CLASSIFICATION OF RATIONAL HOMOTOPY TYPE FOR 10-COHOMOLOGICAL DIMENSION ELLIPTIC SPACES

SALOUA CHOUINGOU and MOHAMED RACHID HILALI

Abstract

The purpose of this paper is to give a classification of the rational homotopy type for any simply connected and elliptic space whose cohomological dimension is equal to 10 . This classification treats two cases, according to whether the homotopic Euler characteristic is vanishing or not. MSC 2010. Primary: 55P62, 55P15; Secondary: 55P10, 55Q05, 55Q52. Key words. Elliptic spaces, Poincaré duality, rational homotopy theory, rationalisation, Sullivan minimal model.

1. INTRODUCTION

Rational homotopy theory started with the work of D. Quillen and D. Sullivan in the late 1960: it allows to describe what is called the rational homotopy type of a topological space lossless into algebra. This specific feature contributes to the strength and the elegance of the theory. In fact, the starting idea in the rational homotopy theory is to tensor the homotopy groups:

$$
\Pi_{k}(X) \otimes \mathbb{Q}=\mathbb{Q}^{n_{k}}
$$

and consider only the so called rational spaces generally denoted $X_{\mathbb{Q}}$ verifying the particular condition requiring that both $\Pi_{*}\left(X_{\mathbb{Q}}\right)$ and $H^{*}\left(X_{\mathbb{Q}} ; \mathbb{Q}\right)$ are \mathbb{Q} vector spaces. One of the well-known results is that any simply connected space can be modeled up to homotopy equivalence by a rational CW-complex as follows:

$$
\begin{array}{r}
\Pi_{*}(X) \otimes \mathbb{Q} \cong \Pi_{*}\left(X_{\mathbb{Q}}\right) \text { as vector spaces } \\
H^{*}(X ; \mathbb{Q}) \cong H^{*}\left(X_{\mathbb{Q}} ; \mathbb{Q}\right) \text { as algebras. }
\end{array}
$$

The rationalisation $X_{\mathbb{Q}}$ of X all have the same weak homotopy type, which depends only on the weak homotopy type of X, named the rational homotopy type of X.

For a detailed discussion we refer the reader to (see [5, 7, 9, 10, 14]), where the classification of the rational homotopy type for any simply connected elliptic space whose cohomological dimension varies from 1 to 9 is developed.

[^0]Our goal is to extend this classification to the case of simply connected elliptic spaces whose cohomological dimension is equal to 10 , which has never been studied before by means of particular tools involving the homotopic Euler characteristic.

Our main results are:
ThEOREM 1.1. If X is a simply connected elliptic space such that dim $H^{*}(X ; \mathbb{Q})=10$ with $\chi_{\pi}(X)=0$, then its rational homotopy type is given by the following table:

$H^{*}(X ; \mathbb{Q}) \cong$	$(\Lambda V, d) \cong$	$X \simeq \mathbb{Q}$
$\mathbb{Q}[x] /\left(x^{10}\right)$	$(\Lambda(x, y), d)$ with $d x=0, d y=x^{10}$	$\mathbb{S}_{(9)}^{n}$
$\mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1}^{2}, x_{2}^{5}\right)$	$\begin{aligned} & \left(\Lambda\left(x_{1}, x_{2}, y_{1}, y_{2}\right), d\right) \text { with } d x_{1}=d x_{2}=0, \\ & d y_{1}=x_{1}^{2}, d y_{2}=x_{2}^{5} \end{aligned}$	$\mathbb{S}^{n} \times \mathbb{S}_{(4)}^{m}$
$\mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1} x_{2}, \gamma_{1} x_{1}^{5}+\gamma_{2} x_{2}^{5}\right)$	$\begin{aligned} & \left(\Lambda\left(x_{1}, x_{2}, y_{1}, y_{2}\right), d\right) \text { with } d x_{1}=d x_{2}=0, \\ & d y_{1}=x_{1} x_{2}, d y_{2}=\gamma_{1} x_{1}^{5}+\gamma_{2} x_{2}^{5} \end{aligned}$	$\mathbb{S}_{(5)}^{n} \# \mathbb{S}_{(5)}^{n}$
$\mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1} x_{2}, x_{2}^{4}+\lambda x_{1}^{6}\right)$	$\begin{aligned} & \left(\Lambda\left(x_{1}, x_{2}, y_{1}, y_{2}\right), d\right) \text { with } d x_{1}=d x_{2}=0 \\ & \mathrm{~d} y_{1}=x_{1} x_{2}, d y_{2}=x_{2}^{4}+\lambda x_{1}^{6} \end{aligned}$	$\mathbb{S}_{(6)}^{n} \# \mathbb{S}_{(4)}^{m}$
$\mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1} x_{2}, x_{2}^{3}+\lambda x_{1}^{7}\right)$	$\begin{aligned} & \left(\Lambda\left(x_{1}, x_{2}, y_{1}, y_{2}\right), d\right) \text { with } d x_{1}=d x_{2}=0 \\ & d y_{1}=x_{1} x_{2}, d y_{2}=x_{2}^{3}+\lambda x_{1}^{7} \end{aligned}$	$\mathbb{S}_{(7)}^{n} \# \mathbb{S}_{(3)}^{n}$
$\mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1}^{2} x_{2}, x_{2}^{3}+x_{1}^{4}\right)$	$\begin{aligned} & \left(\Lambda\left(x_{1}, x_{2}, y_{1}, y_{2}\right), \mathrm{d}\right) \text { with } d x_{1}=d x_{2}=0 \\ & d y_{1}=x_{1}^{2} x_{2}, d y_{2}=x_{2}^{3}+x_{1}^{4} \end{aligned}$	
$\mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{2}^{2}+\gamma x_{1}^{2} x_{2}, x_{1}^{5}+\lambda_{1} x_{1} x_{2}^{2}+\lambda_{2} x_{1}^{3} x_{2}\right)$	$\begin{aligned} & \left(\Lambda\left(x_{1}, x_{2}, y_{1}, y_{2}\right), d\right) \text { with } d x_{1}=d x_{2}=0 \\ & d y_{1}=x_{2}^{2}+\lambda_{1} x_{1}^{2} x_{2} \\ & d y_{2}=x_{1}^{5}+\lambda_{1} x_{1} x_{2}^{2}+\lambda_{2} x_{1}^{3} x_{2} \end{aligned}$	

Theorem 1.2. If X is a simply connected elliptic space such that $\operatorname{dim} H^{*}(X$; $\mathbb{Q})=10$ with $\chi_{\pi}(X) \neq 0$, then its rational homotopy type is given by the following table:

$H^{*}(X ; \mathbb{Q}) \cong$	$(\Lambda V, d) \cong$	$X \simeq \mathbb{Q}$
$\mathbb{Q}\left[x_{1}\right] /\left(x_{1}^{5}\right) \otimes H^{*}(\Lambda y, 0)$	$\begin{aligned} & \left(\Lambda\left(x_{1}, y_{1}, y\right), d\right) \\ & \text { with } d x_{1}=0 \\ & d y_{1}=x_{1}^{5}, d y=0 \end{aligned}$	$\mathbb{S}^{2 k+1} \times \mathbb{S}_{(4)}^{2 n}$
$\mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1} x_{2}, x_{2}^{2}+x_{1}^{3}\right) \otimes H^{*}(\Lambda y, 0)$	$\begin{aligned} & \left(\Lambda\left(x_{1}, x_{2}, y_{1}, y_{2}, y\right), d\right) \\ & \text { with } d x_{1}=0 \\ & d x_{2}=0, d y_{1}=x_{1} x_{2} \\ & d y_{2}=x_{2}^{2}+x_{1}^{3}, d y=0 \end{aligned}$	$\mathbb{S}^{2 p+1} \times \mathbb{S}_{(3)}^{n} \# \mathbb{S}_{(2)}^{m}$
$\mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1}^{3}, x_{1} x_{2}, x_{2}^{3}\right)$	$\begin{aligned} & \left(\Lambda\left(x_{1}, x_{2}, y_{1}, y_{2}, y_{3}\right), d\right) \\ & \text { with } d x_{1}=0 \\ & d x_{2}=0, d y_{1}=x_{1}^{3} \\ & d y_{2}=x_{2}^{3}, d y_{3}=x_{2} x_{1} \end{aligned}$	E with E is the total space of this fibration $\mathbb{S}^{p} \rightarrow E \rightarrow \mathbb{S}^{n} \times \mathbb{S}^{m}$

Corollary 1.3. The conjecture (H) is true for every space X simply connected elliptic such that $\operatorname{dim} H^{*}(X ; \mathbb{Q}) \leq 10$.

Corollary 1.4. Let $(\Lambda V, d)$ be a Sullivan minimal model of a simply connected elliptic space X. If $\operatorname{dim} H^{*}(X ; \mathbb{Q}) \leq 10$, then $(\Lambda V, d)$ is pure.

We have organized the content of this paper in the following way. In Section 2 we recall the necessary definitions and preliminaries concerning the Sullivan minimal model, elliptic spaces and some of their properties. In Section 3 we
establish our main results. The proof will be split into two parts, according to whether the homotopic Euler characteristic is equal to zero or not.

2. PRELIMINARIES

A minimal model is a particularly tractable kind of commutative differential graded algebra "cdga" that can be associated to any nice cdga or to any nice space. The word minimal emphasizes that, at least in many cases of interest, the model is calculable. The amazing feature of minimal models of spaces is their ability to algebraically encode all rational homotopy information about a space. This is, of course, why minimal models are important. Further details can be found in the reference [3]. We use the Sullivan minimal model of simply connected CW-complex X of finite type. It is a free graded commutative algebra ΛV, for some finite type graded vector space V, together with a differential d of degree +1 that is decomposable, i.e., d: $V^{i} \rightarrow\left(\Lambda^{2} V\right)^{i+1}$. We assume that the minimal algebra is simply connected, i.e., that the vector space V has no generators for degree lower than 2 . If $\left\{v_{1}, \ldots, v_{n}\right\}$ is a graded basis for V, then we write ΛV as $\Lambda\left(v_{1}, \ldots, v_{n}\right)$. A basis can always be chosen so that $\mathrm{d} v_{1}=0$ and $\mathrm{d} v_{i} \in \Lambda\left(v_{1}, \ldots, v_{i-1}\right)$ for $i \geq 2$. In particular, if ($\left.\Lambda V, \mathrm{~d}\right)$ is the Sullivan minimal model of X, there are isomorphisms:

$$
V \cong \Pi_{*}(X) \otimes \mathbb{Q} \text { and } H^{*}(\Lambda V ; \mathbb{Q}) \cong H^{*}(X ; \mathbb{Q})
$$

Example 2.1. The spheres \mathbb{S}^{k}.

- The minimal model of an odd sphere is $(\Lambda\{a\}, 0)$.
- The minimal model of an even sphere is $(\Lambda\{a, x\}, \mathrm{d})$ with $\mathrm{d} a=0, \mathrm{~d} x=a^{2}$.

Definition 2.2. A simply connected topological space X is called rationally elliptic if it satisfies the two conditions:

$$
\operatorname{dim} H_{*}(X ; \mathbb{Q})<\infty \text { and } \operatorname{dim} \Pi_{*}(X) \otimes \mathbb{Q}<\infty .
$$

By analogy, a minimal Sullivan algebra ($\Lambda V, \mathrm{~d}$) is elliptic if both $H(\Lambda V, \mathrm{~d})$ and V are finite dimensional. There is a remarkable sub-class of elliptic spaces called pure spaces.

Definition 2.3 (Pure space/pure Sullivan minimal model). An elliptic Sullivan minimal model $(\Lambda V, \mathrm{~d})$ is called pure, if $\mathrm{d} V^{\text {even }}=0$ and $\mathrm{d} V^{\text {odd }} \subset \Lambda V^{\text {even }}$. Also, a simply connected elliptic space X is pure if its Sullivan minimal model is pure.

Definition 2.4. An elliptic Sullivan minimal model ($\Lambda V, \mathrm{~d}$) is called hyperelliptic if $\mathrm{d} V^{\text {even }}=0$ and $\mathrm{d} V^{\text {odd }} \subset \Lambda^{+} V^{\text {even }} \otimes \Lambda V^{\text {odd }}$.

The class of elliptic spaces has a variety of very nice properties. Let us briefly sum them up:

Formal dimension, $\operatorname{fd}(X):=\max \left\{k \in \mathbb{N} / H^{k}(X ; \mathbb{Q}) \neq 0\right\}$;
Homotopical Euler characteristic, $\chi_{\Pi}(X):=\sum_{k}(-1)^{k} \operatorname{dim} \Pi_{k}(X) \otimes \mathbb{Q}$;

Cohomological Euler characteristic, $\chi_{c}(X):=\sum_{k}(-1)^{k} \operatorname{dim} H^{k}(X ; \mathbb{Q})$.
It is well known that:
Theorem 2.5 ([4, Theorem 32.10]). If X is a simply connected elliptic space, then $\chi_{\Pi} \leq 0$ and $\chi_{c} \geq 0$. Moreover, the following conditions are equivalent:
(i) $\chi_{\Pi}(X)=0$;
(ii) $\chi_{c}(X)>0$;
(iii) $H^{*}(X ; \mathbb{Q})=H^{\text {even }}(X ; \mathbb{Q})$.

Regarding Theorem 2.5, we have:
REMARK 2.6. $\operatorname{dim} V^{\text {odd }} \geq \operatorname{dim} V^{\text {even }}$ and the inequality is strict if and only if $\chi_{c}(X)=0$, hence $\operatorname{dim} H^{*}(X ; \mathbb{Q})=2 \operatorname{dim} H^{\text {even }}(X ; \mathbb{Q})$. In particular, dim $V^{\text {odd }}=\operatorname{dim} V^{\text {even }}$, when $\operatorname{dim} H^{*}(X ; \mathbb{Q})$ is odd.

Proposition 2.7. If X is a rationally elliptic space, then the following conditions are equivalent:
(i) $\chi_{c}(X)>0$;
(ii) $H^{*}(X ; \mathbb{Q})$ is the quotient of a polynomial algebra in r variables of even degree by an ideal truncated by a Borel ideal, more precisely:

$$
H^{*}(X ; \mathbb{Q})=\mathbb{Q}\left[x_{1}, \ldots, x_{r}\right] /\left(f_{1}, \ldots, f_{r}\right)
$$

where $\left\{f_{1}, \ldots, f_{r}\right\}$ is a regular sequence of graded elements in the polynomial $\operatorname{ring} \mathbb{Q}\left[x_{1}, \ldots, x_{r}\right] ;$
(iii) $\operatorname{dim} \Pi_{\text {even }}(X) \otimes \mathbb{Q}=\operatorname{dim} \Pi_{\text {odd }}(X) \otimes \mathbb{Q}$.

If these conditions hold, then:

$$
\operatorname{dim} H^{*}(X ; \mathbb{Q})=\left|f_{1}\right| \ldots\left|f_{r}\right| /\left|x_{1}\right| \ldots\left|x_{r}\right| .
$$

Moreover, (see [14]), $\left|f_{i}\right| \geq 2\left|x_{i}\right|$ and $\operatorname{dim} H^{*}(X ; \mathbb{Q}) \geq 2^{r}$.
Our proofs are essentially based on these theorems:
Theorem 2.8 ([2] and [4]). If X is a simply connected elliptic space, ($\Lambda V, d$) its minimal model and $\left(a_{i}\right)_{i}$ is a homogeneous basis of V, then:

- $\sum_{\left|a_{i}\right| \text { even }}\left|a_{i}\right| \leq f d(X)$;
- $\sum\left|a_{i}\right|$ odd $\left|a_{i}\right| \leq 2 f d(X)-1$;
- $f d(X)=\sum_{\left|a_{i}\right| \text { odd }}\left|a_{i}\right|-\sum_{\left|a_{i}\right| \text { even }}\left(\left|a_{i}\right|-1\right)$.

Theorem 2.9 ([4]). If X is a simply connected elliptic space, then $H^{*}(X ; \mathbb{Q})$ satisfies the Poincaré duality, which means that:

- $\operatorname{dim} H^{n}(X ; \mathbb{Q})=1$, where $f d(X)=n$, i.e., $H^{n}(X ; \mathbb{Q})=\mathbb{Q} \mu(\mu$ is called fundamental class of $H^{*}(X ; \mathbb{Q})$;
\bullet for any $0 \leq k \leq n$, the cup-product $H^{k}(X ; \mathbb{Q}) \times H^{n-k}(X ; \mathbb{Q}) \rightarrow H^{n}(X ; \mathbb{Q}) \cong$ \mathbb{Q} is a non-degenerate bilinear form.

In [11], James introduced the construction of reduced product of pointed spaces. If X is a topological based space, we set $X_{(1)}=X$ and

$$
X_{(p)}=X \times \ldots \times X /(\ldots, *, \ldots) \sim(*, \ldots) .
$$

Applying this for even spheres, we construct $\mathbb{S}_{(p)}^{n}$ verifying:

$$
H^{*}\left(\mathbb{S}_{(p)}^{n} ; \mathbb{Q}\right) \cong \mathbb{Q}[a] /\left(a^{p+1}\right)
$$

The notation $\mathbb{S}_{(p)}^{n}$ will be used in the rest of the text only if n is even.
We conclude this part by a conjecture given by M.R.Hilali (see [6]), which is based on the size of the rationally elliptic spaces.

Conjecture 2.10. Let X be a simply connected rationally elliptic space. Then it holds that

$$
\begin{equation*}
\operatorname{dim} H^{*}(X ; \mathbb{Q}) \geq \operatorname{dim} \Pi_{*}(X) \otimes \mathbb{Q} \tag{H}
\end{equation*}
$$

We remark that, in terms of Sullivan minimal models $(\Lambda V, d)$, this conjecture can be stated equivalently as

$$
\operatorname{dim} H^{*}(\Lambda V, d) \geq \operatorname{dim} V
$$

In the remainder of the paper, X is an elliptic rational and simply connected finite cell complex, $(\Lambda V, \mathrm{~d})$ its minimal model and μ its fundamental class. We also denote by $|v|$ the degree of v. The main tool we shall use is the Sullivan minimal model.

3. CLASSIFICATION

Consider $\operatorname{dim} H^{*}(X ; \mathbb{Q})=10$ and let $B=\left\{1, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}, \alpha_{7}, \alpha_{8}, \mu\right\}$ be a basis of $H^{*}(X ; \mathbb{Q})$ ordered in an increasing degree. We will divide the proof in two parts; in the first one, we will discuss the case when $\chi_{\Pi}(X)=0$, then we will suppose $\chi_{\pi}(X) \neq 0$.

We are now ready to proceed with the proof of Theorem 1.1.

3.1. PROOF OF THEOREM 1.1

We discuss this case according to the number of generators n and the ideal is generated by n polynomials f_{i} for $1 \leq i \leq n$. Since $\operatorname{dim} H^{*}(X ; \mathbb{Q})=$ $\prod_{i=1}^{i=n}\left|f_{i}\right| / \prod_{i=1}^{i=n}\left|x_{i}\right| \geq 2^{n}$ and $\operatorname{dim} H^{*}(X ; \mathbb{Q})=10, n \in\{1,2,3\}$.

- If $\boldsymbol{n}=\mathbf{1}$, then $H^{*}(X ; \mathbb{Q})=\mathbb{Q}[x] /\left(x^{10}\right)$ which implies

$$
X \sim_{\mathbb{Q}} \mathbb{S}_{(9)}^{m} \text { with } \mathrm{fd}(X)=9 m
$$

- If $\boldsymbol{n}=\mathbf{2}$, then $H^{*}(X ; \mathbb{Q})=\mathbb{Q}\left[x_{1}, x_{2}\right] /\left(f_{1}, f_{2}\right)$, where $\left(f_{1}, f_{2}\right) \in \mathbb{Q}\left[x_{1}, x_{2}\right]$, and we consider firstly the case $\left|x_{1}\right|<\left|x_{2}\right|$.
i) Assume that $\left|f_{1}\right|$ is an integer multiple of $\left|x_{2}\right|$, so $\left|f_{1}\right|=k\left|x_{2}\right|$ for some integer $k \geq 1$. From the relation $\frac{\left|f_{1}\right|\left|f_{2}\right|}{\left|x_{1}\right|\left|x_{2}\right|}=10$, we have $2\left|x_{2}\right| \leq\left|f_{2}\right|=\frac{10}{k}\left|x_{1}\right|<$ $\frac{10}{k}\left|x_{2}\right|$ and we automatically get $k \leq 5$.

Let us start by supposing $k=1$; then $\left|f_{1}\right|=\left|x_{2}\right|$ and $\left|f_{2}\right|=10\left|x_{1}\right|$, thus $f_{1}=x_{1}^{m}$ for $m \geq 2$; by the dimension formula, we get $2\left|x_{2}\right| \leq\left|f_{2}\right|=\frac{10}{m}\left|x_{2}\right|$, so $m \in\{2,3,4,5\}$. If $m=2$, then $\left|f_{1}\right|=2\left|x_{1}\right|=\left|x_{2}\right|$ and $\left|f_{2}\right|=10\left|x_{1}\right|=5\left|x_{2}\right|$, thus $\left(f_{1}, f_{2}\right)=\left(x_{1}^{2}, \sum \lambda_{i j} x_{1}^{i} x_{2}^{j}\right)$ with $i\left|x_{1}\right|+j\left|x_{2}\right|=10\left|x_{1}\right|$, then $i+2 j=10$,
which gives $f_{2}=x_{2}^{5}+\lambda_{1} x_{1}^{10}+\lambda_{2} x_{1}^{8} x_{2}+\lambda_{3} x_{1}^{6} x_{2}^{2}+\lambda_{4} x_{1}^{4} x_{2}^{3}+\lambda_{5} x_{1}^{2} x_{2}^{4}$ for some $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5} \in \mathbb{Q}$. Since $f_{2}-x_{2}^{5}=f_{3} \in\left\langle f_{1}\right\rangle$, by this change of variable, we get $\left(f_{1}, f_{2}-f_{3}\right)=\left(x_{1}^{2}, x_{2}^{5}\right)$. Therefore,

$$
H^{*}(X ; \mathbb{Q})=\mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1}^{2}, x_{2}^{5}\right), \text { in particular, } X \sim_{\mathbb{Q}} \mathbb{S}^{k} \times \mathbb{S}_{(4)}^{m} .
$$

If $m=3$ or 4 , we choose for example $m=3$, we obtain $\left|f_{1}\right|=3\left|x_{1}\right|=\left|x_{2}\right|$ and $\left|f_{2}\right|=10\left|x_{1}\right|=\frac{10}{3}\left|x_{2}\right|$, which implies $\left|f_{1}\right|$ is an integer multiple of $\left|x_{2}\right|$, but $\left|f_{1}\right|=\left|x_{2}\right|$, then $\operatorname{dim} \mathbb{Q}\left[x_{1}, x_{2}\right] /\left(f_{1}, f_{2}\right)=\infty\left(\right.$ because $\left.\left[x_{2}^{m}\right] \neq 0 \forall m\right)$, so it is impossible. The same thing goes for $m=4$. If $m=5$, we get $\left|f_{2}\right|=$ $10\left|x_{1}\right|=2\left|x_{2}\right|$, so $\left(f_{1}, f_{2}\right)=\left(x_{1}^{5}, \sum \lambda_{i j} x_{1}^{i} x_{2}^{j}\right)$ with $i+5 j=10$, hence $f_{2}=$ $x_{2}^{2}+\lambda_{1} x_{1}^{5} x_{2}+\lambda_{2} x_{1}^{10}$ for some $\lambda_{1}, \lambda_{2} \in \mathbb{Q}$. Since $f_{2}-x_{2}^{2}=f_{3} \in\left\langle f_{1}\right\rangle$, by the variable change, we get $\left(f_{1}, f_{2}-f_{3}\right)=\left(x_{1}^{5}, x_{2}^{2}\right)$. So,

$$
H^{*}(X ; \mathbb{Q})=\mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1}^{5}, x_{2}^{2}\right) .
$$

If $k=2$, we have $\left|f_{1}\right|=2\left|x_{2}\right|$ and $\left|f_{2}\right|=5\left|x_{1}\right|$, since $\left|f_{1}\right| \leq\left|f_{2}\right|$ so $\left|x_{1}\right|+\left|x_{2}\right|<$ $2\left|x_{2}\right| \leq 5\left|x_{1}\right|$, then $f_{1}=x_{2}^{2}+\sum \lambda_{i j} x_{1}^{i} x_{2}^{j}$ with $i\left|x_{1}\right|+j\left|x_{2}\right|=2\left|x_{2}\right|$, it is obvious that $j=1$ and $i\left|x_{1}\right|=\left|x_{2}\right|$ for $i \geq 2$. Supposing that $i \geq 3$ leads us to a contradiction, because $5\left|x_{1}\right| \geq 2\left|x_{2}\right| \geq 6\left|x_{1}\right|$, hence $i=2$, i.e., $f_{1}=x_{2}^{2}+\lambda_{1} x_{1}^{2} x_{2}$. Similarly, we have $f_{2}=x_{1}^{5}+\sum \lambda_{i j} x_{1}^{i} x_{2}^{j}$ with $i\left|x_{1}\right|+j\left|x_{2}\right|=5\left|x_{1}\right|$ so $i+2 j=5$, then $f_{2}=x_{1}^{5}+\gamma_{1} x_{1} x_{2}^{2}+\gamma_{2} x_{1}^{3} x_{2}$ for some $\lambda_{1}, \gamma_{1}, \gamma_{2} \in \mathbb{Q}$. We conclude

$$
H^{*}(X ; \mathbb{Q})=\mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{2}^{2}+\lambda_{1} x_{1}^{2} x_{2}, x_{1}^{5}+\gamma_{1} x_{1} x_{2}^{2}+\gamma_{2} x_{1}^{3} x_{2}\right) .
$$

If $k=3$, then $\left|f_{1}\right|=3\left|x_{2}\right|$ and $\left|f_{2}\right|=\frac{10}{3}\left|x_{1}\right|$, so $f_{2} \in\left(x_{2}\right)$ and $\left|f_{1}\right|$ is an integer multiple of $\left|x_{1}\right|$, but $2\left|x_{1}\right| \leq\left|f_{1}\right|=3\left|x_{2}\right| \leq \frac{10}{3}\left|x_{1}\right|$, thus, if $\left|f_{1}\right|=2\left|x_{1}\right|$ and $\left|f_{1}\right|=3\left|x_{2}\right|$, we get $\left|x_{1}\right|>\left|x_{2}\right|$, and, if $\left|f_{1}\right|=3\left|x_{1}\right|$, we get $\left|x_{1}\right|=\left|x_{2}\right|$, which contradicts the hypothesis $\left|x_{1}\right|<\left|x_{2}\right|$. The same justification applies if we suppose $k=4$.

If $k=5$, then $\left|f_{1}\right|=5\left|x_{2}\right|$ and $\left|f_{2}\right|=2\left|x_{1}\right|$, which implies $\left|f_{1}\right|>\left|f_{2}\right|$, because $\left|x_{1}\right|<\left|x_{2}\right|$, so it is impossible.
ii) Assume that $\left|f_{1}\right|$ is an integer multiple of $\left|x_{1}\right|$ and not of $\left|x_{2}\right|$, i.e., $\left|f_{1}\right|=k\left|x_{1}\right|$ for $k \geq 2$, we will obtain $\left|f_{2}\right|=\frac{10}{k}\left|x_{2}\right| \geq 2\left|x_{2}\right|$ so $k \in\{2,3,4,5\}$.

If $k=2$, then $f_{1}=x_{1}^{2}$ and $\left|f_{2}\right|=5\left|x_{2}\right|$, thus $f_{2}=x_{2}^{5}+\sum \lambda_{i j} x_{1}^{i} x_{2}^{j}=$ $x_{2}^{5}+\lambda_{1} x_{1}^{k_{1}} x_{2}+\lambda_{2} x_{1}^{k_{2}} x_{2}^{2}+\lambda_{3} x_{1}^{k_{3}} x_{2}^{3}+\lambda_{4} x_{1}^{k_{4}} x_{2}^{4}$ with $k_{1}>k_{2}>k_{3}>k_{4}>1$ and $k_{i}\left|x_{1}\right|+j\left|x_{2}\right|=5\left|x_{2}\right|$ for $1 \leq j \leq 4$. By a simple computation, we show that $k_{1}>4, k_{2}>3, k_{3}>2$ and $k>1$, then $f_{2}-x_{2}^{5}=f_{3} \in\left\langle f_{1}\right\rangle$. Finally,

$$
H^{*}(X ; \mathbb{Q})=\mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1}^{2}, x_{2}^{5}\right) .
$$

The case $k=3$ or 4 is impossible, because, if we take as an example $k=3$, then $\left|f_{1}\right|=3\left|x_{1}\right|$ and $\left|f_{2}\right|=\frac{10}{3}\left|x_{2}\right|$, so certainly $f_{2} \in\left(x_{1}\right)$ and $\left|f_{1}\right|$ is an integer multiple of $\left|x_{2}\right|$, which conflicts the assumption. If $k=5$, then $\left|f_{1}\right|=5\left|x_{1}\right|$
and $\left|f_{2}\right|=2\left|x_{2}\right|$. As $\left|f_{1}\right| \leq\left|f_{2}\right|$, automatically leads to $5\left|x_{1}\right|<2\left|x_{2}\right|$. Thus, $\left(f_{1}, f_{2}\right)=\left(x_{1}^{5}, x_{2}^{2}\right)$, so

$$
H^{*}(X ; \mathbb{Q})=\mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1}^{5}, x_{2}^{2}\right) .
$$

iii) Suppose $\left|f_{1}\right|$ is neither an integer multiple of $\left|x_{1}\right|$ nor of $\left|x_{2}\right|$; then $f_{1} \in\left(x_{1}\right) \cap\left(x_{2}\right)$ and f_{2} contains a non zero multiple of x_{1} and x_{2}, thus $\left|f_{2}\right|=k_{1}\left|x_{1}\right|=k_{2}\left|x_{2}\right|$ for $k_{1}>k_{2} \geq 2$. In this case, we obtain $k_{2}=3$ or $k_{2}=4$, because, if $k_{2} \geq 6$, then $\left|f_{1}\right|=\frac{10}{6}\left|x_{1}\right|<2\left|x_{1}\right|$, which is impossible, since $\left|f_{1}\right| \geq 2\left|x_{1}\right|$. Also, if $k_{2}=2$ or $k_{2}=5$, then $\left|f_{1}\right|$ is an integer multiple of $\left|x_{1}\right|$, which contradicts our hypothesis. But, if $k_{2}=3$, then $\left|f_{2}\right|=3\left|x_{2}\right|=k_{1}\left|x_{1}\right|$ and we have $\left|f_{1}\right| \geq\left|x_{1}\right|+\left|x_{2}\right| \geq\left(1+\frac{k_{1}}{3}\right)\left|x_{1}\right|$, as a result $4 \leq k_{1} \leq 8$ (if not, we get $\left|f_{2}\right| \leq \frac{10}{4}\left|x_{2}\right|$ but $\left.\left|f_{2}\right|=3\left|x_{2}\right|\right)$. We can easily show that the only possible cases are when $k_{1}=4$ and $k_{1}=7$, so we suppose $k_{1}=4$; then $\left|f_{2}\right|=3\left|x_{2}\right|=4\left|x_{1}\right|$ and $\left|f_{1}\right|=\frac{10}{3}\left|x_{1}\right|=\frac{10}{4}\left|x_{2}\right|$ with $f_{1}=\sum \lambda_{i j} x_{1}^{i} x_{2}^{j}$, hence $i\left|x_{1}\right|+j\left|x_{2}\right|=\frac{10}{3}\left|x_{1}\right|$, which gives $3 i+4 j=10$. Therefore, we must have $(i, j)=(2,1)$, so $\left(f_{1}, f_{2}\right)=\left(x_{1}^{2} x_{2}, x_{1}^{4}+\lambda x_{2}^{3}\right), \lambda \in \mathbb{Q}^{*}$. In particular

$$
H^{*}(X ; \mathbb{Q})=\mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1}^{2} x_{2}, x_{1}^{4}+\lambda x_{2}^{3}\right) .
$$

Moreover, if $k_{1}=7$ we get $\left|f_{2}\right|=3\left|x_{2}\right|=7\left|x_{1}\right|$ and $\left|f_{1}\right|=\frac{10}{3}\left|x_{1}\right|=\frac{10}{7}\left|x_{2}\right|$ with $f_{1}=\sum \lambda_{i j} x_{1}^{i} x_{2}^{j}$, hence $i\left|x_{1}\right|+j\left|x_{2}\right|=\frac{10}{7}\left|x_{1}\right|$, which gives $3 i+7 j=10$. We necessarily obtain $(i, j)=(1,1)$, so $\left(f_{1}, f_{2}\right)=\left(x_{1} x_{2}, x_{1}^{7}+\lambda x_{2}^{3}\right), \lambda \in \mathbb{Q}^{*}$. Then

$$
H^{*}(X ; \mathbb{Q})=\mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1} x_{2}, x_{1}^{7}+\lambda x_{2}^{3}\right) .
$$

Finally, if $k_{2}=4$ then $\left|f_{2}\right|=4\left|x_{2}\right|=k_{1}\left|x_{1}\right|$ for $k_{1}>4$, by the formula of dimension, we have $\frac{10}{4} \geq\left(1+\frac{k_{1}}{3}\right)$, thus $4<k_{1} \leq 6$, if $k_{1}=5$, hence $\left|f_{1}\right|$ is an integer multiple of $\left|x_{2}\right|$, contradiction. Then $k_{1}=6$ so $\left|f_{2}\right|=4\left|x_{2}\right|=6\left|x_{1}\right|$ and $\left|f_{1}\right|=\frac{10}{4}\left|x_{1}\right|=\frac{10}{6}\left|x_{2}\right|$ with $f_{1}=\sum \lambda_{i j} x_{1}^{i} x_{2}^{j}$, hence $i\left|x_{1}\right|+j\left|x_{2}\right|=\frac{10}{4}\left|x_{1}\right|$ which gives $2 i+3 j=5$, thus necessarily $(i, j)=(1,1)$, so $\left(f_{1}, f_{2}\right)=\left(x_{1} x_{2}, x_{1}^{6}+\gamma x_{2}^{4}\right)$, $\gamma \in \mathbb{Q}^{*}$. Therefore

$$
H^{*}(X ; \mathbb{Q})=\mathbb{Q}\left[x_{1}, x_{2}\right] /\left(x_{1} x_{2}, x_{1}^{6}+\gamma x_{2}^{4}\right) .
$$

We consider now $\left|x_{1}\right|=\left|x_{2}\right|$. Then f_{1} and f_{2} are homogeneous polynomials of the second and fifth degrees respectively. Using ([14, Lemma 3.1]), we say that $f_{1}=x_{1}^{2}-a x_{2}^{2}$ for $a>0$ and $a^{\frac{1}{2}} \in \mathbb{Q}$, as well $f_{2}=x_{1}^{5}+\sum \lambda_{i j} x_{i} x_{j}$ with $i\left|x_{1}\right|+j\left|x_{2}\right|=5\left|x_{1}\right|=5\left|x_{2}\right|$. So, by using f_{1}, we obtain $\left(f_{1}, f_{2}\right)=$ $\left(x_{1}^{2}-a x_{2}^{2}, x_{1}^{5}+b x_{1}^{4} x_{2}\right)$. Then we get the system

$$
\left\{\begin{array}{c}
x_{1}^{2}-a x_{2}^{2}=0 \\
x_{1}^{5}+b x_{1}^{4} x_{2}=0
\end{array} .\right.
$$

Using the following variables changes $x_{1}^{\prime}=x_{1}+\alpha x_{2}$ and $x_{2}^{\prime}=x_{1}-\alpha x_{2}$ for $\alpha=a^{\frac{1}{2}}$, the system can be further simplified into $\left\{\begin{array}{c}x_{1}^{\prime} x_{2}^{\prime}=0 \\ \lambda_{1} x_{1}^{\prime 5}+\lambda_{2} x_{2}^{\prime 5}=0\end{array}\right.$. Then $H^{*}(X ; \mathbb{Q})=\mathbb{Q}\left[x_{1}^{\prime}, x_{2}^{\prime}\right] /\left(x_{1}^{\prime} x_{2}^{\prime}, \lambda_{1} x_{1}^{\prime 5}+\lambda_{2} x_{2}^{\prime 5}\right)$, consequently $X \sim_{\mathbb{Q}} \mathbb{S}_{(5)}^{n} \# \mathbb{S}_{(5)}^{n}$.

- If $\boldsymbol{n}=\mathbf{3}$, then in this case we have $H^{*}(X ; \mathbb{Q})=\mathbb{Q}\left[x_{1}, x_{2}, x_{3}\right] /\left(f_{1}, f_{2}, f_{3}\right)$. Let us define two spaces V_{0} and V_{1} as follows:

$$
\begin{aligned}
& V_{0}=\mathbb{Q}\left\{1, x_{1}, x_{2}, x_{3}\right\} /\left(f_{1}, f_{2}, f_{3}\right) \\
& V_{1}=\mathbb{Q}\left\{x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}\right\} /\left(f_{1}, f_{2}, f_{3}\right)
\end{aligned}
$$

So $\operatorname{dim} V_{0}=4$ and $\operatorname{dim} V_{1} \geq 3$. If $f_{i} \notin V_{1}$ for $i \in\{1,2,3\}$, then $\operatorname{dim} V_{1}=6$, but $\operatorname{dim} H^{*}(\Lambda V, \mathrm{~d}) \geq \operatorname{dim}\left(V_{0} \oplus V_{1} \oplus \mathbb{Q}\{\mu\}\right) \geq 11$, which contradicts the fact that $\operatorname{dim} H^{*}(\Lambda V, \mathrm{~d})=10$. So we suppose for example $f_{1} \in V_{1}$; then $f_{1}=$ $\sum_{1 \leq} \lambda_{i j} x_{1}^{i} x_{2}^{j}$, if $\mathbb{Q} \mu \cap V_{1}^{2}=\varnothing$ and it follows from duality of Poincaré that there is a space V_{1}^{\prime} such that $\operatorname{dim} V_{1}=\operatorname{dim} V_{1}^{\prime}$ and $V_{1} V_{1}^{\prime}=\mathbb{Q} \mu$, but $\operatorname{dim} V_{1} \geq 3$. Hence

$$
\operatorname{dim} H^{*}(\Lambda V, \mathrm{~d}) \geq \operatorname{dim}\left(V_{0} \oplus V_{1} \oplus V_{1}^{\prime} \oplus \mathbb{Q}\{\mu\}\right) \geq 11
$$

This leads to a contradiction; then $V_{1}^{2}=\mathbb{Q} \mu$, thus automatically $\exists i \in[1,3]$ such that $x_{i}^{2} x_{j} \neq 0$. So there is a space V_{0}^{\prime} such that $\operatorname{dim} V_{0}^{\prime}=\operatorname{dim} V$ and $V_{0}^{\prime} V_{0}=\mathbb{Q} \mu$; furthermore, $\operatorname{dim} H^{*}(\Lambda V, \mathrm{~d}) \geq \operatorname{dim}\left(V_{0} \oplus V_{0}^{\prime} \oplus V_{1}\right) \geq 11$, which contradicts our assumption.

3.2. PROOF OF THEOREM 1.2

In order to study this case we first need to prove several lemmas and propositions.

Proposition 3.1. If $\operatorname{dimH} H^{*}(X ; \mathbb{Q})=10$ with $\chi_{\pi}(X) \neq 0$, then $f d(X)$ is odd.

Proof. Suppose that $\mathrm{fd}(X)$ is even; from the Poincaré duality we have:

$$
\chi_{c}(X)=1+(-1)^{\mathrm{fd}(X)}+\sum_{i=1}^{4} 2(-1)^{\left|\alpha_{i}\right|}=2+\sum_{i=1}^{4} 2(-1)^{\left|\alpha_{i}\right|}
$$

Thus, $\chi_{c}(X) \neq 0$, which contradicts the assumption, because $\chi_{\pi}(X) \neq 0$.
Lemma 3.2. If $B=\left\{1, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}, \alpha_{7}, \alpha_{8}, \mu\right\}$ is a basis of $H^{*}(X ; \mathbb{Q})$, then $\left|\alpha_{4}\right|<\left|\alpha_{5}\right|$.

Proof. Suppose $\left|\alpha_{4}\right|=\left|\alpha_{5}\right|$; from the Poincaré duality, we have $\mu=\alpha_{4} \alpha_{5}$ then $\operatorname{fd}(X)=\left|\alpha_{4}\right|+\left|\alpha_{5}\right|=2\left|\alpha_{4}\right|$. It is impossible, because $\mathrm{fd}(X)$ is odd.

According to the duality of Poincaré, the only possible cases are:
First case: $\left|\alpha_{1}\right|=\left|\alpha_{2}\right|=\left|\alpha_{3}\right|=\left|\alpha_{4}\right|<\left|\alpha_{5}\right|=\left|\alpha_{6}\right|=\left|\alpha_{7}\right|=\left|\alpha_{8}\right|$
Here necessarily $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ are generators of $H^{*}(X ; \mathbb{Q})$.

If $\left|\alpha_{1}\right|$ is odd, then $\left|\alpha_{5}\right|$ is even. Let $(\Lambda V, \mathrm{~d})=\left(\Lambda\left(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{n+p}\right), \mathrm{d}\right)$ be the Sullivan minimal model of X. Put $\alpha_{i}=\left[y_{i}\right]$ for $i \in\{1, \ldots, 4\}$ and $W=\left\{\left[y_{i} y_{j}\right]\right.$ for $\left.1 \leq i<j \leq 4\right\} \subset H^{\text {even }}(X ; \mathbb{Q})$; so $\operatorname{dim} W \leq 4$, and thus there exist at least two generators $z_{1}, z_{2} \in V^{\text {odd }}$ such that $\mathrm{d} z_{i} \in W$. Consequently $\operatorname{dim} W=0$, otherwise we have $\operatorname{fd}(X)=3\left|y_{1}\right|$, and

$$
\begin{aligned}
\sum_{a_{i} \in V^{\text {odd }}}\left|a_{i}\right| & \geq \sum_{i=1}^{4}\left|y_{i}\right|+\left|z_{1}\right|+\left|z_{2}\right|=4\left|y_{1}\right|+2\left|y_{1}\right|+2\left|y_{1}\right|-2 \\
& \geq 8\left|y_{1}\right|-2>2 \mathrm{fd}(X)-1, \text { impossible. }
\end{aligned}
$$

Then $\operatorname{dim} W=0$, which implies $\left[y_{i} y_{j}\right]=0$ for $1 \leq i<j \leq 4$. Hence there exist $z_{i j} \in V^{\text {odd }}$ such that $\mathrm{d} z_{i j}=y_{i} y_{j}$ for $1 \leq i<j \leq 4$. As $\mathrm{d}\left(y_{i} z_{i j}\right)=\mathrm{d}\left(y_{j} z_{i j}\right)=0$, we put $W_{1}=\left\{\left[y_{k} z_{i j}\right]\right.$, for $1 \leq i<j \leq 4$ and $k=i$ or $\left.j\right\}$. Hence $\operatorname{dim} W_{1}=0$, if not, we have $\mathrm{fd}(X)=4\left|y_{1}\right|-1$, and

$$
\begin{aligned}
\sum_{a_{i} \in V^{\text {odd }}}\left|a_{i}\right| & \geq 4\left|y_{1}\right|+4\left|y_{1}\right|-1+\sum\left|z_{i j}\right| \\
& \geq 8\left|y_{1}\right|-1+\sum\left|z_{i j}\right|>2 \mathrm{fd}(X)-1
\end{aligned}
$$

This is impossible. If we continue this process, we will find an infinity of generators and cocycles, which contradicts the fact that X is elliptic.

If $\left|\alpha_{1}\right|$ is even, then $\left|\alpha_{5}\right|$ is odd, so there exist $x_{1}, x_{2}, x_{3}, x_{4}$ generators of even degree such that $\mathrm{d} x_{i}=0$ and $\alpha_{i}=\left[x_{i}\right]$ for $1 \leq i \leq 4$. It is clear that α_{k} does not come from any generator of ($\Lambda V, \mathrm{~d}$) (for $k \in\{5, \ldots, 8\}$), and thus, by degree reasons, we have $\left[x_{i} x_{j}\right]=0$, so $\exists y_{i j} \in V^{\text {odd }} / \mathrm{d} y_{i j}=x_{i} x_{j}$ for $1 \leq i, j \leq 4$. Therefore, we put $W_{1}=\left\{\left[x_{k} y_{i j}-x_{j} y_{i k}\right] / 1 \leq i, j, k \leq 4\right\}$. Note that $W_{1} \subset H^{\text {odd }}(X ; \mathbb{Q})$. We can easily show that $W_{1}=\varnothing$, otherwise $\exists i_{0}, j_{0}, k_{0} \in\{1, \ldots, 4\}$ such that $\alpha_{k}=\left[x_{k_{0}} y_{i_{0} j_{0}}-x_{j_{0}} y_{i_{0} k_{0}}\right]$ for $k \in\{5, \ldots, 8\}$ so $\operatorname{fd}(X)=4\left|x_{1}\right|-1$. Hence

$$
\sum_{a_{i} \in V^{\text {odd }}}\left|a_{i}\right| \geq 10\left|y_{1}\right|=20\left|x_{1}\right|-10>2 \mathrm{fd}(X)-1
$$

Since $\operatorname{dim} W_{1}=0$ we will get other generators of even degree of ($\Lambda V, \mathrm{~d}$). Following the same approach as above, we get an infinity of generators, thus $\operatorname{dim} V=\infty$, which is impossible.

$$
\text { Second case: }\left|\alpha_{1}\right|=\left|\alpha_{2}\right|<\left|\alpha_{3}\right|=\left|\alpha_{4}\right|<\left|\alpha_{5}\right|=\left|\alpha_{6}\right|<\left|\alpha_{7}\right|=\left|\alpha_{8}\right|
$$

In this case $H^{*}(X ; \mathbb{Q})$ is necessarily generated by α_{1} and α_{2}, we therefore have several cases to discuss:
(1) If $\left|\alpha_{1}\right|$ is odd, we put $\alpha_{1}=\left[y_{1}\right]$ and $\alpha_{2}=\left[y_{2}\right]$, where y_{1} and y_{2} are two odd generators,, then, from the assumption, we have $\left|y_{1}\right|=\left|y_{2}\right|$. If $\left|\alpha_{3}\right|$ is even and $\alpha_{1} \alpha_{2}=0$, then there exist two even generators x_{1} and x_{2} such that $\alpha_{3}=\left[x_{1}\right]$ and $\alpha_{4}=\left[x_{2}\right]$. Moreover, $\exists y_{3} \in V^{\text {odd }} / \mathrm{d} y_{3}=y_{1} y_{2}$. Therefore $Z^{\text {homogène }}(\Lambda V, \mathrm{~d})=\left\{x_{i}^{n} ; y_{i} ; y_{1} y_{2} ; x_{i}^{n} y_{i}, y_{i} y_{3}\right.$ for $\left.1 \leq i, j \leq 2\right\}$.

Lemma 3.3. $\left\{\alpha_{i}\right\}_{i \in\{5,6,7,8\}}$ does not come from any generator of $(\Lambda V, d)$.

Proof. By degree reasons, $\left|\alpha_{7}\right|$ and $\left|\alpha_{8}\right|$ are even, so we can suppose for example $\alpha_{7}=\left[x_{3}\right]$ with x_{3} is an even generator. Then $\mathrm{fd}(X)=\left|y_{1}\right|+\left|x_{3}\right|$, but $\sum_{x_{i} \in V^{\text {even }}}\left|x_{i}\right| \geq\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{3}\right|>\left|y_{1}\right|+\left|x_{3}\right|=\mathrm{fd}(X)$ (impossible). By the same argument, if $\exists y \in V^{\text {odd }} / \alpha_{5}=[y]$ and $\mathrm{d} y=0$, then $\mathrm{fd}(X)=\left|x_{1}\right|+|y|$. But $\left[y_{i} y\right]=0$ for $1 \leq i \leq 2$ (if not, we obtain $\mu=\left[y_{1} y_{2} y\right]=\left[\mathrm{d}\left(y y_{3}\right)\right]=0$, this is absurd). Then $\exists z_{i} \in V^{\text {odd }} / \mathrm{d} z_{i}=y_{i} y$ for $i=1,2$ and $\exists y_{3} \in V^{\text {odd }} /\left|y_{3}\right|$ $\geq 2\left|x_{1}\right|-1$. Therefore

$$
\begin{aligned}
\sum_{a_{i} \in V_{\text {odd }}}\left|y_{i}\right| & \geq\left|y_{1}\right|+\left|y_{2}\right|+\left|y_{3}\right|+|y|+2\left|z_{1}\right| \\
& >4\left|y_{1}\right|+3|y|+2\left|x_{1}\right|-3>2 \mathrm{fd}(X)-1, \text { impossible. }
\end{aligned}
$$

Lemma 3.4. $\alpha_{k} \notin \mathbb{Q}\left\{\left[x_{i} y_{j}\right] / 1 \leq i, j \leq 2\right\}$ for $k=5,6$.
Proof. If not, we get $\operatorname{fd}(X)=2\left|x_{1}\right|+\left|y_{1}\right|$ and $\operatorname{dim} \mathbb{Q}\left\{\left[x_{i} y_{i}\right] / 1 \leq i, j \leq 2\right\} \leq$ 2 , consequently there is at least a generator x_{3} of even degree such that $\left|x_{3}\right|=$ $\left|x_{1}\right|+\left|y_{1}\right|-1$. Therefore, $\sum_{x_{i} \in V^{\text {even }}}\left|x_{i}\right| \geq\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{3}\right|=2\left|x_{1}\right|+\left|x_{2}\right|+$ $\left|y_{1}\right|-1>\mathrm{fd}(X)$, impossible.

So $\alpha_{1} \alpha_{2} \neq 0$, and thus there exists an even generator x_{1} of V such that $\mathrm{d} x_{1}=0$ and $\alpha_{j}=\left[x_{1}\right]$ for $j=3$ or $j=4$. Thus, by the previous lemma and from the Poincaré duality, we have $\left[x_{1} y_{i}\right]=0$ for $1 \leq i \leq 2$, hence $\exists u_{i} \in$ $V^{\text {even }} / \mathrm{d} u_{i}=x_{1} y_{i}$ for $i=1,2$. As $\mathrm{d}\left(y_{i} u_{i}\right)=0$, we obtain $\left[y_{i} u_{i}\right]=0$, because, if $\alpha_{k} \in \mathbb{Q}\left\{\left[y_{i} u_{i}\right] / 1 \leq i, j \leq 2\right\}$ for $k=5$ or 6 , then $\operatorname{fd}(X)=\left|x_{1}\right|+\left|u_{1}\right|+\left|y_{1}\right|=$ $2\left|x_{1}\right|+2\left|y_{1}\right|-1$. But $\sum_{\left|x_{i}\right| \text { even }}\left|x_{i}\right| \geq\left|x_{1}\right|+2\left|u_{1}\right| \geq\left|x_{1}\right|+2\left|x_{1}\right|+2\left|y_{1}\right|-2>\mathrm{fd}(X)$, impossible. Therefore, $\left[y_{i} u_{i}\right]=0$ and, carrying on the same process, we get $\operatorname{dim} V=\infty$, which gives a contradiction, because ($\Lambda V, \mathrm{~d}$) is elliptic.

On the other hand if $\left|\alpha_{3}\right|$ is odd, then there exist two odd generators y_{3} and y_{4} of ΛV such that $\alpha_{3}=\left[y_{3}\right]$ and $\alpha_{4}=\left[y_{4}\right]$.

Lemma 3.5. $\left\{\alpha_{k}\right\}_{k \in\{5,6,7,8\}}$ does not come from any generator of ($\Lambda V, d$).
Proof. By contradiction, we suppose there exists $i_{0} \in\{5,6,7,8\}$ such that $\alpha_{i_{0}}=\left[x_{1}\right]$ where x_{1} is an even generator of ΛV, and thus, from the duality of Poincaré, $\operatorname{fd}(X) \leq\left|x_{1}\right|+\left|y_{3}\right|$ and necessarily $\exists y \in V^{\text {odd }} / \mathrm{d} y=x_{1}^{2}$ (because $2\left|x_{1}\right|>\operatorname{fd}(X)$). Therefore

$$
\begin{aligned}
\sum_{a_{i} \in V^{\text {odd }}}\left|a_{i}\right| & \geq 2\left|y_{1}\right|+2\left|y_{3}\right|+|y| \\
& \geq 2\left|y_{1}\right|+2\left|y_{3}\right|+2\left|x_{1}\right|-1>2 \mathrm{fd}(X)-1, \text { impossible. }
\end{aligned}
$$

Lemma 3.6. $\left[y_{i} y_{j}\right]=0$ for $i \in\{1,2\}$ and $j \in\{3,4\}$.
Proof. By absurd, from the duality of Poincaré, $\operatorname{dim} \mathbb{Q}\left\{\left[y_{i} y_{j}\right] / i \in\{1,2\}\right.$ and $j \in\{3,4\}\} \leq 2$, and thus $\exists u_{1}, u_{2} \in V^{\text {odd }} /\left|u_{i}\right|=\left|y_{1}\right|+\left|y_{3}\right|-1$ for $i=1,2$.

Consequently $\operatorname{fd}(X) \leq\left|y_{1}\right|+2\left|y_{3}\right|$. Hence
$\sum_{a_{i} \in V^{\text {odd }}}\left|a_{i}\right| \geq 2\left|y_{1}\right|+2\left|y_{3}\right|+2\left|u_{1}\right|=4\left|y_{1}\right|+4\left|y_{3}\right|-2>2 \mathrm{fd}(X)-1$, impossible.
Then there exist some generators $z_{i j}$ of odd degree of ΛV such that $\mathrm{d} z_{i j}=y_{i} y_{j}$ for $i \in\{1,2\}$ and $j \in\{3,4\}$, so $\mathrm{d}\left(y_{i} z_{i j}\right)=\mathrm{d}\left(y_{j} z_{i j}\right)=0$. Moreover, we can easily show that $\left[y_{i} z_{i j}\right]=\left[y_{j} z_{i j}\right]=0$, but, if we proceed in the same manner, we get $\operatorname{dim} V=\infty$, which gives a contradiction, because ($\Lambda V, \mathrm{~d}$) is elliptic.
(2) If $\left|\alpha_{1}\right|$ is even, then we can put $\alpha_{i}=\left[x_{i}\right]$, where $x_{i} \in V^{\text {even }}$ such that $\mathrm{d} x_{i}=0$ for $i=1,2$. Assume that $\left|\alpha_{3}\right|$ is even, so, by degree reasons, $\operatorname{dim} \mathbb{Q}\left\{\left[x_{i} x_{j}\right] / 1 \leq i, j \leq 2\right\} \leq 2$, hence $\exists z_{i} \in V^{\text {odd }} /\left|z_{i}\right|=2\left|x_{1}\right|-1$ for $i=1,2$. Furthermore, we have $\left|\alpha_{5}\right|$ and $\left|\alpha_{6}\right|$ are odd, then there exist two odd generators y_{1} and y_{2} of ΛV such that $\alpha_{5}=\left[y_{1}\right]$ and $\alpha_{6}=\left[y_{2}\right]$. By the formula of dimensions, we can easily show that α_{7} and α_{8} do not come from a generator of $(\Lambda V, \mathrm{~d})$. Moreover, $\alpha_{k} \notin \mathbb{Q}\left\{\left[x_{i} y_{j}\right] /\right.$ for $\left.1 \leq i, j \leq 2\right\}$ for $k=7$ or $k=8$, because we obtain $\operatorname{fd}(X)=2\left|x_{1}\right|+\left|y_{1}\right|$, and there exist at least two even generators u_{1} and u_{2} such that $\left|u_{i}\right|=\left|x_{1}\right|+\left|y_{1}\right|-1$, for $i=1,2$ since $\operatorname{dim} \mathbb{Q}\left\{\left[x_{i} y_{j}\right] /\right.$ for $\left.1 \leq i, j \leq 2\right\} \leq 2$. But

$$
\sum_{\left|x_{i}\right| \text { even }}\left|x_{i}\right| \geq 2\left|x_{1}\right|+2\left|u_{1}\right|=4\left|y_{1}\right|+2\left|y_{1}\right|-2>\mathrm{fd}(X), \text { impossible. }
$$

Consequently, $\left[x_{i} y_{j}\right]=0$, so $\exists z_{i j} \in V^{\text {even }} / \mathrm{d} z_{i j}=x_{i} y_{j}$. But $\mathrm{d}\left(y_{i} z_{i j}\right)=\mathrm{d}\left(y_{j} z_{i j}\right)$ $=0$, then, by the formula of dimension, we show that $\left[y_{i} z_{i j}\right]=\left[y_{j} z_{i j}\right]=0$ for $i, j=1,2$. Proceeding this way, we will obtain $\operatorname{dim} V=\infty$, (contradiction).

Remark 3.7. Using the same argument, we can prove $\operatorname{dim} V=\infty$, when $\left|\alpha_{3}\right|$ is odd, which leads to a contradiction.

Third case: $\left|\alpha_{1}\right|<\left|\alpha_{2}\right|<\left|\alpha_{3}\right|=\left|\alpha_{4}\right|<\left|\alpha_{5}\right|=\left|\alpha_{6}\right|<\left|\alpha_{7}\right|<\left|\alpha_{8}\right|$
Many cases have to be considered now:
If $\left|\alpha_{1}\right|$ and $\left|\alpha_{2}\right|$ are odd, then certainly α_{1} and α_{2} are generators of $H^{*}(X ; \mathbb{Q})$. Moreover, if $\left|\alpha_{3}\right|$ is odd, then α_{3} and α_{4} are also generators of $H^{*}(X ; \mathbb{Q})$ and we put $\alpha_{i}=\left[y_{i}\right]$ for $i \in\{1,2,3,4\}$ with y_{i} being odd generator of V. So, if there is $i_{0} \in\{5,6,7,8\}$ such that $\alpha_{i_{0}}=[x]$ with $x \in V^{\text {even }}$ and $\mathrm{d} x=0$, then $\mathrm{fd}(X) \leq\left|y_{3}\right|+|x|$, but

$$
\sum_{a_{i} \in V^{\text {odd }}}\left|a_{i}\right| \geq\left|y_{1}\right|+\left|y_{2}\right|+2\left|y_{3}\right|+2|x|-1>2 \mathrm{fd}(X)-1, \text { impossible. }
$$

Thus, $\alpha_{k} \in \mathbb{Q}\left\{\left[y_{i} y_{j}\right] / i=1\right.$ or 2 and $\left.3 \leq j \leq 4\right\}$ for $k \in\{5,6,7,8\}$; take for example $k=5$ and $i=1$, then $\operatorname{fd}(X)=\left|y_{1}\right|+2\left|y_{3}\right|$, so, by degree reasons $\left[y_{2} y_{3}\right]=\left[y_{2} y_{4}\right]=0, \exists u_{1}, u_{2} \in V^{\text {odd }} / \mathrm{d} u_{1}=y_{2} y_{3}$ and $\mathrm{d} u_{2}=y_{2} y_{4}$. But

$$
\begin{aligned}
\sum_{a_{i} \in V^{\text {odd }}}\left|a_{i}\right| & \geq\left|y_{1}\right|+\left|y_{2}\right|+2\left|y_{3}\right|+\left|u_{1}\right|+\left|u_{2}\right| \\
& \geq\left|y_{1}\right|+3\left|y_{2}\right|+4\left|y_{3}\right|-2>2 \mathrm{fd}(X)-1, \text { impossible. }
\end{aligned}
$$

Therefore, $\left|\alpha_{3}\right|$ and $\left|\alpha_{4}\right|$ are even, and thus, if $\left[y_{1} y_{2}\right] \neq 0$, then $\exists i_{0}=3$ or 4 such that $\alpha_{i_{0}}=[x]$ with $x \in V^{\text {even }}$ and $\mathrm{d} x=0$. From the Poincaré duality, we have $\left[y_{i} x\right]=0$ for $i=1$ or 2 and also there is an odd generator y of V such that $\alpha_{j}=[y]$ for $j=4$ or 5 , and thus $\mathrm{fd}(X)=|y|+|x|=2|x|+\left|y_{l}\right|$ for $l \in\{1,2\} \backslash\{i\}$. As a result, we have $\alpha_{k} \in \mathbb{Q}\left\{\left[x^{2}\right],\left[y y_{i}\right]\right\}$ and $\left[y y_{l}\right]=0$, so $\operatorname{dim} \mathbb{Q}\left\{\left[x^{2}\right],\left[y y_{i}\right]\right\} \leq 1$, hence $\exists u_{1}, u_{2} \in V^{\text {odd }} / \mathrm{d} u_{1}=y y_{l}$ and $\mathrm{d} u_{2}=x^{2}-\lambda y y_{i}$. But

$$
\begin{aligned}
\sum_{a_{i} \in V^{\text {odd }}}\left|a_{i}\right| & \geq\left|y_{1}\right|+\left|y_{2}\right|+|y|+\left|u_{1}\right|+\left|u_{2}\right| \\
& \geq 2\left|y_{1}\right|+\left|y_{2}\right|+2|y|+2|x|-2>2 \mathrm{fd}(X)-1, \text { impossible. }
\end{aligned}
$$

Consequently, $\left[y_{1} y_{2}\right]=0$, thus there is an odd generator z of V such that $\mathrm{d} z=y_{1} y_{2}$, hence we can put $\alpha_{3}=\left[x_{1}\right]$ and $\alpha_{4}=\left[x_{2}\right]$ with x_{1} and x_{2} are two even generators of V. Therefore, $\alpha_{k} \in \mathbb{Q}\left\{\left[y_{i} x_{1}\right]\right.$, $\left[y_{i} x_{2}\right]$ for $i=1$ or 2$\}$ with $k \in$ $\{5,6\}$, hence $\mathrm{fd}(X) \leq\left|y_{2}\right|+2\left|x_{1}\right|$ and, by degree reasons, $\left[y_{j} x_{1}\right]=\left[y_{j} x_{2}\right]=0$ for $j \in\{1,2\} \backslash\{i\}$. Then $\exists z_{1}, z_{2} \in V^{\mathrm{even}} / \mathrm{d} z_{1}=y_{j} x_{1}$ and $\mathrm{d} z_{2}=y_{j} x_{2}$, but

$$
\sum_{\left|a_{i}\right| \text { even }}\left|a_{i}\right| \geq 2\left|x_{1}\right|+2\left|z_{1}\right|=4\left|x_{1}\right|+2\left|y_{j}\right|-2>\mathrm{fd}(X)
$$

If $\left|\alpha_{2}\right|$ is even, then there exists an even generator x_{1} of V such that $\alpha_{2}=$ $\left[x_{1}\right]$. Moreover, suppose that $\left|\alpha_{3}\right|$ is also even so $\alpha_{k} \in \mathbb{Q}\left\{\left[x_{1}^{2}\right]\right\}$ for $k=3$ or 4 and $\alpha_{j}=\left[x_{2}\right]$ for $j \in\{3,4\} \backslash k$ where x_{2} is an even generator of ($\Lambda V, \mathrm{~d}$). We can easily show that α_{5} and α_{6} do not come from generators of V, so, by degree arguments, $\alpha_{k} \in \mathbb{Q}\left\{\left[y_{1} x_{1}^{2}\right]\right.$, $\left.\left[y_{1} x_{2}\right]\right\}$ for $k \in\{5,6\}$. Therefore, $\mu=\left[y_{1} x_{1}^{4}\right]$ and $\operatorname{fd}(X)=4\left|x_{1}\right|+\left|y_{1}\right|$, then $\operatorname{dim} \mathbb{Q}\left\{\left[x_{1}^{4}\right],\left[x_{2}^{2}\right],\left[x_{1}^{2} x_{2}\right]\right\} \leq 2$ and $\left[x_{1}^{3}\right] \neq 0$, which contradicts the fact that $\operatorname{dim} H^{\text {even }}(X ; \mathbb{Q})=5$. But, if $\left|\alpha_{3}\right|$ is odd, then we can take $\alpha_{3}=\left[y_{1} x_{1}\right]$ (the justification will be the same for α_{4}) and there is an odd generator y_{2} of V such that $\alpha_{4}=\left[y_{2}\right]$. By the Poincare duality, we have $\left[y_{1} y_{2}\right]=0$, so $\exists u_{1} \in V^{\text {odd }} / \mathrm{d} u_{1}=y_{1} y_{2}$, but $\mathrm{d} y_{1} u_{1}=\mathrm{d} y_{2} u_{1}=0$ and, applying the Poincaré duality again, we get $\left[y_{1} u_{1}\right]=0$, then $\exists u_{2} \in V^{\text {odd }} / \mathrm{d} u_{2}=y_{1} u_{1}$. Carrying on the same process we will obtain $\operatorname{dim} V=\infty$, which is impossible.

Following the same approach, the case where $\left|\alpha_{2}\right|$ is even will be proven impossible.

REmARK 3.8. There are other cases, but as they can all be disproved in the same way, we found it redundant to tackle them all and we restricted our study to the previous cases.

Fourth case: $\left|\alpha_{1}\right|<\left|\alpha_{2}\right|<\left|\alpha_{3}\right|<\left|\alpha_{4}\right|<\left|\alpha_{5}\right|<\left|\alpha_{6}\right|<\left|\alpha_{7}\right|<\left|\alpha_{8}\right|$
To discuss the remaining case, we will use the degree of nilpotency of α_{1}.
Lemma 3.9. The only possible cases are when $\alpha_{1}^{i} \neq 0$ for $i \leq 4$.
Proof. If $\alpha_{1}^{i} \neq 0$ for $i \geq 5$, then we put $\alpha_{1}=\left[x_{1}\right]$ with $x_{1} \in V^{\text {even }}$ such that $\mathrm{d} x_{1}=0$. Therefore, $\left\{1,\left[x_{1}\right],\left[x_{1}^{2}\right],\left[x_{1}^{3}\right],\left[x_{1}^{4}\right],\left[x_{1}^{5}\right], \ldots\right\} \subset H^{\text {even }}(X ; \mathbb{Q})$ and
then $\operatorname{dim} H^{\text {even }}(X ; \mathbb{Q}) \geq 6$, but this contradicts the fact that $\operatorname{dim} H^{\text {even }}(X ; \mathbb{Q})$ $=5$.

- If $\alpha_{1}^{4} \neq 0$, but $\alpha_{1}^{5}=0$:

Proposition 3.10. If $\left|\alpha_{1}\right|<\left|\alpha_{2}\right|<\left|\alpha_{3}\right|<\left|\alpha_{4}\right|<\left|\alpha_{5}\right|<\left|\alpha_{6}\right|<\left|\alpha_{7}\right|<\left|\alpha_{8}\right|$ and if $\alpha_{1}^{4} \neq 0$ but $\alpha_{1}^{5}=0$, then X has the rational homotopy type of $X \sim_{\mathbb{Q}}$ $\mathbb{S}^{2 n+1} \times \mathbb{S}_{(4)}^{m}$.

Proof. By the hypothesis, we have $H^{\text {even }}(X ; \mathbb{Q})=\left\{1,\left[x_{1}\right],\left[x_{1}^{2}\right],\left[x_{1}^{3}\right],\left[x_{1}^{4}\right]\right\}$ and then, necessarily, there is a generator y of odd degree such that $\mathrm{d} y=$ 0 . Therefore, $H^{\text {odd }}(X ; \mathbb{Q})=\left\{[y],\left[y x_{1}\right],\left[y x_{1}^{2}\right],\left[y x_{1}^{3}\right],\left[y x_{1}^{4}\right]\right\}$, thus $\operatorname{fd}(X)=$ $4\left|x_{1}\right|+|y|$. More precisely, $(\Lambda V, \mathrm{~d})=\left(\Lambda\left(x, y_{1}, y\right), \mathrm{d}\right)=\left(\Lambda\left(x_{1}, y\right) \otimes(\Lambda y, 0)\right)$ with $\mathrm{d} x_{1}=\mathrm{d} y=0$ and $\mathrm{d} y_{1}=x_{1}^{5}$. Consequently, $X \sim_{\mathbb{Q}} \mathbb{S}^{2 n+1} \times \mathbb{S}_{(4)}^{m}$.

- If $\alpha_{1}^{3} \neq 0$, but $\alpha_{1}^{4}=0$:

In general, the minimal model of X is given as $(\Lambda V, \mathrm{~d})=\left(\Lambda\left(x_{1}, x_{2}, \ldots\right), \mathrm{d}\right)$ with $\left|x_{1}\right|<\left|x_{2}\right|<\ldots$, that means $\left|x_{1}\right|=\min \left\{\left|x_{i}\right| / \mathrm{d} x_{i}=0\right\}$; then we get two cases:

1) If $\left|x_{2}\right|$ is even and $\mathrm{d} x_{2}=0$, then $\left\{1,\left[x_{1}\right],\left[x_{2}\right],\left[x_{1}^{2}\right],\left[x_{1}^{3}\right],\left[x_{1} x_{2}\right],\left[x_{2}^{2}\right], \ldots\right\}$ $\subset H^{\text {even }}(X ; \mathbb{Q})$. Since $\operatorname{dim} H^{\text {even }}(X ; \mathbb{Q})=5$, there exist two odd generators y_{1} and y_{2} of V such that

$$
\left\{\begin{array}{c}
\mathrm{d} y_{1}=x_{1} x_{2}+\lambda_{1} x_{1}^{n} \\
\mathrm{~d} y_{2}=x_{2}^{2}+\lambda_{2} x_{1}^{n}
\end{array}\right.
$$

But we have $\left|x_{1}\right|<\left|x_{2}\right|$ and then $n=3$, hence

$$
\left\{\begin{array} { c }
{ \mathrm { d } y _ { 1 } = x _ { 1 } x _ { 2 } + \lambda _ { 1 } x _ { 1 } ^ { 3 } } \\
{ \mathrm { d } y _ { 2 } = x _ { 2 } ^ { 2 } + \lambda _ { 2 } x _ { 1 } ^ { 3 } }
\end{array} \Longrightarrow \left\{\begin{array}{c}
\mathrm{d} y_{1}=x_{1}\left(x_{2}+\lambda_{1} x_{1}^{2}\right) \\
\mathrm{d} y_{2}=x_{2}^{2}+\lambda_{2} x_{1}^{n}
\end{array}\right.\right.
$$

Put $x_{1}^{\prime}=x_{2}+\lambda_{1} x_{1}^{2}$; then $\mathrm{d} y_{1}=x_{1}^{\prime} x_{1}$ and, by a simple computation, we get $\mathrm{d} y_{2}=x_{1}^{\prime 2}+\lambda_{2} x_{1}^{3}$.

Lemma 3.11. We can assume without loosing generality that there are two odd generators y_{1} and y_{2} such that $\left\{\begin{array}{c}d y_{1}=x_{1} x_{2} \\ d y_{2}=x_{2}^{2}+x_{1}^{3}\end{array}\right.$.

Proof. According to the above, we found: $\left\{\begin{array}{c}\mathrm{d} y_{1}=x_{1} x_{2} \\ \mathrm{~d} y_{2}=x_{2}^{2}+\lambda_{2} x_{1}^{3}\end{array}\right.$, we multiply $\mathrm{d} y_{2}$ by λ_{2}^{2} and we replace x_{1} and x_{2} by $\lambda_{2} x_{1}$ and $\lambda_{2} x_{2}$, respectively. Then we get

$$
\left\{\begin{array}{c}
\mathrm{d} y_{1}=x_{1} x_{2} \\
\mathrm{~d} y_{2}=x_{2}^{2}+x_{1}^{3}
\end{array}\right.
$$

Since $\operatorname{fd}(X)$ is odd, there is a generator of odd degree such that $\mathrm{d} y=0$, therefore, $\mu=\left[x_{1}^{3} y\right]=\left[x_{2}^{2} y\right]$, and thus $\operatorname{fd}(X)=|y|+3\left|x_{1}\right|=2\left|x_{2}\right|+|y|$. Hence, the minimal model of X is given by: $(\Lambda V, \mathrm{~d})=\left(\Lambda\left(x_{1}, x_{2}, y_{1}, y_{2}\right), \mathrm{d}\right) \otimes(\Lambda y, 0)$ with $\mathrm{d} x_{1}=\mathrm{d} x_{2}=0, \mathrm{~d} y_{1}=x_{1} x_{2}, \mathrm{~d} y_{2}=x_{2}^{2}+x_{1}^{3}$ and $\mathrm{d} y=0$. So $X \sim_{\mathbb{Q}} \mathbb{S}^{2 p+1} \times Y$ with $\operatorname{dim} H^{\text {even }}(Y ; \mathbb{Q})=5$, in particular, from [10], $Y \sim_{\mathbb{Q}} \mathbb{S}_{(3)}^{n} \# \mathbb{S}_{(2)}^{m}$. Finally,

$$
X \sim_{\mathbb{Q}} \mathbb{S}^{2 p+1} \times \mathbb{S}_{(3)}^{n} \# \mathbb{S}_{(2)}^{m}
$$

2) If the second generator that comes right after x_{1} is odd, then we can put $\mathrm{d} y_{1}=x_{1}^{4}$ and $\mathrm{d} y_{2}=x_{1}^{i}$ for $i \geq 4$ with $y_{1}, y_{2} \in V^{\text {odd }}$.

Lemma 3.12. There exists an odd generator y of V such that $d y=0$.
Proof. We have $\mathrm{d} y_{2}=\lambda_{1} x_{1}^{i}$ but $\mathrm{d} x_{1}^{i}=\mathrm{d} \omega$ for $i \geq 4$, then $\mathrm{d} y_{2}=\mathrm{d}\left(\lambda_{1} \omega\right)$, so $\mathrm{d}\left(y_{2}-\lambda_{1} \omega\right)=0$. We put $y=y_{2}-\lambda_{1} \omega$ and we obtain the result.

Automatically $\left[x_{1}^{3} y\right] \in H^{\text {odd }}(X ; \mathbb{Q})$, so we have two possibilities: the first one is when $\operatorname{fd}(X)=3\left|x_{1}\right|+|y|$. If $V^{\text {even }} \neq \mathbb{Q}\left\{x_{1}\right\}$, so $\exists x_{2} \in V^{\text {even }} /\left|x_{1}\right|<$ $|y|<\left|x_{2}\right|$ with $\mathrm{d} x_{2}=\lambda x_{1}^{i} y_{1}$, and $\exists y_{2} \in V^{\text {odd }} /\left|y_{2}\right|>2\left|x_{2}\right|-1$. But

$$
\sum_{a_{i} \in V^{\text {odd }}}\left|a_{i}\right| \geq\left|y_{1}\right|+\left|y_{2}\right|+|y|>2 \mathrm{fd}(X)-1
$$

If $V^{\text {even }}=\mathbb{Q}\left\{x_{1}\right\}$, then $\exists y, y_{1}, y_{2}, \ldots \in V^{\text {odd }} / \mathrm{d} y=0, \mathrm{~d} y_{1}=x_{1}^{4}, \mathrm{~d} y_{2}=x_{1}^{i}+$ $\lambda y y_{1}$ for $i \geq 4$. Since $\mathrm{d} y_{2}^{2}=0$, we get $\lambda=0$, so $\mathrm{d} y_{2}=x_{1}^{i}$, but $\mathrm{d}\left(x_{1}^{i-4} y_{1}-y_{2}\right)=$ 0 , thus we put $y_{2}^{\prime}=x_{1}^{i-4} y_{1}-y_{2}$ so $\mathrm{d} y_{2}^{\prime}=0$. Therefore, from the Poincaré duality, we obtain
$\mathbb{Q}\left\{[y],\left[x_{1} y\right],\left[x_{1}^{2} y\right],\left[x_{1}^{3} y\right],\left[y_{2}^{\prime}\right],\left[x_{1} y_{2}^{\prime}\right],\left[x_{1}^{2} y_{2}^{\prime}\right],\left[x_{1}^{3} y_{2}^{\prime}\right]\right\} \in H^{\text {odd }}(X ; \mathbb{Q})$. Then, by the formula of dimension, we must get a generator x_{2} of even degree such that $\mathrm{d} x_{2}=x_{1} y_{2}^{\prime}+\lambda x_{1}^{i} y$, but this contradicts the assumption $\left(V^{\text {even }}=\mathbb{Q}\left\{x_{1}\right\}\right)$. Since the two possibilities are impossible, $\mathrm{fd}(X)>3\left|x_{1}\right|+|y|$, hence, $\exists x_{2} \in$ $V^{\text {even }} /\left|x_{1}\right|<|y|<\left|x_{2}\right|$ and $\mathrm{d} x_{2}=\lambda x_{1}^{i} y($ for $i>3$ or $\lambda=0)$, but $\mathrm{d}\left(x_{2} x_{1}^{j} y\right)=$ 0 for $j \leq 3$. Then, from the Poincaré duality again, $\mu=\left[x_{1}^{3} x_{2} y\right]$, consequently $\left[x_{1}^{i} x_{2}\right] \neq 0$ for $1 \leq i \leq 3$, which gives $\operatorname{dim} H^{\text {even }}(X ; \mathbb{Q})>5$.

- If $\boldsymbol{\alpha}_{1}^{2} \neq 0$, but $\boldsymbol{\alpha}_{1}^{3}=0$:

We put $\alpha_{1}=\left[x_{1}\right]$ with $x_{1} \in V^{\text {even }} / \mathrm{d} x_{1}=0$ and $\left|x_{1}\right|=\min \left\{\left|x_{i}\right| / \mathrm{d} x_{i}=0\right\}$.
Lemma 3.13. $\exists y_{1} \in V^{\text {odd }} / d y_{1}=x_{1}^{3}$.
Proof. We have $x_{1}^{2} \notin \mathrm{~d}(V)$ and $x_{1}^{3} \in \mathrm{~d}(\Lambda V)$, if there is $\omega \in \Lambda^{\leq 2} V / \mathrm{d} \omega=x_{1}^{3}$. Then $\omega=z+x_{1} z_{1}+\ldots$ with $z, z_{1} \in V^{\text {odd }}$, thus $\mathrm{d} \omega=\mathrm{d} z+x_{1} \mathrm{~d} z_{1}=x_{1}^{3}$; then, by degree reasons, we get $z_{1}=0$ and $\mathrm{d} \omega=P\left(x_{i}\right)$, so ω is a generator.

Therefore, we have three possibilities:

1) $V^{\text {even }}=\mathbb{Q}\left\{x_{1}\right\}$, so the minimal model of X is given by $(\Lambda V, \mathrm{~d})=$ $\left(\Lambda\left(x_{1}, y_{1}, y_{2} \ldots\right), \mathrm{d}\right)$ with $\left|x_{1}\right|<\left|y_{1}\right|<\left|y_{2}\right| \ldots$ and $\mathrm{d} y_{1}=x_{1}^{3}, \mathrm{~d} y_{2}=\beta x_{1}^{j}$ for $j \geq 3$. Thus, $\exists y_{3} \in V^{\text {odd }} \mathrm{d} y_{3}=0$ (because $\mathrm{d}\left(\beta x_{1}^{j-3} y_{1}-y_{2}\right)=0$, so we put
$\left.y_{3}=\beta x_{1}^{j-3} y_{1}-y_{2}\right)$. In addition, if there is a generator y_{4} of odd degree such that $\mathrm{d} y_{4}=\gamma x_{1}^{i}+\lambda x_{1}^{j} y_{1} y_{3}$ for $i>j$, then $\lambda=0$ (because $\mathrm{d}^{2} y_{4}=0$). By the same justification and by a variable change, we obtain a generator y_{5} of odd degree such that $\mathrm{d} y_{5}=0$, and thus $\mathbb{Q}\left\{\left[y_{3}\right],\left[x_{1} y_{3}\right],\left[x_{1}^{2} y_{3}\right],\left[y_{5}\right],\left[x_{1} y_{5}\right],\left[x_{1}^{2} y_{5}\right]\right\} \in$ $H^{\text {odd }}(X ; \mathbb{Q})$, but this contradicts the fact that $\operatorname{dim} H^{\text {odd }}(X ; \mathbb{Q})=5$.
2) If $\left\{x_{1}, x_{2}\right\} \subset V^{\text {even }}$ with $\mathrm{d} x_{1}=\mathrm{d} x_{2}=0$ and $\left|x_{1}\right|<\left|x_{2}\right|$, then $\mathbb{Q}\left\{1,\left[x_{1}\right],\left[x_{1}^{2}\right]\right.$, $\left.\left[x_{2}\right],\left[x_{1} x_{2}\right],\left[x_{1}^{2} x_{2}\right],\left[x_{2}^{2}\right], \ldots\right\} \in H^{\text {even }}(X ; \mathbb{Q})$, thus many possibilities are left to be studied. If $\left[x_{1}^{2} x_{2}\right]=0$ and $\left[x_{2}^{2}\right]=0$, then $\exists y_{2} \in V^{\text {odd }} / \mathrm{d} y_{2}=x_{2}^{2}$.

Lemma 3.14. $\exists y_{3} \in V^{\text {odd }} / d y_{3}=x_{1}^{2} x_{2}$.
Proof. Let $\omega \in \Lambda^{\leq 2} V / \mathrm{d} \omega=x_{1}^{2} x_{2}$ and $\omega=z+x_{1} z_{1}+x_{2} z_{2}+\ldots$ with $z, z_{1}, z_{2} \in V^{\text {odd }}$, thus $\mathrm{d} \omega=\mathrm{d} z+x_{1} \mathrm{~d} z_{1}+x_{2} \mathrm{~d} z_{2}=x_{1}^{2} x_{2}$, then, by degree reasons, we get $z_{1}=z_{2}=0$ and $\mathrm{d} \omega=P\left(x_{i}\right)$, so ω is a generator.

Consequently, there exist three generators of odd degree such that $\mathrm{d} y_{1}=$ $x_{1}^{3}, \mathrm{~d} y_{2}=x_{2}^{2}$ and $\mathrm{d} y_{3}=x_{1}^{2} x_{2}$. Thus, we have

$$
(\Lambda V, \mathrm{~d}) \rightarrow\left(\Lambda\left(x_{2}, y_{2}\right), \overline{\mathrm{d}}\right) \otimes\left(\Lambda\left(x_{1}, y_{1}, \ldots\right), \overline{\mathrm{d}}\right)
$$

with $\operatorname{dim} H^{*}\left(\Lambda\left(x_{2}, y_{2}\right), \overline{\mathrm{d}}\right)=2$ and $\operatorname{dim} H^{*}\left(\Lambda\left(x_{1}, y_{1}, \ldots\right), \overline{\mathrm{d}}\right)=5$, but, according to the classification in [5], there is no space Y with a model of this form $\left(\Lambda\left(x_{1}, y_{1}, \ldots\right), \overline{\mathrm{d}}\right)$, given $\mathrm{d} x_{1}=0$ and $\mathrm{d} y_{1}=x_{1}^{3}$ such that $\operatorname{dim} H^{*}(Y ; \mathbb{Q})=5$. But, if $\left[x_{1} x_{2}\right]=0$ and $\left[x_{2}^{3}\right]=0$, then we can show similarly that there exist two generators y_{2} and y_{3} of odd degree such that $\mathrm{d} y_{2}=x_{1} x_{2}$ and $\mathrm{d} y_{3}=x_{2}^{3}$. According to the Poincaré duality, we have $B=\left\{1,\left[x_{1}\right],\left[x_{1}^{2}\right],\left[x_{2}\right],\left[x_{2}^{2}\right],\left[\omega_{1}\right],\left[x_{2} \omega_{1}\right]\right.$, $\left.\left[\omega_{2}\right],\left[x_{1} \omega_{2}\right],\left[x_{2}^{2} \omega_{1}\right]\right\}$ is a basis of $H^{*}(X ; \mathbb{Q})$. It is easy to show that ω_{1} and ω_{2} are not generators of V; also, we have $\mathrm{d}\left(x_{2} y_{1}-x_{1}^{2} y_{2}\right)=0$ and $\mathrm{d}\left(x_{1} y_{3}-x_{2}^{2} y_{2}\right)=$ 0 , thus we can consider $\omega_{1}=x_{2} y_{1}-x_{1}^{2} y_{2}$ and $\omega_{2}=x_{1} y_{3}-x_{2}^{2} y_{2}$. Let $\omega \in$ $Z^{\text {even }}$ then $\omega=P_{1}+P_{2} y_{1} y_{2}+P_{3} y_{1} y_{3}+P_{4} y_{2} y_{3}$, where $P_{i} \in \mathbb{Q}\left[x_{1}, x_{2}\right]$ for $1 \leq i \leq 4$. An easy computation shows that $\mathrm{d} \omega=\left(-P_{2} \mathrm{~d} y_{2}-P_{3} \mathrm{~d} y_{3}\right) y_{1}+$ $\left(P_{2} \mathrm{~d} y_{1}-P_{4} \mathrm{~d} y_{3}\right) y_{2}+\left(P_{3} \mathrm{~d} y_{1}+P_{4} \mathrm{~d} y_{2}\right)=0$, leading us to the system

$$
\left\{\begin{array}{c}
P_{2} x_{1} x_{2}+P_{3} x_{2}^{3}=0 \\
P_{2} x_{1}^{3}-P_{4} x_{2}^{3}=0 \\
P_{3} x_{1}^{3}+P_{4} x_{1} x_{2}=0
\end{array}\right.
$$

As the polynomials x_{1}^{3} and x_{2}^{3} are relatively prime, there exists $Z \in \mathbb{Q}\left[x_{1}, x_{2}\right]$ such that $P_{2}=-x_{2}^{3} Z, P_{3}=x_{1} x_{2} Z$ and $P_{4}=-x_{1}^{3} Z$ so $\omega=P_{1}-\mathrm{d}\left(Z y_{1} y_{2} y_{3}\right)$. Moreover, let $\omega \in Z^{\text {odd }}$; then $\omega=P_{1} y_{1}+P_{2} y_{2}+P_{3} y_{3}+P y_{1} y_{2} y_{3}$, where $P_{i} \in \mathbb{Q}\left[x_{1}, x_{2}\right]$, thus $\mathrm{d} \omega=P_{1} x_{1}^{3}+P_{2} x_{1} x_{2}+P_{3} x_{2}^{3}+P \mathrm{~d}\left(y_{1} y_{2} y_{3}\right)=0$, which implies $P=0$ and $P_{1} x_{1}^{3}+P_{2} x_{1} x_{2}+P_{3} x_{2}^{3}=0$. So there exist $Z_{1}, Z_{2} \in$ $\mathbb{Q}\left[x_{1}, x_{2}\right]$ such that $P_{1}=x_{2} Z_{1}, P_{2}=-x_{1}^{2} Z_{1}-x_{2}^{2} Z_{2}$ and $P_{3}=x_{1} Z_{2}$. Then $\omega=$

$$
\begin{aligned}
& \left.Z_{1}\left(x_{2} y_{1}-x_{1}^{2} y_{2}\right)+Z_{2}\left(x_{1} y_{3}-x_{2}^{2} y_{2}\right) \text {. Thus, } Z^{\text {odd }}=<\omega_{1}, \omega_{2}\right\rangle \text {, consequently, } \\
& H^{\text {odd }}(X ; \mathbb{Q})=\mathbb{Q}\left[x_{1}, x_{2}\right]<\omega_{1}, \omega_{2}>/ B^{\text {even }} \\
& =\mathbb{Q}\left\{\left[\omega_{1}\right],\left[x_{2} \omega_{1}\right],\left[\omega_{2}\right],\left[x_{1} \omega_{2}\right],\left[x_{2}^{2} \omega_{1}\right],\left[x_{1}^{2} \omega_{2}\right]\right\}
\end{aligned}
$$

Notice that $\left[x_{2}^{2} \omega_{1}\right]=\left[x_{1}^{2} \omega_{2}\right]$. Therefore, we get this quasi-isomorphism: $(\Lambda V, \mathrm{~d}) \rightarrow\left(\Lambda W, \mathrm{~d}^{\prime}\right)$ with $\left(\Lambda W, \mathrm{~d}^{\prime}\right)=\left(\Lambda\left(x_{1}, x_{2}, y_{1}, y_{2}, y_{3}\right), \mathrm{d}^{\prime}\right)$ and $\mathrm{d}^{\prime} x_{1}=\mathrm{d}^{\prime} x_{2}$ $=0, \mathrm{~d}^{\prime} y_{1}=x_{1}^{3}, \mathrm{~d}^{\prime} y_{2}=x_{1} x_{2}, \mathrm{~d}^{\prime} y_{3}=x_{2}^{3}$. Finally, $X \sim_{\mathbb{Q}} E$, where E is the total space of this fibration

$$
\mathbb{S}^{p} \rightarrow E \rightarrow \mathbb{S}^{n} \times \mathbb{S}^{m}
$$

3) If $\left\{x_{1}, x_{2}\right\} \subset V^{\text {even }} / \mathrm{d} x_{1}=0$ and $\mathrm{d} x_{2} \neq 0$, then $\exists y \in V^{\text {odd }} / \mathrm{d} y=0$ with $\left|x_{1}\right|<|y|<\left|x_{2}\right|$ and $\mathrm{d} x_{2}=x_{1}^{i} y$ for $i \geq 3$. Thus,

$$
\mathbb{Q}\left\{[y],\left[x_{1} y\right],\left[x_{1}^{2} y\right],\left[x_{2} y\right],\left[x_{1} x_{2} y\right],\left[x_{1}^{2} x_{2} y\right]\right\} \in H^{\text {odd }}(X ; \mathbb{Q}),
$$

which gives $\operatorname{dim} H^{\text {odd }}(X ; \mathbb{Q})>5$, so it is impossible.

- Finally, if $\boldsymbol{\alpha}_{1}^{2}=0$:

Proposition 3.15. If $\left|\alpha_{1}\right|<\left|\alpha_{2}\right|<\left|\alpha_{3}\right|<\left|\alpha_{4}\right|<\left|\alpha_{5}\right|<\left|\alpha_{6}\right|<\left|\alpha_{7}\right|<\left|\alpha_{8}\right|$ and if $\alpha_{1}^{2}=0$, then X has the rational homotopy type of $\mathbb{S}^{2 n+1} \times \mathbb{S}_{(4)}^{2 k}$ or that of $\mathbb{S}^{2 p+1} \times \mathbb{S}_{(3)}^{n} \# \mathbb{S}_{(2)}^{m}$.

Proof. Since $\alpha_{1}^{2}=0, H^{*}(X ; \mathbb{Q})$ is generated by α_{1} and α_{2}. We establish this case according to the degree of nilpotency of α_{2}. If $\alpha_{2}^{i} \neq 0$ for $i \geq 5$, then we get a contradiction, because we obtain $\operatorname{dim} H^{\text {even }}(X ; \mathbb{Q})>5$. If $\alpha_{2}^{4} \neq 0$ and $\alpha_{2}^{5}=0$, then in this case necessarily $\left|\alpha_{1}\right|$ is odd, so

$$
X \sim_{\mathbb{Q}} \mathbb{S}^{2 n+1} \times \mathbb{S}_{(4)}^{m}
$$

Moreover, if $\alpha_{2}^{3} \neq 0$ and $\alpha_{2}^{4}=0$, we suppose that $\left|\alpha_{1}\right|$ is odd and, if $\alpha_{1} \alpha_{2}=0$, then we put $\alpha_{1}=\left[y_{1}\right]$ and $\alpha_{2}=\left[x_{1}\right]$, where $x_{1} \in V^{\text {even }}$ and $y_{1} \in V^{\text {odd }}$. Then there exists a generator x_{3} of even degree such that $\mathrm{d} x_{3}=y_{1} x_{1}$, hence $\mathrm{d}\left(x_{3} y_{1}\right)=0$, then, accordingis even to the duality of Poincaré, we have $\left[x_{3} y_{1}\right]=0$. Thus, this assumption is false, because it leads us to $\operatorname{dim} V=\infty$. Thus, automatically $\left[y_{1} x_{1}\right] \neq 0$, so $X \sim_{\mathbb{Q}} \mathbb{S}^{2 p+1} \times Y$ with $\operatorname{dim} H^{*}(Y ; \mathbb{Q})=5$ and $M(Y)=\left(\Lambda\left(x_{1}, x_{2}, y_{2}, y_{3}, \ldots\right), \mathrm{d}^{\prime}\right)$. Then, from [5], $Y \sim_{\mathbb{Q}} \mathbb{S}_{(3)}^{n} \# \mathbb{S}_{(2)}^{m}$. Finally,

$$
X \sim \mathbb{Q} \mathbb{S}^{2 p+1} \times \mathbb{S}_{(3)}^{n} \# \mathbb{S}_{(2)}^{m}
$$

Also, if $\left|\alpha_{1}\right|$ is even, we find easily $\sum_{\left|x_{i}\right| \text { odd }}\left|x_{i}\right|>\mathrm{fd}(X)$. If $\alpha_{2}^{2} \neq 0$ and $\alpha_{2}^{3}=0$, by the argument of last case, we obtain the same result. Finally, the case where $\alpha_{2}^{2}=0$ is impossible.

Now, the proofs of Corollary 1.3 and 1.4 are immediate consequences of Theorems 1.1 and 1.2.

REFERENCES

[1] G. Bazzoni and V. Muñoz, Rational homotopy type of nilmanifolds up to dimension 6 , arXiv:1001.3860v1 (2010), 1-19.
[2] J. Friedlander and S. Halperin, An arithmetic characterization of the rational homotopy groups of certain spaces, Invent. Math., 53 (1979), 117-133.
[3] Y. Félix, S. Halperin and J.-C. Thomas, Rational homotopy theory, Graduate Texts in Mathematics, Springer-Verlag, New York, Vol. 205, 2001.
[4] S. Halperin, Finitness in the minimal models of Sullivan, Trans. Amer. Math. Soc., 230 (1977), 173-199.
[5] M.R. Hilali, Classification des types d'homotopies rationnelles des espaces X elliptiques, 1-connexes et $\operatorname{dim} H^{*}(X, \mathbb{Q}) \leq 6$, Rapport-Université Catholique de Louvain, Institut de Mathématique Pure et Appliquée, 146 (1988), 179-195.
[6] M.R. Hilali, Action du tore \mathbb{T}^{n} sur les espaces simplement connexes, PhD Thesis, Université Catholique de Louvain, Belgique, 1990.
[7] M.R. Hilali, H. Lamane and M.I. Mamouni, Classification of rational homotopy type for 8 - cohomological dimension elliptic spaces, Advances in Pure Mathematics, 2 (2012), 15-21.
[8] M.R. Hilali and M.I. Mamouni, A conjectured lower bound for the cohomological dimension of elliptic spaces, J. Homotopy Relat. Struct., 3 (2008), 379-384.
[9] M.R. Hilali, M.I. Mamouni and J.Tarik, On the rational homotopy type of elliptic space whose cohomological dimension is 9, JP J. Geom. Topol., 17 (2015), 157-172.
[10] M.R. Hilali, M.I. Mamouni and H. Yamoul, The rational homotopy type of elliptic spaces up to dimension 8, Afr. Mat., 27 (2016), 851-864.
[11] I.M. James, Reduced product spaces, Ann. of Math., 62 (1955), 170-197.
[12] T. Kadeishvili, Cohomology C_{∞}-algebra and rational homotopy type, arXiv:0811.1655v1 (2008), 1-22.
[13] S. Kono and A. Tamamura, Graded commutative \mathbb{Q}-algebra $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] /\left(f_{1}, \ldots, f_{n}\right)$ of dimension 10 over \mathbb{Q}, Bull. Okayama Univ. of Science, 36 (2000), 11-18.
[14] M. Mimuraz and H. Shiga, On the classification of rational homotopy types of elliptic spaces with homotopy Euler characteristic zero for dim <8, Bull. Belg. Math. Soc. Simon Stevin, 18 (2011), 925-939.
[15] M. Schlessinger and J. Stasheff, Deformation theory and rational homotopy type, arXiv:1211.1647v1 (2012), 1-69.
[16] H. Shiga and T. Yamaguchi, The set of rational homotopy types with given cohomology algebra, Homology Homotopy Appl., 5 (2003), 423-436.

Received August 8, 2018
Accepted November 2, 2019

Université Hassan II
Département de Mathématiques et d'Informatique Casablanca, Maroc
E-mail: saloua.chouingou@gmail.com
E-mail: rhilali@hotmail.fr

[^0]: The authors thank the referee for his helpful comments and suggestions.

