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RECTANGULAR TRANSFORMATIONS

IN LATIN SQUARES

IVAN I. DERIYENKO

Abstract. To get another one from a given latin square, we have to change at
least 4 entries. We show how to find these entries and how to change them.
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1. RESULTS

1. The distance between two latin squares ||aij || and ||bij || of the same size
n > 2 is equal to the number of cells in which the corresponding elements
aij and bij are not equal. The minimal distance between two latin squares is
equal 4. Moreover, for any n > 3 there exist two latin squares of size n which
differ in precisely four entries [10, Theorem 3.3.4]. In the case of latin squares
defining groups the situation is more complicated. If two different Cayley
tables of order n 6= {4, 6} represent groups (not necessary distinct), then they
differ from each other in at least 2n places. An arbitrary Cayley table of the
cyclic group of order 4 differs in at least four places from an arbitrary Cayley
table of Klein’s 4-group (cf. [6, 7, 9, 10]).

The interesting question is: when two latin squares which differ in precisely
four entries are isomorphic or isotopic. To solve this problem we will use
autotopies of the corresponding quasigroups, i.e., three bijections α, β, γ of a
quasigroup Q such that α(x) · β(y) = γ(x · y) for all x, y ∈ Q.

2. Let Q = {1, 2, 3, . . . , n} be a finite set. The multiplication (composition)
of permutations ϕ and ψ of Q is defined as ϕψ(x) = ϕ(ψ(x)). All permutations
will be written in the form of cycles and cycles will be separated by points,
e.g.

ϕ =

(
1 2 3 4 5 6 7 8
3 1 2 5 4 6 8 7

)
= (132.45.6.78.)

Permutations Li (i ∈ Q) of Q such that Li(x) = i·x, for all x ∈ Q, are called
left translations of an element i. Such permutations were firstly investigated
by V. D. Belousov (cf. [1]) in connection with some groups associated with
quasigroups. Next, such translations were used by many authors to describe
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various properties of quasigroups, see for example [2], [5] or [11]. Left trans-
lations are applied in [3] to the construction of some polynomials that can be
used to determine which quasigroups are isotopic. Namely, the main results
of [3] shows that isotopic quasigroups have the same polynomials.

3. We say that elements x, y, z, u ∈ Q, x 6= z, y 6= u, determine a rectangle
in a quasigroup Q if xy = zu = a and xu = zy = b for some a, b ∈ Q. Vertices
of such rectangle have the form xy, xu, zx and zu (see example below). Such
determined rectangle will be denoted by 〈x, y, z, u〉 or by 〈x, u, z, y〉. It is clear
that 〈x, u, z, y〉 = 〈x, x\a, a/(x\b), x\b〉.

Example 1. The following quasigroup

· 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7

2 2 1 4 3 7 5 6
3 3 6 5 1 4 7 2
4 4 5 2 7 6 1 3
5 5 4 7 6 2 3 1
6 6 7 1 2 3 4 5

7 7 3 6 5 1 2 4

has the rectangle 〈2, 3, 7, 7〉. Other rectangles of this quasigroup are calculated
in Example 4.

Theorem 2. A group has a rectangle if and only if it has an element of
order two.

Proof. Let x be an element of a group G such that x2 = e and x 6= e. Then
ee = xx = e, ex = xe = x, so < e, e, x, x > is a rectangle (square).

Conversely, let < x, y, z, u > be a rectangle in a group G. Then xyu−1 =
xuy−1, and consequently (yu−1)2 = e. So a = yu−1 6= e has order two. �

Lemma 3. Isotopic (antiisotopic) quasigroups have the same number of rect-
angles.

Proof. Let (Q, ·) and (Q, ◦) be isotopic quasigroups, i.e., γ(x·y) = α(x)◦β(y)
for some bijections of Q and all x, y ∈ Q. Then, as it is not difficult to see,
〈x, y, z, u〉 is a rectangle of (Q, ·) if and only if 〈α(x), β(y), α(z), β(u)〉 is a
rectangle of (Q, ◦). �

4. Each quasigroup Q = (Q, ·) determines five new quasigroups Qi = (Q, ◦i)
with the operations ◦i defined as follows:

x ◦1 y = z ←→ x · z = y
x ◦2 y = z ←→ z · y = x
x ◦3 y = z ←→ z · x = y
x ◦4 y = z ←→ y · z = x
x ◦5 y = z ←→ y · x = z
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Such defined (not necessarily distinct) quasigroups are called parastrophes or
conjugates of Q. Traditionally they are denoted as

Q1 = Q−1 = (Q, \), Q2 = −1Q = (Q, /), Q3 = −1(Q−1) = (Q1)2,

Q4 = (−1Q)−1 = (Q2)1 and Q5 = (−1(Q−1))−1 = ((Q1)2)1 = ((Q2)1)2.

From the above results and results obtained in [8] it follows that a fixed
IP -quasigroup and all its parastrophes have the same number of rectangles.
Similarly, this holds for a quasigroup isotopic to a group and its parastrophes.

5. Note that, if a commutative quasigroup has a rectangle 〈x, y, z, u〉 with
x = y, then also z = u. Similarly, z = u implies x = y. So, if in a commutative
quasigroup Q one of vertices of the rectangle 〈x, y, z, u〉 lies on the diagonal of
the multiplication table of Q, then this rectangle is a square and its diagonal
coincides with the diagonal of the multiplication table.

In Boolean groups each two elements x, y determine the rectangle 〈x, y, xy, e〉
and each three elements x, y, z determine the rectangle 〈x, y, z, xyz〉.

An interesting question is how to find rectangles in a given quasigroup.
Direct calculation of 〈x, x\a, a/(x\b), x\b〉 is rather trouble. Below we present
simplest method based on left translations.

Let 〈x, y, z, u〉 be a rectangle in a quasigroup (Q, ·). Then, according to the
definition, xy = zu = a and xu = zy = b. Thus, the left translations Lx and
Lz have the form

Lx =

(
. . . y . . . u . . .
. . . a . . . b . . .

)
, Lz =

(
. . . y . . . u . . .
. . . b . . . a . . .

)
.

Hence,

LxL
−1
z =

(
. . . b . . . a . . .
. . . a . . . b . . .

)
.

This means that the permutation LxL
−1
z used in the construction of in-

dicators (for details see [3]) has the cycle (a, b). Thus vertices a, b of this
rectangle are located in the x-th row, vertices b, a in the a/(x\b)-th row. Since
LzL

−1
x = (LxL

−1
z )−1, the permutation LxL

−1
z and LzL

−1
x have the same cycles

of the length 2. So, it is sufficient to calculate LxL
−1
z for x < z only.

Example 4. The quasigroup presented in Example 1 has the following left
translations: L1 = (1.2.3.4.5.6.7.) and

L2 = (12.34.576.), L3 = (1354.267.), L4 = (1473256.),

L5 = (1524637.), L6 = (1642753.), L7 = (1745.236.).

Consequently,

L1L
−1
2 = (12.34.576.), L2L

−1
4 = (15.24.367.), L3L

−1
4 = (17.25643.),

L4L
−1
5 = (13.267.54.), L2L

−1
7 = (17253.46.).

In other LxL
−1
z with x < z there are no cycles of length 2.
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Below, we present cycles (a, b) and rectangles generated by these cycles:

(1, 2) : 〈1, 1, 2, 2〉, (3, 4) : 〈1, 3, 2, 4〉, (1, 5) : 〈2, 2, 4, 6〉,
(2, 4) : 〈2, 1, 4, 3〉, (1, 7) : 〈3, 4, 4, 6〉, (1, 3) : 〈4, 6, 5, 7〉,
(5, 4) : 〈4, 1, 5, 2〉, (4, 6) : 〈2, 3, 7, 7〉.

Hence, this quasigroup has eight rectangles.

Note that one pair (a, b) can determine several rectangles.

Example 5. In the quasigroup

· 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 1 4 5 6 3
3 3 4 2 6 1 5
4 4 5 6 2 3 1
5 5 6 1 3 2 4
6 6 3 5 1 4 2

the pair (1, 2) determines three rectangles: 〈1, 1, 2, 2〉, 〈3, 5, 5, 3〉, 〈4, 6, 6, 4〉.
Other rectangles are: 〈3, 3, 4, 4〉, 〈3, 3, 6, 6〉, 〈4, 4, 5, 5〉 and 〈5, 5, 6, 6〉.

6. A quasigroup (Q, ◦) is a rectangular transformation of a quasigroup (Q, ·)
if in (Q, ·) there exists a rectangle 〈a, b, c, d〉 such that

x ◦ y =


a · d if x = a, y = b,
a · b if x = c, y = b,
c · b if x = c, y = d,
c · d if x = a, y = d,
x · y in other cases.

Example 6. This quasigroup is obtained from the quasigroup given in
Example 1 as a rectangular transformation by 〈2, 3, 7, 7〉:

◦ 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7

2 2 1 6 3 7 5 4
3 3 6 5 1 4 7 2
4 4 5 2 7 6 1 3
5 5 4 7 6 2 3 1
6 6 7 1 2 3 4 5

7 7 3 4 5 1 2 6

Two rectangles 〈x, y, z, u〉 and 〈x′, y′, z′, u′〉 of a quasigroup (Q, ·) are equiv-
alent if there exists an autotopism (α, β, γ) of (Q, ·) such that α(x) = x′,
β(y) = y′, α(z) = z′ and β(u) = u′.

Theorem 7. A rectangular transformation by equivalent rectangles gives
isotopic quasigroups.
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Proof. Let (Q, ◦) and (Q, ∗) be quasigroups obtained from (Q, ·) as a rectan-
gular transformation by 〈a, b, c, d〉 and 〈α(a), β(b), α(c), β(d)〉, where (α, β, γ)
is an autotopy of a quasigroup (Q, ·). Then γ(a ◦ b) = γ(a · d) = α(a) · β(d) =
α(a) ∗ β(b). Analogously, γ(a ◦ d) = α(a) ∗ β(d), γ(c ◦ b) = α(c) ∗ β(b) and
γ(c ◦ d) = α(c) ∗ β(d). In other cases, x ◦ y = x · y = x ∗ y. So, quasigroups
(Q, ◦) and (Q, ∗) are isotopic. �

Example 8. Applying the condition γLiβ
−1 = Lα(i), i = 1, 2 . . . , 7, to the

quasigroup defined in Example 1, after long computations, we can see that this
quasigroup has only one non-trival autotopism. It has the form (α, β, γ), where
α = (15.24.37.6.), β = (12.36.47.5.), γ = (14.25.67.3.). Thus, the rectangle
〈1, 1, 2, 2〉 is equivalent to the rectangle 〈α(1), β(1), α(2), β(2)〉 = 〈5, 2, 4, 1〉 =
〈4, 1, 5, 2〉. Also, rectangles 〈1, 3, 2, 4〉 and 〈4, 6, 5, 7〉, 〈2, 1, 4, 3〉 and 〈2, 2, 4, 6〉,
〈3, 4, 4, 6〉 and 〈2, 3, 7, 7〉 are pairwise equivalent. So, the quasigroup defined
in Example 1 has four non-equivalent rectangles. Thus, by rectangular trans-
formations, from this quasigroup we obtain four non-isotopic quasigroups.

Observe that by the converse rectrangular tansformations we obtain the
same quasigroup. So, by the rectangular transformation from two non-isotopic
quasigroups, we can obtain isotopic quasigroups. Hence, the converse of The-
orem 7 is not true.

Finally, notice that many other methods of constructing quasigroups from
the given quasigroup are known. All of these methods require changing more
items in the corresponding latin square. For example, in [5], the method of
construction of D-loops from a given IP -loop is presented. In [11], for the
construction of new quasigroups, it is used the so-called gisotopism. In turn,
in [4], it was shown how to obtain a quasigroup with n + 1 elements from a
quasigroup with n elements. This method requires changing n items in the
initial latin squares. So our method is a method that requires changing the
smallest number of elements.
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