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A NOTE ON DARK SOLITONS IN NONLINEAR COMPLEX
GINZBURG-LANDAU EQUATIONS

AGUSTIN TOMAS BESTEIRO

Abstract. We analyze the existence of dark solitons in nonlinear complex Ginz-
burg-Landau equations. We prove existence results concerned with the initial
value problem for these equations in Zhidkov spaces using a new approach with
splitting methods.
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1. INTRODUCTION

We consider the one-dimensional autonomous system

(1)

{
∂tu = (a+ iα)∂xxu+ γu− (b+ iβ)F (u),

u(0) = u0

where u(x, t) is a complex valued function for x ∈ R, t > 0, a, b, α, β, γ are
positive real parameters and F is a continuous map. The linear term repre-
sented by (a+ iα)∂xxu characterizes the complex Ginzburg-Landau equations
(CGL). For α = 0, (1) reduces to a non-linear reaction-diffusion equation and,
for a = 0, to a non-linear Schrödinger equation or Gross-Pitaevskii equation.
A large amount of work has been done to prove well-posedness of (1) with
different non-linearities (see for instance, [1, 9, 10]).

In this paper, we analyze well-posedness for the nonlinear complex Ginz-
burg-Landau equation in Zhidkov spaces by applying splitting methods for
abstract semlinear evolution equations [3, 5]. These techniques were used to
achieve well-posedness results for the fractional reaction-diffusion equation [2].
Zhidkov Spaces, introduced by P. Zhidkov in [12], consist of functions defined
on R, bounded and uniformly continuous, with derivatives up to k order in
L2. These spaces are applied in nonlinear optics to model dark solitons - these
are solutions of the form u(x, t) = uv(x−vt). For instance, in [6], dark soliton
solutions are described for a complex Ginzburg-Landau equation. A typical
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example of a function in Zhidkov spaces is described in [8, 11] :

uv(x) =

√
1− v2

2
tanh

(√
1− v2

2

x√
2

)
+ i

v√
2
.

Our aim is to prove existence of solutions in Zhidkov spaces with k = 1,
where the nonlinearity is F (u) = |u|2u. Such nonlinearities appear not only
in complex Ginzburg-Landau equations, but also in other equations, such as
the nonlinear Schroedinger and Gross-Pitaevski equations. We use a new
approach, based on a Lie-Trotter method developed recently for numerical
purposes [5].

The paper is organized as follows: In Section 2, we set notations and pre-
liminary results. In Section 3, we analyze the nonlinear problem. Finally, in
Section 4, using splitting methods, we combine results from Sections 2 and 3.

2. NOTATIONS AND PRELIMINARIES

We introduce some definitions and preliminary results.

Definition 2.1. We define Cu(R) as the set of uniformly continuous and
bounded functions on R.

Definition 2.2. We denote the Zhidkov spaces as, for k > d/2,

Xk(Rd) = {u ∈ L∞(Rd) ∩ Cu(Rd) : ∂j ∈ L2(Rd), 1 ≤ |j| ≤ k}
equipped with the norm:

‖u‖Xk = ‖u‖L∞ +
∑

1≤|j|≤k

‖∂ju‖L2 .(2)

Remark 2.3. Zhidkov spaces are closed for the norm defined in (2), see [8].

The following definitions and proofs, given here for x ∈ R, can be extended
to x ∈ Rd (see [7]).

Definition 2.4. We denote by U(t) the one parameter semigroup that
solves the underlying linear equation

∂tu = (a+ iα)∂xxu+ γu.(3)

The operator can be represented by the convolution in x

U(t) = (4πt(a+ iα))−1/2e(−x
2/[4t(a+iα)])+γt ∗ u0 = Gt(x) ∗ u0

and the kernel Gt satisfies

|Gt(x)| = (4πt(α2 + β2))−1/2e(−x
2/[4t(α2+β2)])+γt.

Clearly, Gt(x) ∈ L1(R).

Proposition 2.5. The one-parameter family {U(t)}t≥0 of operators defined
as U(t)u0 = Gt ∗ u0 is a strongly continuous semigroup on Cu(R).
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Proof. The proof is similar to [2, Proposition 2.2]. �

Lemma 2.6. If u0 ∈ X1(R), then U(t)u0 ∈ X1(R) for t > 0.

Proof. As u0 ∈ L∞(R) and Gt(x) ∈ L1(R), using Young’s inequality, we
have ‖Gt ∗ u0‖L∞ ≤ ‖Gt‖L1 ‖u0‖L∞ . On the other hand, we obtain

‖∂x(Gt ∗ u0)‖ = ‖Gt ∗ ∂xu0‖L2 ≤ ‖Gt‖L1 ∗ ‖∂xu0‖L2

As Gt ∈ L1(R) and ∂xu0 ∈ L2(R) we have the result. �

Remark 2.7. Similarly, if x ∈ Rd and we have k derivatives of U(t)u0, the
same procedure proves that U(t)u0 ∈ Xk(Rd).

Next, we consider integral solutions of the problem (1). We say that u ∈
C([0, T ], Cu(R)) is a mild solution of (1) if and only if u verifies

u(t) = U(t)u0 +

∫ t

0
U(t− t′)F (u(t′))dt′.(4)

If F is a locally Lipschitz map, for any z0 ∈ Cu(R) there exists a unique
solution of the equation {

∂tz = F (z),

z(0) = z0,
(5)

defined in the interval [0, T ∗(z0)). Moreover, there exists a non-increasing
function T̄ : [0,∞) → [0,∞) such that T ∗(z0) ≥ T̄ (|z0|). The solution of (5)
is a solution of the integral equation

z(t) = z0 +

∫ t

0
F (z(t′))dt′.(6)

Also, one of the following alternatives holds:

• T ∗(z0) =∞;
• T ∗(z0) <∞ and |z(t)| → ∞ when t ↑ T ∗(z0).

We will denote by N(t, .) : Cu(R) → Cu(R) the flow generated by the ordi-
nary equation, i.e., for any x ∈ R, N(t, u0)(x) is the solution of the problem
(5) with initial data z0 = u0(x). Therefore, if u(t) = N(t, u0), then

u(x, t) = u0(x) +

∫ t

0
B(u(x, t′))dt′.

We recall well-known local existence results for evolution equations.

Theorem 2.8. There exists a function T ∗ : Cu(R) → R+ such that, for
u0 ∈ Cu(R), there is a unique u ∈ C([0, T ∗(u0)), Cu(R)) mild solution of (1)
with u(0) = u0. Moreover, one of the following alternatives holds:

• T ∗(u0) =∞;
• T ∗(u0) <∞ and limt↑T ∗(u0) |u(t)| =∞.

Proof. See [4, Theorem 4.3.4]. �
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Proposition 2.9. Under the conditions of the above theorem, we have the
following statements:

(1) T ∗ : Cu(R)→ R+ is lower semi-continuous;
(2) If u0,n → u0 in Cu(R) and 0 < T < T ∗(u0), then un → u in the

Banach space C([0, T ], Cu(R)).

Proof. See [4, Proposition 4.3.7 ]. �

3. THE NON-LINEAR EQUATION

In this section, we study the solution for the non-linear problem (5), that
is the equation {

∂tz = −(b+ iβ)|z|2z,
z(0) = z0.

(7)

Lemma 3.1. If u0(x) = z0 ∈ X1(R), then the solution of the problem (7)
satisfies z(t) ∈ X1(R) for t ∈ (0, T ∗(z0)).

Proof. We first remark that, if |u|2 ∈ L∞(R), then u ∈ L∞. Indeed, using
(7), multiplying by z̄ and applying real part on both sides, we have

Re (∂tzz̄) =
Re (∂tzz̄ + z∂tz̄)

2
=
∂t(zz̄)

2
=
∂t|z|2

2
= −Re (b+ iβ) |z|4.(8)

This is an ODE for ρ(t) = |z(t)|2, we have

{
∂tρ = −2bρ2

ρ(0) = ρ0
with solution

ρ(t) = ρ0/(2bρ0t+ 1).
Then |u|2 ∈ L∞(R) and therefore u ∈ L∞(R). On the other hand, sup-

pose that ∂xu0 ∈ L2(R). Then, taking the spatial derivative, ∂txz = −(b +
iβ)(|z|2∂xz+ 2Re (z̄∂xz)z), multiplying by ∂xz̄ and applying real part on both
sides, we have

Re ((∂txz)∂xz̄) = −Re (b+ iβ)
(
|z|2|∂xz|2 + 2Re (z̄∂xz) z∂xz̄

)
.

In the same way as in (8), we have ∂tx|z|2 ≤ Cb|z|2∂x|z|2. Since |u|2 ∈ L∞,
∂tx|z|2 ≤ C∂x|z|2. For the integral equation, using Grönwall’s inequality, we
obtain ∥∥∂x|z|2∥∥L2 ≤

∥∥∂x|z0|2∥∥L2 + C

∫ t

0
∂x|z|2dt′ ≤ eCt

∥∥∂x|z0|2∥∥L2 .

Then ∂x|z|2 ∈ L2(R) and z(t) ∈ X1(R). �

4. CGL SOLUTION

In this section, we apply Lemma 2.6 from Section 2 related to the linear
problem (3) and Lemma 3.1 from Section 3 related to the nonlinear problem
(7). In order to obtain well-posedness for the solution u(t) of equation (1), we
recall convergence results from [5], concerning the splitting method.
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Theorem 4.1. If u0 ∈ X1(R) and u is the solution of (1), then u(t) ∈
X1(R) for all t ∈ (0, T ∗(u0)).

Proof. For t ∈ [0,min{T ∗(u0)}), let n ∈ N, h = t/n and the sequences
{Wh,k}0≤k≤n, {Vh,k}1≤k≤n given by Wh,0 = u0,

Vh,k+1 = U(h)Wh,k,(9a)

Wh,k+1 = N(h, Vh,k+1), k = 0, . . . , n− 1.(9b)

We claim that Wh,k ∈ X1(R) for k = 0, . . . , n. Clearly, the assertion is true
for k = 0. If Wh,k−1 ∈ X1(R), from Lemma 3.1, we have N(h, Vh,k−1) ∈ X1(R).
Using Lemma 2.6, we can see that Vh,k = W (h)(N(h, Vh,k−1)) ∈ X1(R). We
now recall [5, Theorem 3.1] that assures us that Wh,n → u(t) when n → ∞.
As X1(R) is closed, we obtain the result. �
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