

and

Ir,s = {(k, l) : r − λrs + 1 ≤ k ≤ r, s− λrs + 1 ≤ l ≤ s} .
For double λ2 = (λrs) sequence, the two double interval sequences x = (xrs)
and y = (yrs) 6= 0 = [0, 0] are said to be λ2-asymptotically double statistical
equivalent of interval number xo provided that for every ε > 0

P − limr,s
1
λrs

∣∣∣{(k, l) ∈ Ir,s : d
(
xrs
yrs
, xo

)
≥ ε
}∣∣∣ = 0

(denoted by x
Sλ2v y) and simply λ2-asymptotically double statistical equivalent

if xo = 1.

3. MAIN RESULT

Definition 3.1. Let λ2 = (λrs) be a double sequence. Two non-negative
double sequences of interval numbers x = (xkl) and y = (ykl) 6= 0 = [0,0] are
said to be λ2− asymptotically double statistical equivalent of interval number
x0 provided that for every ε > 0

P − limr,s
1
λr,s

∣∣∣{(k, l) ∈ Ir,s : d
(
xk,l
yk,l

, x0

)
≥ ε
}∣∣∣ = 0(

denoted by x
Sλ2v y

)
and simply λ2−asymptotically double lacunary statis-

tical equivalent if x0 = 1.

If we take λrs = rs, the above definition reduces to the following definition:

Definition 3.2. Two non-negative double sequences of interval numbers
x = (xkl) and y = (ykl) 6= 0 = [0,0] are said to be asymptotically double
statistical equivalent of interval number x0 provided that for every ε > 0

limr,s
1
rs

∣∣∣{(k, l) ∈ Ir,s : d
(
xk,l
yk,l

, x0

)
≥ ε
}∣∣∣ = 0

and we denote this by x
S2v y.

Definition 3.3. Let λ2 = (λrs) be a double sequence and p = (pk,l) be any
double sequence of strictly positive real numbers. Two non-negative double
sequences of interval numbers x = (xkl) and y = (ykl) are said to be strong λ2−
asymptotically double statistical equivalent of interval number x0 provided
that for every ε > 0

P − lim
rs

1

λrs
Σk∈Ir,s [ d

(
xk,l
yk,l

, x0

)
]pk,l = 0
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denoted by x

2
N
p
λr,s

v y

)
and simply strong λ2− asymptotically double lacu-

nary statistical equivalent if x0 = 1.

Theorem 3.4. Let λ2 = (λrs) be a double sequence. Then:

(i) If x
2
N
p
λr,s

v y, then x
Sλ2v y.

(ii) If x
Sλ2v y, then x

2
N
p
λr,s

v y.

(iii) If x = (xkl)∈ m, then Sλ2
⋂
m = 2

Np
λr,s

⋂
m, where m denote the set

of bounded sequences.

Proof. (i) Let ε > 0 and x
2
N
p
λr,s

v y, then∣∣∣∣{(k, l) ∈ Ir,s : d

(
xk,l
yk,l

, x0

)
≥ ε
}∣∣∣∣ ≥ Σ

(k,l)∈Ir,s and d

(
xk,l
yk,l

,x0

)
≥ε
d

(
xk,l
yk,l

, x0

)
and P − limrs

1
λrs

Σk∈Ir,s [ d
(
xk,l
yk,l

, x0

)
]pk,l = 0. This implies that

P − lim
rs

1

λrs

∣∣∣∣{(k, l) ∈ Ir,s : d

(
xk,l
yk,l

, x0

)
≥ ε
}∣∣∣∣ = 0.

Therefore, x
Sλ2v y.

(ii) Suppose that x = (xkl) and y = (ykl) in m and x
Sλ2v y. Then there is

a constant M > 0 such that d
(
xk,l
yk,l

, x0

)
≤M . Let ε > 0. We have

1

λrs
Σ(k,l)∈Ir,s [ d

(
xk,l
yk,l

, x0

)
]pk,l=

1

λrs
Σ
(k,l)∈Ir,s and d

(
xk,l
yk,l

,x0

)
≥ε

[ d

(
xk,l
yk,l

, x0

)
]pk,l

+
1

λrs
Σ
(k,l)∈Ir,s and d

(
xk,l
yk,l

,x0

)
<ε

[ d

(
xk,l
yk,l

, x0

)
]pk,l

≤ 1

λrs
Σ
(k,l)∈Ir,s and d

(
xk,l
yk,l

,x0

)
≥ε

max(Mh,MH)

+
1

λrs
Σ
(k,l)∈Ir,s and d

(
xk,l
yk,l

,x0

)
<ε
εpk,l

≤ max(Mh,MH)
1

λrs

∣∣∣∣{(k, l) ∈ Ir,s : d

(
xk,l
yk,l

, x0

)
≥ ε
}∣∣∣∣+ max(εh, εH)

Therefore, x
2
N
p
λr,s

v y.
(iii) It follows from (i) and (ii).

�
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Theorem 3.5. Let λ2 = (λrs) be a double sequence with P − lim infr,s
λrs
rs >

0. Then x
S2v y implies x

Sλ2v y.

Proof. If x
S2v y, then, for every ε > 0 and for sufficiently large r and s, we

have

1

λrs

∣∣∣∣{(k, l) ∈ Ir,s; k ≤ kr and l ≤ ls : d

(
xk,l
yk,l

, x0

)
≥ ε
}∣∣∣∣

≥ 1

λrs

∣∣∣∣{(k, l) ∈ Ir,s : d

(
xk,l
yk,l

, x0

)
≥ ε
}∣∣∣∣

≥ λrs
rs

1

λr,s

∣∣∣∣{(k, l) ∈ Ir,s : d

(
xk,l
yk,l

, x0

)
≥ ε
}∣∣∣∣ .

Hence, x
Sλ2v y.

�

Theorem 3.6. Let λ2 = (λrs) be a double sequence with P−lim supr,s
λrs
rs <

∞. Then x
Sλ2v y implies x

S2v y.

Proof. Since P − lim supr,s
λrs
rs <∞, there exists D > 0 such that λrs < D,

for all r, s ≥ 1. Let x
Sλ2v y and ε > 0. Then there exist r0 < 0 and s0 > 0

such that, for every i ≥ r0 and j ≥ s0

Ci,j =
1

hi,j

∣∣∣∣{(k, l) ∈ Ii,j : d

(
xk,l
yk,l

, x0

)
≥ ε
}∣∣∣∣ < ε.

Let M = max{Ci,j : 1 ≤ i ≤ r0 and 1 ≤ j ≤ s0} and m,n be such that
kr−1 < m ≤ kr and ls−1 < n ≤ ls. Thus, we obtain the following

1

mn

∣∣∣∣{(k, l) ∈ Ii,j ; k ≤ mand l ≤ n : d

(
xk,l
yk,l

, x0

)
≥ ε
}∣∣∣∣

≤ 1

λ(r−1)(s−1)

∣∣∣∣{(k, l) ∈ Ii,j ; k ≤ kr and l ≤ ls : d

(
xk,l
yk,l

, x0

)
≥ ε
}∣∣∣∣

≤ 1

λ(r−1)(s−1)
Σ(1≤t≤r0)

⋃
(1≤u≤s0)ht,uCt,u+

1

kr−1ls−1
Σ(r0<t≤r)

⋃
(s0<u≤s)ht,uCt,u

≤ M

λ(r−1)(s−1)
Σ(1≤t≤r0)

⋃
(1≤u≤s0)ht,u +

1

kr−1ls−1
Σ(r0<t≤r)

⋃
(s0<u≤s)ht,uCt,u

≤ Mkr0 ls0r0s0
λ(r−1)(s−1)

+
1

kr−1ls−1
Σ(r0<t≤r)

⋃
(s0<u≤s)ht,uCt,u

≤ Mkr0 ls0r0s0
λ(r−1)(s−1)

+

(
sup

t≥r0
⋃
u≥s0

Ct,u

)
1

kr−1ls−1
Σ(r0<t≤r)

⋃
(s0<u≤s)ht,u
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≤ Mkr0 ls0r0s0
λ(r−1)(s−1)

+
ε

λ(r−1)(s−1)
Σ(r0<t≤r)

⋃
(s0<u≤s)ht,u

≤ Mkr0 ls0r0s0
λ(r−1)(s−1)

+ εD2.

Since λrs approach infinity as both m and n approach infinity it follows that

1

mn

∣∣∣∣{(k, l) ∈ Ii,j ; k ≤ m and l ≤ n : d

(
xk,l
yk,l

, x0

)
≥ ε
}∣∣∣∣→ 0.

This completes the proof. �
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