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CLASSIFICATION OF RATIONAL HOMOTOPY TYPE FOR
10-COHOMOLOGICAL DIMENSION ELLIPTIC SPACES

SALOUA CHOUINGOU and MOHAMED RACHID HILALI

Abstract. The purpose of this paper is to give a classification of the rational
homotopy type for any simply connected and elliptic space whose cohomologi-
cal dimension is equal to 10. This classification treats two cases, according to
whether the homotopic Euler characteristic is vanishing or not.
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1. INTRODUCTION

Rational homotopy theory started with the work of D. Quillen and D. Sul-
livan in the late 1960: it allows to describe what is called the rational ho-
motopy type of a topological space lossless into algebra. This specific feature
contributes to the strength and the elegance of the theory. In fact, the starting
idea in the rational homotopy theory is to tensor the homotopy groups:

Πk (X)⊗Q = Qnk

and consider only the so called rational spaces generally denoted XQ verifying
the particular condition requiring that both Π∗ (XQ) and H∗ (XQ;Q) are Q-
vector spaces. One of the well-known results is that any simply connected
space can be modeled up to homotopy equivalence by a rational CW-complex
as follows:

Π∗ (X)⊗Q∼= Π∗ (XQ) as vector spaces
H∗ (X;Q) ∼= H∗ (XQ;Q) as algebras.

The rationalisation XQ of X all have the same weak homotopy type, which
depends only on the weak homotopy type of X, named the rational homotopy
type of X.

For a detailed discussion we refer the reader to (see [5, 7, 9, 10, 14]), where
the classification of the rational homotopy type for any simply connected el-
liptic space whose cohomological dimension varies from 1 to 9 is developed.
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Our goal is to extend this classification to the case of simply connected
elliptic spaces whose cohomological dimension is equal to 10, which has never
been studied before by means of particular tools involving the homotopic Euler
characteristic.

Our main results are:
Theorem 1.1. If X is a simply connected elliptic space such that dim

H∗(X;Q) =10 with χπ (X) = 0, then its rational homotopy type is given by
the following table:
H∗ (X;Q) ∼= (ΛV, d) ∼= X ' Q
Q [x] /

(
x10
)

(Λ (x, y) , d) with dx = 0, dy = x10 Sn(9)

Q [x1, x2] /
(
x2

1, x
5
2
) (Λ (x1, x2, y1, y2) , d) with dx1 = dx2 = 0,

dy1 = x2
1, dy2 = x5

2
Sn × Sm(4)

Q [x1, x2] /
(
x1x2, γ1x5

1 + γ2x5
2
) (Λ (x1, x2, y1, y2) , d) with dx1 = dx2 = 0,

dy1 = x1x2, dy2 = γ1x5
1 + γ2x5

2
Sn(5)#Sn(5)

Q [x1, x2] /
(
x1x2, x4

2 + λx6
1
) (Λ (x1, x2, y1, y2) , d) with dx1 =dx2 = 0

dy1 = x1x2, dy2 = x4
2 + λx6

1
Sn(6)#Sm(4)

Q [x1, x2] /
(
x1x2, x3

2 + λx7
1
) (Λ (x1, x2, y1, y2) , d) with dx1 =dx2 = 0

dy1 = x1x2, dy2 = x3
2 + λx7

1
Sn(7)#Sn(3)

Q [x1, x2] /
(
x2

1x2, x3
2 + x4

1
) (Λ (x1, x2, y1, y2) ,d) with dx1 =dx2 = 0

dy1 = x2
1x2, dy2 = x3

2 + x4
1

Q [x1, x2] /(x2
2+γx2

1x2,x5
1+λ1x1x2

2+λ2x3
1x2)

(Λ (x1, x2, y1, y2) , d) with dx1 =dx2 = 0
dy1 = x2

2 + λ1x2
1x2

dy2 = x5
1 + λ1x1x2

2 + λ2x3
1x2

Theorem 1.2. If X is a simply connected elliptic space such that dimH∗(X;
Q) = 10 with χπ (X) 6= 0, then its rational homotopy type is given by the
following table:

H∗ (X;Q) ∼= (ΛV, d) ∼= X ' Q

Q [x1] /
(
x5

1
)
⊗H∗ (Λy, 0)

(Λ (x1, y1, y) , d)
with dx1 = 0
dy1 = x5

1, dy = 0
S2k+1 × S2n

(4)

Q [x1, x2] /
(
x1x2, x2

2 + x3
1
)
⊗H∗ (Λy, 0)

(Λ (x1, x2, y1, y2, y) , d)
with dx1 = 0
dx2 = 0, dy1 = x1x2
dy2 = x2

2 + x3
1,dy = 0

S2p+1 × Sn(3)#Sm(2)

Q [x1, x2] /
(
x3

1, x1x2, x3
2
) (Λ (x1, x2, y1, y2, y3) , d)

with dx1 = 0
dx2 = 0, dy1 = x3

1
dy2 = x3

2, dy3 = x2x1

E with E is the total
space of this fibration
Sp → E → Sn × Sm

Corollary 1.3. The conjecture (H) is true for every space X simply con-
nected elliptic such that dimH∗ (X;Q) ≤ 10.

Corollary 1.4. Let (ΛV, d) be a Sullivan minimal model of a simply con-
nected elliptic space X. If dimH∗ (X;Q) ≤ 10, then (ΛV, d) is pure.

We have organized the content of this paper in the following way. In Section
2 we recall the necessary definitions and preliminaries concerning the Sullivan
minimal model, elliptic spaces and some of their properties. In Section 3 we
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establish our main results. The proof will be split into two parts, according
to whether the homotopic Euler characteristic is equal to zero or not.

2. PRELIMINARIES

A minimal model is a particularly tractable kind of commutative differential
graded algebra ”cdga” that can be associated to any nice cdga or to any nice
space. The word minimal emphasizes that, at least in many cases of interest,
the model is calculable. The amazing feature of minimal models of spaces is
their ability to algebraically encode all rational homotopy information about
a space. This is, of course, why minimal models are important. Further de-
tails can be found in the reference [3]. We use the Sullivan minimal model of
simply connected CW-complex X of finite type. It is a free graded commu-
tative algebra ΛV, for some finite type graded vector space V , together with
a differential d of degree +1 that is decomposable, i.e., d: V i →

(
Λ≥2V

)i+1.
We assume that the minimal algebra is simply connected, i.e., that the vector
space V has no generators for degree lower than 2. If {v1, . . . , vn} is a graded
basis for V , then we write ΛV as Λ (v1, . . . , vn). A basis can always be chosen
so that dv1 = 0 and dvi ∈ Λ (v1, . . . , vi−1) for i ≥ 2. In particular, if (ΛV,d) is
the Sullivan minimal model of X, there are isomorphisms:

V ∼= Π∗ (X)⊗Q and H∗ (ΛV ;Q) ∼= H∗ (X;Q) .

Example 2.1. The spheres Sk.
• The minimal model of an odd sphere is (Λ{a}, 0).
• The minimal model of an even sphere is (Λ{a, x}, d) with da = 0, dx = a2.

Definition 2.2. A simply connected topological spaceX is called rationally
elliptic if it satisfies the two conditions:

dim H∗ (X;Q) <∞ and dim Π∗ (X)⊗Q <∞.
By analogy, a minimal Sullivan algebra (ΛV,d) is elliptic if both H(ΛV,d) and
V are finite dimensional. There is a remarkable sub-class of elliptic spaces
called pure spaces.

Definition 2.3 (Pure space/pure Sullivan minimal model). An elliptic Su-
llivan minimal model (ΛV,d) is called pure, if dV even = 0 and dV odd ⊂ ΛV even.
Also, a simply connected elliptic space X is pure if its Sullivan minimal model
is pure.

Definition 2.4. An elliptic Sullivan minimal model (ΛV,d) is called hy-
perelliptic if dV even = 0 and dV odd ⊂ Λ+V even ⊗ ΛV odd.

The class of elliptic spaces has a variety of very nice properties. Let us
briefly sum them up:

Formal dimension, fd(X) :=max
{
k ∈ N / Hk (X;Q) 6= 0

}
;

Homotopical Euler characteristic, χΠ (X) :=
∑
k (−1)kdim Πk(X)⊗Q;
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Cohomological Euler characteristic, χc (X) :=
∑
k (−1)kdimHk (X;Q).

It is well known that:

Theorem 2.5 ([4, Theorem 32.10]). If X is a simply connected elliptic
space, then χΠ ≤ 0 and χc ≥ 0. Moreover, the following conditions are equiv-
alent:

(i) χΠ (X) = 0; (ii) χc (X) > 0; (iii) H∗ (X;Q) = Heven (X;Q) .

Regarding Theorem 2.5, we have:

Remark 2.6. dim V odd ≥ dim V even and the inequality is strict if and only
if χc (X) = 0, hence dim H∗ (X;Q) = 2 dim Heven (X;Q) . In particular, dim
V odd = dim V even, when dim H∗ (X;Q) is odd.

Proposition 2.7. If X is a rationally elliptic space, then the following
conditions are equivalent:

(i) χc (X) > 0;
(ii) H∗ (X;Q) is the quotient of a polynomial algebra in r variables of even

degree by an ideal truncated by a Borel ideal, more precisely:
H∗ (X;Q) = Q[x1, . . . , xr]/ (f1, . . . , fr)

where {f1, . . . , fr} is a regular sequence of graded elements in the polynomial
ring Q[x1, . . . , xr];

(iii) dim Πeven (X)⊗Q= dim Πodd (X)⊗Q.

If these conditions hold, then:
dim H∗ (X;Q) = |f1| . . . |fr|/|x1| . . . |xr|.

Moreover, (see [14]) , |fi| ≥ 2|xi| and dim H∗ (X;Q) ≥ 2r.
Our proofs are essentially based on these theorems:

Theorem 2.8 ([2] and [4]). If X is a simply connected elliptic space, (ΛV, d)
its minimal model and (ai)i is a homogeneous basis of V , then:
•
∑
|ai| even |ai| ≤fd(X) ;

•
∑
|ai| odd |ai| ≤ 2fd(X)− 1;

• fd(X) =
∑
|ai| odd |ai| −

∑
|ai| even (|ai| − 1) .

Theorem 2.9 ([4]). If X is a simply connected elliptic space, then H∗(X;Q)
satisfies the Poincaré duality, which means that:
• dim Hn(X;Q) = 1, where fd(X) = n, i.e., Hn(X;Q) = Qµ (µ is called

fundamental class of H∗(X;Q);
• for any 0 ≤ k ≤ n, the cup-product Hk(X;Q)×Hn−k(X;Q)→ Hn(X;Q) ∼=

Q is a non-degenerate bilinear form.

In [11], James introduced the construction of reduced product of pointed
spaces. If X is a topological based space, we set X(1) = X and

X(p) = X × . . .×X / (. . . , ∗, . . .) ∼ (∗, . . .).
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Applying this for even spheres, we construct Sn(p) verifying:

H∗(Sn(p);Q) ∼= Q[a]/(ap+1).
The notation Sn(p) will be used in the rest of the text only if n is even.

We conclude this part by a conjecture given by M.R.Hilali (see [6]), which
is based on the size of the rationally elliptic spaces.

Conjecture 2.10. Let X be a simply connected rationally elliptic space.
Then it holds that
(H) dim H∗ (X;Q) ≥ dim Π∗ (X)⊗Q.
We remark that, in terms of Sullivan minimal models (ΛV, d), this conjecture
can be stated equivalently as

dim H∗ (ΛV, d) ≥ dim V .

In the remainder of the paper, X is an elliptic rational and simply connected
finite cell complex, (ΛV,d) its minimal model and µ its fundamental class. We
also denote by |v| the degree of v. The main tool we shall use is the Sullivan
minimal model.

3. CLASSIFICATION

Consider dimH∗ (X;Q) = 10 and letB = {1, α1, α2, α3, α4, α5, α6, α7, α8, µ}
be a basis of H∗ (X;Q) ordered in an increasing degree. We will divide the
proof in two parts; in the first one, we will discuss the case when χΠ (X) = 0,
then we will suppose χπ (X) 6= 0.

We are now ready to proceed with the proof of Theorem 1.1.

3.1. PROOF OF THEOREM 1.1

We discuss this case according to the number of generators n and the
ideal is generated by n polynomials fi for 1 ≤ i ≤ n. Since dimH∗ (X;Q) =∏i=n
i=1 |fi|�

∏i=n
i=1 |xi| ≥ 2n and dimH∗ (X;Q) = 10, n ∈ {1, 2, 3} .

• If n = 1, then H∗ (X;Q) = Q [x]�
(
x10) which implies

X ∼Q Sm(9) with fd (X) = 9m.

• If n = 2, thenH∗ (X;Q) = Q [x1, x2]� (f1, f2), where (f1, f2) ∈ Q [x1, x2] ,
and we consider firstly the case |x1| < |x2|.

i) Assume that |f1| is an integer multiple of |x2|, so |f1| = k|x2| for some
integer k ≥ 1. From the relation |f1||f2|

|x1||x2| = 10, we have 2|x2| ≤ |f2| = 10
k |x1| <

10
k |x2| and we automatically get k ≤ 5.

Let us start by supposing k = 1; then |f1| = |x2| and |f2| = 10|x1|, thus
f1 = xm1 for m ≥ 2; by the dimension formula, we get 2|x2| ≤ |f2| = 10

m |x2|, so
m ∈ {2, 3, 4, 5} . If m = 2, then |f1| = 2|x1| = |x2| and |f2| = 10|x1| = 5|x2|,
thus (f1, f2) =

(
x2

1,
∑
λijx

i
1x
j
2

)
with i|x1| + j|x2| = 10|x1|, then i + 2j = 10,
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which gives f2 = x5
2 + λ1x

10
1 + λ2x

8
1x2 + λ3x

6
1x

2
2 + λ4x

4
1x

3
2 + λ5x

2
1x

4
2 for some

λ1, λ2, λ3, λ4, λ5 ∈ Q. Since f2−x5
2 = f3 ∈ 〈f1〉, by this change of variable, we

get (f1, f2 − f3) =
(
x2

1, x
5
2
)
. Therefore,

H∗ (X;Q) = Q [x1, x2]�
(
x2

1, x
5
2

)
, in particular, X ∼Q Sk × Sm(4).

If m = 3 or 4, we choose for example m = 3, we obtain |f1| = 3|x1| = |x2|
and |f2| = 10|x1| = 10

3 |x2|, which implies |f1| is an integer multiple of |x2|,
but |f1| = |x2|, then dimQ [x1, x2]� (f1, f2) = ∞ (because [xm2 ] 6= 0 ∀m), so
it is impossible. The same thing goes for m = 4. If m = 5, we get |f2| =
10|x1| = 2|x2|, so (f1, f2) =

(
x5

1,
∑
λijx

i
1x
j
2

)
with i + 5j = 10, hence f2 =

x2
2 + λ1x

5
1x2 + λ2x

10
1 for some λ1, λ2 ∈ Q. Since f2 − x2

2 = f3 ∈ 〈f1〉, by the
variable change, we get (f1, f2 − f3) =

(
x5

1, x
2
2
)
. So,

H∗ (X;Q) = Q [x1, x2]�
(
x5

1, x
2
2

)
.

If k = 2, we have |f1| = 2|x2| and |f2| = 5|x1|, since |f1| ≤ |f2| so |x1|+|x2| <
2|x2| ≤ 5|x1|, then f1 = x2

2 +
∑
λijx

i
1x
j
2 with i|x1|+ j|x2| = 2|x2|, it is obvious

that j = 1 and i|x1| = |x2| for i ≥ 2. Supposing that i ≥ 3 leads us to a
contradiction, because 5|x1| ≥ 2|x2| ≥ 6|x1|, hence i = 2, i.e., f1 = x2

2+λ1x
2
1x2.

Similarly, we have f2 = x5
1 +

∑
λijx

i
1x
j
2 with i|x1|+ j|x2| = 5|x1| so i+ 2j = 5,

then f2 = x5
1 + γ1x1x

2
2 + γ2x

3
1x2 for some λ1, γ1, γ2 ∈ Q. We conclude

H∗ (X;Q) = Q [x1, x2]�
(
x2

2 + λ1x
2
1x2, x

5
1 + γ1x1x

2
2 + γ2x

3
1x2
)
.

If k = 3, then |f1| = 3|x2| and |f2| = 10
3 |x1|, so f2 ∈ (x2) and |f1| is an

integer multiple of |x1|, but 2|x1| ≤ |f1| = 3|x2| ≤ 10
3 |x1|, thus, if |f1| = 2|x1|

and |f1| = 3|x2|, we get |x1| > |x2|, and, if |f1| = 3|x1|, we get |x1| = |x2|,
which contradicts the hypothesis |x1| < |x2|. The same justification applies if
we suppose k = 4.

If k = 5, then |f1| = 5|x2| and |f2| = 2|x1|, which implies |f1| > |f2|, because
|x1| < |x2|, so it is impossible.

ii) Assume that |f1| is an integer multiple of |x1| and not of |x2|, i.e.,
|f1| = k|x1| for k ≥ 2, we will obtain |f2| = 10

k |x2| ≥ 2|x2| so k ∈ {2, 3, 4, 5} .
If k = 2, then f1 = x2

1 and |f2| = 5|x2|, thus f2 = x5
2 +

∑
λijx

i
1x
j
2 =

x5
2 + λ1x

k1
1 x2 + λ2x

k2
1 x

2
2 + λ3x

k3
1 x

3
2 + λ4x

k4
1 x

4
2 with k1 > k2 > k3 > k4 > 1 and

ki|x1| + j|x2| = 5|x2| for 1 ≤ j ≤ 4. By a simple computation, we show that
k1 > 4, k2 > 3, k3 > 2 and k > 1, then f2 − x5

2 = f3 ∈ 〈f1〉 . Finally,

H∗ (X;Q) = Q [x1, x2]�
(
x2

1, x
5
2

)
.

The case k = 3 or 4 is impossible, because, if we take as an example k = 3,
then |f1| = 3|x1| and |f2| = 10

3 |x2|, so certainly f2 ∈ (x1) and |f1| is an integer
multiple of |x2|, which conflicts the assumption. If k = 5, then |f1| = 5|x1|
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and |f2| = 2|x2|. As |f1| ≤ |f2|, automatically leads to 5|x1| < 2|x2|. Thus,
(f1, f2) =

(
x5

1, x
2
2
)
, so

H∗ (X;Q) = Q [x1, x2]�
(
x5

1, x
2
2

)
.

iii) Suppose |f1| is neither an integer multiple of |x1| nor of |x2|; then
f1 ∈ (x1) ∩ (x2) and f2 contains a non zero multiple of x1 and x2, thus
|f2| = k1|x1| = k2|x2| for k1 > k2 ≥ 2. In this case, we obtain k2 = 3 or k2 = 4,
because, if k2 ≥ 6, then |f1| = 10

6 |x1| < 2|x1|, which is impossible, since
|f1| ≥ 2|x1|. Also, if k2 = 2 or k2 = 5, then |f1| is an integer multiple of |x1|,
which contradicts our hypothesis. But, if k2 = 3, then |f2| = 3|x2| = k1|x1|
and we have |f1| ≥ |x1| + |x2| ≥

(
1 + k1

3

)
|x1|, as a result 4 ≤ k1 ≤ 8 (if

not, we get |f2| ≤ 10
4 |x2| but |f2| = 3|x2|). We can easily show that the only

possible cases are when k1 = 4 and k1 = 7, so we suppose k1 = 4; then
|f2| = 3|x2| = 4|x1| and |f1| = 10

3 |x1| = 10
4 |x2| with f1 =

∑
λijx

i
1x
j
2, hence

i|x1| + j|x2| = 10
3 |x1|, which gives 3i + 4j = 10 . Therefore, we must have

(i, j) = (2, 1) , so (f1, f2) =
(
x2

1x2, x
4
1 + λx3

2
)
, λ ∈ Q∗. In particular

H∗ (X;Q) = Q [x1, x2]�
(
x2

1x2, x
4
1 + λx3

2

)
.

Moreover, if k1 = 7 we get |f2| = 3|x2| = 7|x1| and |f1| = 10
3 |x1| = 10

7 |x2|
with f1 =

∑
λijx

i
1x
j
2, hence i|x1| + j|x2| = 10

7 |x1|, which gives 3i + 7j = 10.
We necessarily obtain (i, j) = (1, 1) , so (f1, f2) =

(
x1x2, x

7
1 + λx3

2
)
, λ ∈ Q∗.

Then
H∗ (X;Q) = Q [x1, x2]�

(
x1x2, x

7
1 + λx3

2

)
.

Finally, if k2 = 4 then |f2| = 4|x2| = k1|x1| for k1 > 4, by the formula of
dimension, we have 10

4 ≥
(
1 + k1

3

)
, thus 4 < k1 ≤ 6, if k1 = 5, hence |f1| is an

integer multiple of |x2|, contradiction. Then k1 = 6 so |f2| = 4|x2| = 6|x1| and
|f1| = 10

4 |x1| = 10
6 |x2| with f1 =

∑
λijx

i
1x
j
2, hence i|x1|+ j|x2| = 10

4 |x1| which
gives 2i+3j = 5, thus necessarily (i, j) = (1, 1) , so (f1, f2) =

(
x1x2, x

6
1 + γx4

2
)
,

γ ∈ Q∗. Therefore

H∗ (X;Q) = Q [x1, x2]�
(
x1x2, x

6
1 + γx4

2

)
.

We consider now |x1| = |x2|. Then f1 and f2 are homogeneous polynomials
of the second and fifth degrees respectively. Using ([14, Lemma 3.1]), we say
that f1 = x2

1 − ax2
2 for a > 0 and a

1
2 ∈ Q, as well f2 = x5

1 +
∑
λijxixj

with i|x1| + j|x2| = 5|x1| = 5|x2|. So, by using f1, we obtain (f1, f2) =(
x2

1 − ax2
2, x

5
1 + bx4

1x2
)
. Then we get the system{

x2
1 − ax2

2 = 0
x5

1 + bx4
1x2 = 0 .
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Using the following variables changes x′1 = x1 + αx2 and x′2 = x1 − αx2 for

α = a
1
2 , the system can be further simplified into

{
x′1x

′
2 = 0

λ1x
′5
1 + λ2x

′5
2 = 0 . Then

H∗ (X;Q) = Q [x′1, x′2]�
(
x′1x

′
2, λ1x

′5
1 + λ2x

′5
2
)
, consequently

X ∼Q Sn(5)#S
n
(5).

• If n = 3, then in this case we haveH∗ (X;Q) = Q [x1, x2, x3]� (f1, f2, f3) .
Let us define two spaces V0 and V1 as follows:

V0 = Q {1, x1, x2, x3}� (f1, f2, f3)

V1 = Q
{
x2

1, x
2
2, x

2
3, x1x2, x1x3, x2x3

}
� (f1, f2, f3)

So dimV0 = 4 and dimV1 ≥ 3. If fi /∈ V1 for i ∈ {1, 2, 3}, then dimV1 = 6,
but dimH∗ (ΛV,d) ≥dim(V0 ⊕ V1 ⊕Q {µ}) ≥ 11, which contradicts the fact
that dimH∗ (ΛV,d) = 10. So we suppose for example f1 ∈ V1; then f1 =∑

1≤ λijx
i
1x
j
2, if Qµ∩V 2

1 = ∅ and it follows from duality of Poincaré that there
is a space V ′1 such that dimV1 =dimV ′1 and V1V

′
1 = Qµ, but dimV1 ≥ 3. Hence

dimH∗ (ΛV,d) ≥ dim
(
V0 ⊕ V1 ⊕ V ′1 ⊕Q {µ}

)
≥ 11

This leads to a contradiction; then V 2
1 = Qµ, thus automatically ∃ i ∈ [1, 3]

such that x2
ixj 6= 0. So there is a space V ′0 such that dimV ′0 =dimV and

V ′0V0 = Qµ; furthermore, dimH∗ (ΛV,d) ≥dim(V0 ⊕ V ′0 ⊕ V1) ≥ 11, which
contradicts our assumption.

3.2. PROOF OF THEOREM 1.2

In order to study this case we first need to prove several lemmas and propo-
sitions.

Proposition 3.1. If dimH∗ (X;Q) = 10 with χπ (X) 6= 0, then fd(X) is
odd.

Proof. Suppose that fd(X) is even; from the Poincaré duality we have:

χc (X) = 1 + (−1)fd(X) +
4∑
i=1

2 (−1)|αi| = 2 +
4∑
i=1

2 (−1)|αi|

Thus, χc (X) 6= 0, which contradicts the assumption, because χπ (X) 6= 0. �

Lemma 3.2. If B= {1, α1, α2, α3, α4, α5, α6, α7, α8, µ} is a basis of H∗(X;Q),
then |α4| < |α5|.

Proof. Suppose |α4| = |α5|; from the Poincaré duality, we have µ = α4α5
then fd(X) = |α4|+ |α5| = 2|α4|. It is impossible, because fd(X) is odd. �

According to the duality of Poincaré, the only possible cases are:
First case: |α1| = |α2| = |α3| = |α4| < |α5| = |α6| = |α7| = |α8||α1| = |α2| = |α3| = |α4| < |α5| = |α6| = |α7| = |α8||α1| = |α2| = |α3| = |α4| < |α5| = |α6| = |α7| = |α8|
Here necessarily α1, α2, α3, α4 are generators of H∗ (X;Q) .



24 S. Chouignou and M.R. Hilali 9

If |α1| is odd, then |α5| is even. Let (ΛV,d) = (Λ (x1, . . . , xp, y1, . . . , yn+p) , d)
be the Sullivan minimal model of X. Put αi = [yi] for i ∈ {1, . . . , 4} and
W = {[yiyj ] for 1 ≤ i < j ≤ 4} ⊂ Heven (X;Q); so dimW ≤ 4, and thus there
exist at least two generators z1, z2 ∈ V odd such that dzi ∈ W. Consequently
dimW = 0, otherwise we have fd(X) = 3|y1|, and∑

ai∈V odd |ai| ≥
4∑
i=1
|yi|+ |z1|+ |z2| = 4|y1|+ 2|y1|+ 2|y1| − 2

≥ 8|y1| − 2 > 2fd (X)− 1, impossible.
Then dim W = 0, which implies [yiyj ] = 0 for 1 ≤ i < j ≤ 4. Hence there exist
zij ∈ V odd such that dzij = yiyj for 1 ≤ i < j ≤ 4. As d(yizij) =d(yjzij) = 0,
we put W1 = {[ykzij ], for 1 ≤ i < j ≤ 4 and k = i or j}. Hence dimW1 = 0,
if not, we have fd(X) = 4|y1| − 1, and∑

ai∈V odd |ai| ≥ 4|y1|+ 4|y1| − 1 +
∑
|zij |

≥ 8|y1| − 1 +
∑
|zij | > 2fd (X)− 1

This is impossible. If we continue this process, we will find an infinity of
generators and cocycles, which contradicts the fact that X is elliptic.

If |α1| is even, then |α5| is odd, so there exist x1, x2, x3, x4 generators of
even degree such that dxi = 0 and αi = [xi] for 1 ≤ i ≤ 4. It is clear
that αk does not come from any generator of (ΛV,d) (for k ∈ {5, . . . , 8}), and
thus, by degree reasons, we have [xixj ] = 0, so ∃yij ∈ V odd/dyij = xixj
for 1 ≤ i, j ≤ 4. Therefore, we put W1 = {[xkyij − xjyik] / 1 ≤ i, j, k ≤ 4} .
Note that W1 ⊂ Hodd (X;Q) . We can easily show that W1 = ∅, otherwise
∃i0, j0, k0 ∈ {1, . . . , 4} such that αk = [xk0yi0j0 − xj0yi0k0 ] for k ∈ {5, . . . , 8}
so fd(X) = 4|x1| − 1. Hence∑

ai∈V odd

|ai| ≥ 10|y1| = 20|x1| − 10 > 2fd (X)− 1.

Since dimW1 = 0 we will get other generators of even degree of (ΛV,d). Fol-
lowing the same approach as above, we get an infinity of generators, thus
dimV =∞, which is impossible.

Second case: |α1| = |α2| < |α3| = |α4| < |α5| = |α6| < |α7| = |α8||α1| = |α2| < |α3| = |α4| < |α5| = |α6| < |α7| = |α8||α1| = |α2| < |α3| = |α4| < |α5| = |α6| < |α7| = |α8|
In this case H∗ (X;Q) is necessarily generated by α1 and α2, we therefore

have several cases to discuss:
(1) If |α1| is odd, we put α1 = [y1] and α2 = [y2], where y1 and y2 are

two odd generators,, then, from the assumption, we have |y1| = |y2|. If |α3|
is even and α1α2 = 0, then there exist two even generators x1 and x2 such
that α3 = [x1] and α4 = [x2]. Moreover, ∃y3 ∈ V odd/dy3 = y1y2. Therefore
Zhomogène (ΛV,d) = {xni ; yi; y1y2;xni yi, yiy3 for 1 ≤ i, j ≤ 2}.

Lemma 3.3. {αi}i∈{5,6,7,8} does not come from any generator of (ΛV, d) .
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Proof. By degree reasons, |α7| and |α8| are even, so we can suppose for
example α7 = [x3] with x3 is an even generator. Then fd(X) = |y1|+ |x3|, but∑
xi∈V even |xi| ≥ |x1| + |x2| + |x3| > |y1| + |x3| =fd(X) (impossible). By the

same argument, if ∃y ∈ V odd/α5 = [y] and dy = 0, then fd(X) = |x1| + |y|.
But [yiy] = 0 for 1 ≤ i ≤ 2 (if not, we obtain µ = [y1y2y] = [d(yy3)] = 0, this
is absurd). Then ∃ zi ∈ V odd/dzi = yiy for i = 1, 2 and ∃ y3 ∈ V odd/ |y3|
≥ 2|x1| − 1. Therefore∑

ai∈V odd |yi| ≥ |y1|+ |y2|+ |y3|+ |y|+ 2|z1|

> 4|y1|+ 3|y|+ 2|x1| − 3 > 2fd (X)− 1, impossible.

�

Lemma 3.4. αk /∈ Q {[xiyj ]/1 ≤ i, j ≤ 2} for k = 5, 6.

Proof. If not, we get fd(X) = 2|x1|+ |y1| and dimQ {[xiyi]/ 1 ≤ i, j ≤ 2} ≤
2, consequently there is at least a generator x3 of even degree such that |x3| =
|x1| + |y1| − 1. Therefore,

∑
xi∈V even |xi| ≥ |x1| + |x2| + |x3| = 2|x1| + |x2| +

|y1| − 1 >fd(X) , impossible. �

So α1α2 6= 0, and thus there exists an even generator x1 of V such that
dx1 = 0 and αj = [x1] for j = 3 or j = 4. Thus, by the previous lemma and
from the Poincaré duality, we have [x1yi] = 0 for 1 ≤ i ≤ 2, hence ∃ui ∈
V even/dui = x1yi for i = 1, 2. As d(yiui) = 0, we obtain [yiui] = 0, because, if
αk ∈ Q {[yiui]/ 1 ≤ i, j ≤ 2} for k = 5 or 6, then fd(X) = |x1|+ |u1|+ |y1| =
2|x1|+2|y1|−1. But

∑
|xi| even |xi| ≥ |x1|+2|u1| ≥ |x1|+2|x1|+2|y1|−2 >fd(X),

impossible. Therefore, [yiui] = 0 and, carrying on the same process, we get
dimV =∞, which gives a contradiction, because (ΛV,d) is elliptic.

On the other hand if |α3| is odd, then there exist two odd generators y3 and
y4 of ΛV such that α3 = [y3] and α4 = [y4].

Lemma 3.5. {αk}k∈{5,6,7,8} does not come from any generator of (ΛV, d).

Proof. By contradiction, we suppose there exists i0 ∈ {5, 6, 7, 8} such that
αi0 = [x1] where x1 is an even generator of ΛV, and thus, from the dual-
ity of Poincaré, fd(X) ≤ |x1| + |y3| and necessarily ∃y ∈ V odd/dy = x2

1
( because 2|x1| > fd (X)) . Therefore∑

ai∈V odd

|ai| ≥ 2|y1|+ 2|y3|+ |y|

≥ 2|y1|+ 2|y3|+ 2|x1| − 1 > 2fd (X)− 1, impossible.

�

Lemma 3.6. [yiyj ] = 0 for i ∈ {1, 2} and j ∈ {3, 4} .

Proof. By absurd, from the duality of Poincaré, dimQ{[yiyj ]/i ∈ {1, 2} and
j ∈ {3, 4}} ≤ 2, and thus ∃u1, u2 ∈ V odd/|ui| = |y1| + |y3| − 1 for i = 1, 2.
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Consequently fd(X) ≤ |y1|+ 2|y3|. Hence∑
ai∈V odd

|ai| ≥ 2|y1|+ 2|y3|+ 2|u1| = 4|y1|+ 4|y3|− 2 > 2fd (X)− 1, impossible.

Then there exist some generators zij of odd degree of ΛV such that dzij = yiyj
for i ∈ {1, 2} and j ∈ {3, 4} , so d(yizij) =d(yjzij) = 0. Moreover, we can easily
show that [yizij ] = [yjzij ] = 0, but, if we proceed in the same manner, we get
dimV =∞, which gives a contradiction, because (ΛV,d) is elliptic. �

(2) If |α1| is even, then we can put αi = [xi], where xi ∈ V even such
that dxi = 0 for i = 1, 2. Assume that |α3| is even, so, by degree reasons,
dimQ{[xixj ]/1 ≤ i, j ≤ 2} ≤ 2, hence ∃ zi ∈ V odd/|zi| = 2|x1| − 1 for i = 1, 2.
Furthermore, we have |α5| and |α6| are odd, then there exist two odd gen-
erators y1 and y2 of ΛV such that α5 = [y1] and α6 = [y2]. By the formula
of dimensions, we can easily show that α7 and α8 do not come from a gen-
erator of (ΛV,d). Moreover, αk /∈ Q { [xiyj ]/ for 1 ≤ i, j ≤ 2 } for k = 7 or
k = 8, because we obtain fd(X) = 2|x1| + |y1|, and there exist at least two
even generators u1 and u2 such that |ui| = |x1| + |y1| − 1, for i = 1, 2 since
dimQ { [xiyj ]/ for 1 ≤ i, j ≤ 2 } ≤ 2. But∑

|xi| even
|xi| ≥ 2|x1|+ 2|u1| = 4|y1|+ 2|y1| − 2 > fd (X) , impossible.

Consequently, [xiyj ] = 0, so ∃ zij ∈ V even/dzij = xiyj . But d(yizij) =d(yjzij)
= 0, then, by the formula of dimension, we show that [yizij ] = [yjzij ] = 0 for
i, j = 1, 2. Proceeding this way, we will obtain dimV =∞, (contradiction).

Remark 3.7. Using the same argument, we can prove dimV = ∞, when
|α3| is odd, which leads to a contradiction.

Third case: |α1| < |α2| < |α3| = |α4| < |α5| = |α6| < |α7| < |α8||α1| < |α2| < |α3| = |α4| < |α5| = |α6| < |α7| < |α8||α1| < |α2| < |α3| = |α4| < |α5| = |α6| < |α7| < |α8|
Many cases have to be considered now:
If |α1| and |α2| are odd , then certainly α1 and α2 are generators ofH∗ (X;Q).

Moreover, if |α3| is odd, then α3 and α4 are also generators of H∗ (X;Q) and
we put αi = [yi] for i ∈ {1, 2, 3, 4} with yi being odd generator of V . So, if
there is i0 ∈ {5, 6, 7, 8} such that αi0 = [x] with x ∈ V even and dx = 0, then
fd(X) ≤ |y3|+ |x|, but∑

ai∈V odd

|ai| ≥ |y1|+ |y2|+ 2|y3|+ 2|x| − 1 > 2fd (X)− 1, impossible.

Thus, αk ∈ Q {[yiyj ]/i = 1 or 2 and 3 ≤ j ≤ 4} for k ∈ {5, 6, 7, 8}; take for
example k = 5 and i = 1, then fd(X) = |y1| + 2|y3|, so, by degree reasons
[y2y3] = [y2y4] = 0, ∃u1, u2 ∈ V odd/du1 = y2y3 and du2 = y2y4. But∑

ai∈V odd |ai| ≥ |y1|+ |y2|+ 2|y3|+ |u1|+ |u2|

≥ |y1|+ 3|y2|+ 4|y3| − 2 > 2fd (X)− 1, impossible.
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Therefore, |α3| and |α4| are even, and thus, if [y1y2] 6= 0, then ∃i0 = 3 or 4
such that αi0 = [x] with x ∈ V even and dx = 0. From the Poincaré duality,
we have [yix] = 0 for i = 1 or 2 and also there is an odd generator y of V
such that αj = [y] for j = 4 or 5, and thus fd(X) = |y| + |x| = 2|x| + |yl|
for l ∈ {1, 2} \ {i}. As a result, we have αk ∈ Q

{
[x2], [yyi]

}
and [yyl] = 0, so

dimQ
{
[x2], [yyi]

}
≤ 1, hence ∃u1, u2 ∈ V odd/du1 = yyl and du2 = x2 − λyyi.

But∑
ai∈V odd |ai| ≥ |y1|+ |y2|+ |y|+ |u1|+ |u2|

≥ 2|y1|+ |y2|+ 2|y|+ 2|x| − 2 > 2fd (X)− 1, impossible.

Consequently, [y1y2] = 0, thus there is an odd generator z of V such that
dz = y1y2, hence we can put α3 = [x1] and α4 = [x2] with x1 and x2 are two
even generators of V . Therefore, αk ∈ Q {[yix1], [yix2] for i = 1 or 2} with k ∈
{5, 6}, hence fd(X) ≤ |y2| + 2|x1| and, by degree reasons, [yjx1] = [yjx2] = 0
for j ∈ {1, 2} \ {i} . Then ∃ z1,z2 ∈ V even/dz1 = yjx1 and dz2 = yjx2, but∑

|ai| even
|ai| ≥ 2|x1|+ 2|z1| = 4|x1|+ 2|yj | − 2 > fd (X) .

If |α2| is even, then there exists an even generator x1 of V such that α2 =
[x1]. Moreover, suppose that |α3| is also even so αk ∈ Q

{[
x2

1
]}

for k = 3 or
4 and αj = [x2] for j ∈ {3, 4} \k where x2 is an even generator of (ΛV,d) .
We can easily show that α5 and α6 do not come from generators of V , so, by
degree arguments, αk ∈ Q

{
[y1x

2
1], [y1x2]

}
for k ∈ {5, 6} . Therefore, µ =

[
y1x

4
1
]

and fd(X) = 4|x1| + |y1|, then dimQ
{[
x4

1
]
, [x2

2], [x2
1x2]

}
≤ 2 and

[
x3

1
]
6= 0,

which contradicts the fact that dim Heven (X;Q) = 5. But, if |α3| is odd, then
we can take α3 = [y1x1] (the justification will be the same for α4) and there is
an odd generator y2 of V such that α4 = [y2] . By the Poincaré duality, we have
[y1y2] = 0, so ∃ u1 ∈ V odd/du1 = y1y2, but dy1u1 =dy2u1 = 0 and, applying
the Poincaré duality again, we get [y1u1] = 0, then ∃ u2 ∈ V odd/du2 = y1u1.
Carrying on the same process we will obtain dimV =∞, which is impossible.

Following the same approach, the case where |α2| is even will be proven
impossible.

Remark 3.8. There are other cases, but as they can all be disproved in
the same way, we found it redundant to tackle them all and we restricted our
study to the previous cases.

Fourth case: |α1| < |α2| < |α3| < |α4| < |α5| < |α6| < |α7| < |α8||α1| < |α2| < |α3| < |α4| < |α5| < |α6| < |α7| < |α8||α1| < |α2| < |α3| < |α4| < |α5| < |α6| < |α7| < |α8|

To discuss the remaining case, we will use the degree of nilpotency of α1.

Lemma 3.9. The only possible cases are when αi1 6= 0 for i ≤ 4.

Proof. If αi1 6= 0 for i ≥ 5, then we put α1 = [x1] with x1 ∈ V even such that
dx1 = 0. Therefore,

{
1, [x1] ,

[
x2

1
]
,
[
x3

1
]
,
[
x4

1
]
,
[
x5

1
]
, . . .

}
⊂ Heven (X;Q) and
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then dimHeven (X;Q) ≥ 6, but this contradicts the fact that dimHeven (X;Q)
= 5. �

• If α4
1 6= 0α4
1 6= 0α4
1 6= 0, but α5

1 = 0α5
1 = 0α5
1 = 0:

Proposition 3.10. If |α1| < |α2| < |α3| < |α4| < |α5| < |α6| < |α7| < |α8|
and if α4

1 6= 0 but α5
1 = 0, then X has the rational homotopy type of X ∼Q

S2n+1 × Sm(4).

Proof. By the hypothesis, we have Heven (X;Q) =
{
1, [x1] ,

[
x2

1
]
,
[
x3

1
]
,
[
x4

1
]}

and then, necessarily, there is a generator y of odd degree such that dy =
0. Therefore, Hodd (X;Q) =

{
[y] , [yx1] ,

[
yx2

1
]
,
[
yx3

1
]
,
[
yx4

1
]}
, thus fd(X) =

4|x1| + |y|. More precisely, (ΛV,d) = (Λ (x, y1, y) ,d) = (Λ (x1, y)⊗ (Λy, 0))
with dx1 =dy = 0 and dy1 = x5

1. Consequently, X ∼Q S2n+1 × Sm(4). �

• If α3
1 6= 0α3
1 6= 0α3
1 6= 0, but α4

1 = 0α4
1 = 0α4
1 = 0:

In general, the minimal model of X is given as (ΛV,d) = (Λ (x1, x2, . . .) , d)
with |x1| < |x2| < . . ., that means |x1| =min{|xi|/dxi = 0}; then we get two
cases:

1) If |x2| is even and dx2 = 0, then
{
1, [x1] , [x2] ,

[
x2

1
]
,
[
x3

1
]
, [x1x2] ,

[
x2

2
]
, . . .

}
⊂ Heven (X;Q). Since dimHeven (X;Q) = 5, there exist two odd generators
y1 and y2 of V such that {

dy1 = x1x2 + λ1x
n
1

dy2 = x2
2 + λ2x

n
1

But we have |x1| < |x2| and then n = 3, hence{
dy1 = x1x2 + λ1x

3
1

dy2 = x2
2 + λ2x

3
1

=⇒
{

dy1 = x1
(
x2 + λ1x

2
1
)

dy2 = x2
2 + λ2x

n
1

Put x′1 = x2 + λ1x
2
1; then dy1 = x′1x1 and, by a simple computation, we get

dy2 = x′21 + λ2x
3
1.

Lemma 3.11. We can assume without loosing generality that there are two

odd generators y1 and y2 such that
{

dy1 = x1x2
dy2 = x2

2 + x3
1
.

Proof. According to the above, we found:
{

dy1 = x1x2
dy2 = x2

2 + λ2x
3
1
, we multiply

dy2 by λ2
2 and we replace x1 and x2 by λ2x1 and λ2x2, respectively. Then we

get {
dy1 = x1x2

dy2 = x2
2 + x3

1
.

�
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Since fd(X) is odd, there is a generator of odd degree such that dy = 0,
therefore, µ =

[
x3

1y
]

=
[
x2

2y
]
, and thus fd(X) = |y|+3|x1| = 2|x2|+ |y|. Hence,

the minimal model of X is given by: (ΛV,d) = (Λ (x1, x2, y1, y2) ,d)⊗ (Λy, 0)
with dx1 =dx2 = 0, dy1 = x1x2, dy2 = x2

2 +x3
1 and dy = 0. So X ∼Q S2p+1×Y

with dimHeven (Y ;Q) = 5, in particular, from [10], Y ∼Q Sn(3)#S
m
(2). Finally,

X ∼Q S2p+1 × Sn(3)#S
m
(2)

2) If the second generator that comes right after x1 is odd, then we can put
dy1 = x4

1 and dy2 = xi1 for i ≥ 4 with y1, y2 ∈ V odd.

Lemma 3.12. There exists an odd generator y of V such that dy = 0.

Proof. We have dy2 = λ1x
i
1 but dxi1 =dω for i ≥ 4, then dy2 =d(λ1ω) , so

d(y2 − λ1ω) = 0. We put y = y2 − λ1ω and we obtain the result. �

Automatically
[
x3

1y
]
∈ Hodd (X;Q), so we have two possibilities: the first

one is when fd(X) = 3|x1| + |y|. If V even 6= Q {x1}, so ∃ x2 ∈ V even/|x1| <
|y| < |x2| with dx2 = λxi1y1, and ∃ y2 ∈ V odd/|y2| > 2|x2| − 1. But∑

ai∈V odd |ai| ≥ |y1|+ |y2|+ |y| > 2fd (X)− 1

If V even = Q {x1}, then ∃ y, y1, y2, . . . ∈ V odd/dy = 0, dy1 = x4
1, dy2 = xi1 +

λyy1 for i ≥ 4. Since dy2
2 = 0, we get λ = 0, so dy2 = xi1, but d

(
xi−4

1 y1 − y2
)

=
0, thus we put y′2 = xi−4

1 y1 − y2 so dy′2 = 0. Therefore, from the Poincaré
duality, we obtain
Q{ [y] , [x1y] ,

[
x2

1y
]
,
[
x3

1y
]
, [y′2] , [x1y

′
2] ,
[
x2

1y
′
2
]
,
[
x3

1y
′
2
]
} ∈ Hodd (X;Q). Then,

by the formula of dimension, we must get a generator x2 of even degree such
that dx2 = x1y

′
2+λxi1y, but this contradicts the assumption (V even = Q {x1}) .

Since the two possibilities are impossible, fd(X) > 3|x1| + |y|, hence, ∃ x2 ∈
V even/|x1| < |y| < |x2| and dx2 = λxi1y ( for i > 3 or λ = 0) , but d

(
x2x

j
1y
)

=
0 for j ≤ 3. Then, from the Poincaré duality again, µ =

[
x3

1x2y
]
, consequently[

xi1x2
]
6= 0 for 1 ≤ i ≤ 3, which gives dimHeven (X;Q) > 5.

• If α2
1 6= 0α2
1 6= 0α2
1 6= 0, but α3

1 = 0α3
1 = 0α3
1 = 0:

We put α1 = [x1] with x1 ∈ V even/dx1 = 0 and |x1| =min{|xi|/dxi = 0} .

Lemma 3.13. ∃y1 ∈ V odd/dy1 = x3
1.

Proof. We have x2
1 /∈d(V ) and x3

1 ∈d(ΛV ) , if there is ω ∈ Λ≤2V/dω = x3
1.

Then ω = z + x1z1 + . . . with z, z1 ∈ V odd, thus dω =dz + x1dz1 = x3
1; then,

by degree reasons, we get z1 = 0 and dω = P (xi) , so ω is a generator. �

Therefore, we have three possibilities:
1) V even = Q {x1}, so the minimal model of X is given by

(
ΛV,d

)
=(

Λ
(
x1, y1, y2 . . .

)
, d
)

with |x1| < |y1| < |y2| . . . and dy1 = x3
1, dy2 = βxj1 for

j ≥ 3. Thus, ∃ y3 ∈ V odddy3 = 0 (because d
(
βxj−3

1 y1 − y2
)

= 0, so we put
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y3 = βxj−3
1 y1 − y2). In addition, if there is a generator y4 of odd degree such

that dy4 = γxi1 + λxj1y1y3 for i > j, then λ = 0 (because d2y4 = 0). By the
same justification and by a variable change, we obtain a generator y5 of odd de-
gree such that dy5 = 0, and thus Q{ [y3] , [x1y3] ,

[
x2

1y3
]
, [y5] , [x1y5] ,

[
x2

1y5
]
} ∈

Hodd (X;Q), but this contradicts the fact that dimHodd (X;Q) = 5.

2) If {x1, x2} ⊂ V even with dx1 =dx2 = 0 and |x1| < |x2|, thenQ
{
1, [x1] ,

[
x2

1
]
,

[x2] , [x1x2] ,
[
x2

1x2
]
,
[
x2

2
]
, . . .

}
∈ Heven (X;Q) , thus many possibilities are left

to be studied. If
[
x2

1x2
]

= 0 and
[
x2

2
]

= 0, then ∃ y2 ∈ V odd/dy2 = x2
2.

Lemma 3.14. ∃y3 ∈ V odd/dy3 = x2
1x2.

Proof. Let ω ∈ Λ≤2V/dω = x2
1x2 and ω = z + x1z1 + x2z2 + . . . with

z, z1, z2 ∈ V odd, thus dω =dz+x1dz1 +x2dz2 = x2
1x2, then, by degree reasons,

we get z1 = z2 = 0 and dω = P (xi) , so ω is a generator. �

Consequently, there exist three generators of odd degree such that dy1 =
x3

1,dy2 = x2
2 and dy3 = x2

1x2. Thus, we have

(ΛV,d)→
(
Λ (x2, y2) , d

)
⊗
(
Λ (x1, y1, . . .) , d

)
with dimH∗

(
Λ (x2, y2) ,d

)
= 2 and dimH∗

(
Λ (x1, y1, . . .) ,d

)
= 5, but, accor-

ding to the classification in [5], there is no space Y with a model of this form(
Λ (x1, y1, . . .) ,d

)
, given dx1 = 0 and dy1 = x3

1 such that dimH∗ (Y ;Q) = 5.
But, if [x1x2] = 0 and

[
x3

2
]

= 0, then we can show similarly that there exist two
generators y2 and y3 of odd degree such that dy2 = x1x2 and dy3 = x3

2. Accord-
ing to the Poincaré duality, we have B = {1, [x1] ,

[
x2

1
]
, [x2] ,

[
x2

2
]
, [ω1] , [x2ω1] ,

[ω2] , [x1ω2] ,
[
x2

2ω1
]
} is a basis of H∗ (X;Q). It is easy to show that ω1 and ω2

are not generators of V ; also, we have d
(
x2y1 − x2

1y2
)

=0 and d
(
x1y3 − x2

2y2
)

=
0, thus we can consider ω1 = x2y1 − x2

1y2 and ω2 = x1y3 − x2
2y2. Let ω ∈

Zeven then ω = P1 + P2y1y2 + P3y1y3 + P4y2y3, where Pi ∈ Q [x1, x2] for
1 ≤ i ≤ 4. An easy computation shows that dω = (−P2dy2 − P3dy3) y1 +
(P2dy1 − P4dy3) y2 + (P3dy1 + P4dy2) = 0, leading us to the system

P2x1x2 + P3x
3
2 = 0

P2x
3
1 − P4x

3
2 = 0

P3x
3
1 + P4x1x2 = 0

As the polynomials x3
1 and x3

2 are relatively prime, there exists Z ∈ Q [x1, x2]
such that P2 = −x3

2Z, P3 = x1x2Z and P4 = −x3
1Z so ω = P1−d(Zy1y2y3) .

Moreover, let ω ∈ Zodd; then ω = P1y1 + P2y2 + P3y3 + Py1y2y3, where
Pi ∈ Q [x1, x2] , thus dω = P1x

3
1 + P2x1x2 + P3x

3
2 + Pd(y1y2y3) = 0, which

implies P = 0 and P1x
3
1 + P2x1x2 + P3x

3
2 = 0. So there exist Z1, Z2 ∈

Q [x1, x2] such that P1 = x2Z1, P2 = −x2
1Z1−x2

2Z2 and P3 = x1Z2. Then ω =
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Z1
(
x2y1 − x2

1y2
)

+ Z2
(
x1y3 − x2

2y2
)
. Thus, Zodd =< ω1, ω2 >, consequently,

Hodd (X;Q) = Q [x1, x2] < ω1, ω2 > �Beven

= Q
{

[ω1] , [x2ω1] , [ω2] , [x1ω2] ,
[
x2

2ω1
]
,
[
x2

1ω2
]}

Notice that
[
x2

2ω1
]

=
[
x2

1ω2
]
. Therefore, we get this quasi-isomorphism:

(ΛV,d) →
(
ΛW, d′

)
with

(
ΛW, d′

)
=
(
Λ (x1, x2, y1, y2, y3) ,d′

)
and d′x1 =d′x2

= 0, d′y1 = x3
1, d′y2 = x1x2, d′y3 = x3

2. Finally, X ∼Q E, where E is the total
space of this fibration

Sp → E → Sn × Sm.
3) If {x1, x2} ⊂ V even/dx1 = 0 and dx2 6= 0, then ∃ y ∈ V odd/dy = 0 with

|x1| < |y| < |x2| and dx2 = xi1y for i ≥ 3. Thus,

Q
{

[y] , [x1y] ,
[
x2

1y
]
, [x2y] , [x1x2y] ,

[
x2

1x2y
]}
∈ Hodd (X;Q) ,

which gives dimHodd (X;Q) > 5, so it is impossible.

• Finally, if α2
1 = 0α2
1 = 0α2
1 = 0:

Proposition 3.15. If |α1| < |α2| < |α3| < |α4| < |α5| < |α6| < |α7| < |α8|
and if α2

1 = 0, then X has the rational homotopy type of S2n+1 × S2k
(4) or that

of S2p+1 × Sn(3)#S
m
(2).

Proof. Since α2
1 = 0, H∗ (X;Q) is generated by α1 and α2. We establish

this case according to the degree of nilpotency of α2. If αi2 6= 0 for i ≥ 5, then
we get a contradiction, because we obtain dimHeven (X;Q) > 5. If α4

2 6= 0 and
α5

2 = 0, then in this case necessarily |α1| is odd, so

X ∼Q S2n+1 × Sm(4)

Moreover, if α3
2 6= 0 and α4

2 = 0, we suppose that |α1| is odd and, if α1α2 = 0,
then we put α1 = [y1] and α2 = [x1], where x1 ∈ V even and y1 ∈ V odd.
Then there exists a generator x3 of even degree such that dx3 = y1x1, hence
d(x3y1) = 0, then, accordingis even to the duality of Poincaré, we have
[x3y1] = 0. Thus, this assumption is false, because it leads us to dimV = ∞.
Thus, automatically [y1x1] 6= 0, soX ∼Q S2p+1×Y with dimH∗ (Y ;Q) = 5 and
M (Y ) =

(
Λ (x1, x2, y2, y3, . . .) , d′

)
. Then, from [5], Y ∼Q Sn(3)#S

m
(2). Finally,

X ∼Q S2p+1 × Sn(3)#S
m
(2)

Also, if |α1| is even, we find easily
∑
|xi| odd|xi| >fd(X) . If α2

2 6= 0 and α3
2 = 0,

by the argument of last case, we obtain the same result. Finally, the case
where α2

2 = 0 is impossible. �

Now, the proofs of Corollary 1.3 and 1.4 are immediate consequences of
Theorems 1.1 and 1.2.
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