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APPLICATIONS OF HORADAM POLYNOMIALS
TO GENERAL CLASSES OF BI-UNIVALENT FUNCTIONS

INVOLVING THE q-DERIVATIVE OPERATOR

ŞAHSENE ALTINKAYA and SIBEL YALÇIN

Abstract. In this present investigation, by using the Horadam polynomials,
we aim to build a bridge between the theory of geometric functions and that
of special functions, which are usually considered very different fields. Thus,
we introduce some new classes of bi-univalent functions defined by combining
the q-derivative operator and the Horadam polynomials. Afterwards, we derive
coefficient inequalities and consider the classical Fekete-Szegö problem.
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1. INTRODUCTION, PRELIMINARIES AND KNOWN RESULTS

Recently, Horzum and Gökçen Koçer [9] investigated the Horadam polyno-
mials hn(x), which are given by the following recurrence relation

(1) hn(x) = pxhn−1(x) + rhn−2(x) (n > 2),

with h1(x) = a, h2(x) = bx, for some real constants a, b, p and r.
The generating function of the Horadam polynomials hn(x) follows imme-

diately:

Π(x, z) =
∞∑
n=1

hn(x)zn−1 =
a+ (b− ap)xz
1− pxz − rz2

.

There are many classes of polynomials which are related to the Horadam
polynomials such as (for example) the Fibonacci polynomials, the Lucas poly-
nomials, the Chebychev polynomials, the Pell polynomials, the Lucas-Lehmer
polynomials and the families of orthogonal polynomials and other special poly-
nomials. These polynomials and their generalizations play an important role
in mathematics, viscoelasticity, oscillating magnetic field, heat conduction,
electromagnetism, biology, etc. (see, for example, [7, 8, 10, 13, 19, 20]). By
properly choosing a, b, p and r, several classical polynomials can be obtained.
In particular, we have:
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• the Fibonacci polynomials Fn(x) when a = b = p = r = 1;
• the Lucas polynomials Ln(x) when a = 2 and b = p = r = 1;
• the Pell polynomials Pn(x) when a = r = 1 and b = p = 2;
• the Pell-Lucas polynomials Qn(x) when a = b = p = 2 and r = 1;
• the Chebyshev polynomials of the second kind Un(x) when a = 1,
b = p = 2 and r = 1.

Let A denote the class of functions f of the form:

(2) f(z) = z + a2z
2 + a3z

3 + · · · ,

which are analytic in the open unit disc ∆ = {z ∈ C : |z| < 1} and normalized
under the conditions given by f(0) = f ′(0)−1 = 0. Let S be the subclass of A
consisting of functions which are univalent in ∆. Further, let P be the class of
functions with positive real part consisting of all analytic functions ξ : ∆→ C
satisfying ξ(0) = 1 and <(ξ(z)) > 0.

Next, we give the following lemma which is necessary to prove our investi-
gations.

Lemma 1.1 ([15]). If the function ξ ∈ P is defined by

ξ (z) = 1 + ξ1z + ξ2z
2 + ξ3z

3 + · · · ,

then |ξn| ≤ 2 (n ∈ N = {1, 2, . . .}).

In order to recall the principle of subordination between analytic functions,
let the functions f, g be analytic in ∆. A function f is subordinate to g,
denoted by f ≺ g (or f (z) ≺ g (z)) (z ∈ ∆) , if there exists a Schwarz function
w ∈ Λ, where Λ = {w : w (0) = 0, |w (z)| < 1, z ∈ ∆}, such that f (z) =
g (w (z)) (z ∈ ∆).

According to the Koebe-One Quarter Theorem [5], the image of ∆ under
every univalent function f ∈ A contains a disc of radius 1/4. Thus, clearly,
every such univalent function f ∈ A has an inverse f−1 satisfying f−1 (f (z)) =
z and f

(
f−1 (w)

)
= w

(
|w| < r0 (f) , r0 (f) ≥ 1

4

)
, where

(3) g(w) = f−1 (w) = w −a2w
2+
(
2a2

2 − a3

)
w3−

(
5a3

2 − 5a2a3 + a4

)
w4+· · · .

A function f ∈ A is said to be bi-univalent in ∆ if both f and f−1 are
univalent in ∆. Let Σ denote the class of bi-univalent functions in ∆ given by
(2). For a brief history and interesting examples of functions in the class Σ,
see the pioneering work on this subject by Srivastava et al. [18], which has
apparently revived the study of bi-univalent functions in recent years (see also
[2, 3, 4, 12, 14, 17]).

It may be of interest to recall that Srivastava used the basic (or q-) hy-
pergeometric functions in a book chapter (see, for details, [16]). Thus, the
theory of univalent functions was characterized by the concept of q-calculus.
We first recall the definitions of fractional q-calculus operators of a complex
valued function f .
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Definition 1.2 ([11]). The q-derivative of a function f , defined on a subset
of C, is given by

(Dqf)(z) =


f(z)− f(qz)

(1− q)z
for z 6= 0,

f ′(0) for z = 0.

We note that lim
q→1−

(Dqf)(z) = f ′(z) if f is differentiable at z. From (2), we

get

(Dqf)(z) = 1 +

∞∑
n=2

[n]q anz
n−1,

where [n]q =
1− qn

1− q
(0 < q < 1, n ∈ N).

Additionally, from (3), we get

(Dqg)(w) =
g(w)− g(qw)

(1− q)w
= 1 − [2]q a2w

+ [3]q
(
2a2

2 − a3

)
w2 − [4]q

(
5a3

2 − 5a2a3 + a4

)
w3 + · · · .

(4)

In this paper, we aim first at introducing some new classes of bi-univalent
functions defined by means of the q-derivative operator and the Horadam
polynomials. Furthermore, we derive coefficient inequalities and consider the
classical Fekete-Szegö problem.

Definition 1.3. A function f ∈ Σ is said to be in the class

Hq
Σ (x) (z, w ∈ ∆)

if the following subordination conditions are satisfied:

Dqf(z) ≺ Π(x, z) + 1− a,

Dqg(w) ≺ Π(x,w) + 1− a,
where the function g is given by (3).

Remark 1.4. Upon setting q → 1− it is readily seen that a function f ∈ Σ
is in the class HΣ (x) (z, w ∈ ∆) if the following conditions are satisfied:

f ′(z) ≺ Π(x, z) + 1− a,

g′(w) ≺ Π(x,w) + 1− a,
where g = f−1.

Remark 1.5. Upon setting a = 1, b = p = 2, r = −1, the class HΣ (x)
reduce to the class HΣ (t) studied by Altınkaya and Yalçın [1].
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2. COEFFICIENT BOUND ESTIMATES

In this section, we obtain estimates on the coefficients |a2| and |a3| for
functions in the class Hq

Σ (x).

Theorem 2.1. Let the function f given by (2) be in the class Hq
Σ (x) . Then

|a2| ≤
b |x|

√
b |x|√∣∣∣([3]q b− [2]2q p

)
bx2 + [2]2q bx− [2]2q qa

∣∣∣
and

|a3| ≤
b2x2

[2]2q
+
b |x|
[3]q

.

Proof. Let f ∈ Hq
Σ (x) . Then, by Definition 1.3, for two analytic functions

Φ,Ψ such that

Φ(0) = Ψ(0) = 0, |Φ(z)| < 1, |Ψ(w)| < 1 (∀z, w ∈ ∆) ,

we can write

Dqf(z) = Π(Φ(z), x) + 1− a
and

Dqg(w) = Π(Ψ(w), x) + 1− a
or, equivalently,

(5) Dqf(z) = 1 + h1(x)− a+ h2(x)Φ(z) + h3(x)Φ2(z) + · · ·
and

(6) Dqg(w) = 1 + h1(x)− a+ h2(x)Ψ(w) + h3(x)Ψ2(w) + · · · .
Next, define the functions ξ,τ ∈ P by

ξ (z) =
1 + Φ (z)

1− Φ (z)
= 1 + ξ1z + ξ2z

2 + · · ·

and

q (w) =
1 + Ψ (w)

1−Ψ (w)
= 1 + τ1w + τ2w

2 + · · · .

In the following, one can derive

(7) Φ (z) =
ξ (z)− 1

ξ (z) + 1
=

1

2
ξ1z +

1

2

(
ξ2 −

1

2
ξ2

1

)
z2 + · · ·

and

(8) Ψ (w) =
τ (w)− 1

τ (w) + 1
=

1

2
τ1w +

1

2

(
τ2 −

1

2
τ2

1

)
w2 + · · · .

Combining (5), (6), (7) and (8), we get

(9) Dqf(z) = 1 + h2(x)ξ1z +
[
h2(x)ξ2 + h3(x)ξ2

1

]
z2 + · · · ,
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and

(10) Dqg(w) = 1 + h2(x)τ1w +
[
h2(x)τ2 + h3(x)τ2

1

]
w2 + · · · .

Thus, upon comparing the corresponding coefficients in (9) and (10), we
have

(11) [2]q a2 =
h2(x)

2
ξ1,

(12) [3]q a3 =
h2(x)

2

(
ξ2 −

ξ2
1

2

)
+
h3(x)

4
ξ2

1 ,

(13) − [2]q a2 =
h2(x)

2
τ1

and

(14) [3]q
(
2a2

2 − a3

)
=
h2(x)

2

(
τ2 −

τ2
1

2

)
+
h3(x)

4
τ2

1 .

From the equations (11) and (13), we can easily see that

(15) ξ1 = −τ1,

(16) 2 [2]2q =
h2

2(x)

4

(
ξ2

1 + τ2
1

)
.

If we add (12) to (14), we get

(17) 2 [3]q a
2
2 =

h2(x)

2
(ξ2 + τ2) +

h3(x)− h2(x)

4

(
ξ2

1 + τ2
1

)
.

By using (16) in the equality (17), we have

(18) 2
{

[3]q h
2
2(x)− [2]2q (h3(x)− h2(x))

}
a2

2 = 2µ2h3
2(x) (ξ2 + τ2)

which gives

|a2| ≤
b |x|

√
b |x|√∣∣∣([3]q b− [2]2q p

)
bx2 + [2]2q bx− [2]2q qa

∣∣∣ .
Moreover, if we subtract (14) from (12), we obtain

(19) 2 [3]q (a3 − a2
2) =

h2(x)

2
(ξ2 − τ2) +

h3(x)− h2(x)

4

(
ξ2

1 − τ2
1

)
.

Then, in view of (15) and (16), (19) becomes

a3 =
h2

2(x)

8 [2]2q

(
ξ2

1 + τ2
1

)
+
h2(x)

4 [3]q
(ξ2 − τ2) .

Then, with the help of (1), we deduce that |a3| ≤
b2x2

[2]2q
+
b |x|
[3]q

. �
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Corollary 2.2. Let f ∈ Hq
Σ (x) . Then

|a2| ≤
b |x|

√
b |x|√

|(3b− 4p) bx2 + 4bx− 4qa|
and |a3| ≤

b2x2

4
+
b |x|

3
.

Corollary 2.3 ([1]). Let f ∈ HΣ(t). Then

|a2| ≤
t
√

2t√
1 + 2t− t2

and |a3| ≤ t2 +
2t

3
.

3. FEKETE-SZEGÖ PROBLEM

The classical Fekete-Szegö inequality is investigated by Loewner’s method,
which for the coefficients of f ∈ S is∣∣a3 − ϑa2

2

∣∣ ≤ 1 + 2 exp(−2ϑ/(1− ϑ)) for ϑ ∈ [0, 1) .

As ϑ → 1−, we have the elementary inequality
∣∣a3 − a2

2

∣∣ ≤ 1. Moreover, the
problem of maximizing the modulus of the functional

Ψϑ(f) = a3 − ϑa2
2

is called the Fekete-Szegö problem (see [6]).
Now, we derive Fekete-Szegö inequalities for the coefficients of f ∈ Hq

Σ (x).

Theorem 3.1. Let the function f given by (2) be in the class Hq
Σ (x). Sup-

pose also that ϑ ∈ R. Then

∣∣a3 − ϑa2
2

∣∣ ≤

b |x|
[3]q

, if |ϑ− 1| ≤

∣∣∣∣∣14 − [2]2q
[3]q

(pbx2 − bx+ ra)

b2x2

∣∣∣∣∣
b3 |1− ϑ| |x|3∣∣∣([3]q b− [2]2q p
)
bx2 + [2]2q bx− [2]2q qa

∣∣∣ , otherwise.

Proof. From (18) and (19), we find that

a3 − ϑa2
2 =

h3
2(x) (1− ϑ) (ξ2 + τ2)

4
{

[3]q h
2
2(x)− [2]2q (h3(x)− h2(x))

} +
h2(x) (ξ2 − τ2)

4 [3]q

= h2(x)

[(
Ω (ϑ, x) +

1

4 [3]q)

)
ξ2 +

(
Ω (ϑ, x)− 1

4 [3]q

)
τ2

]
,

where

Ω (ϑ, x) =
h2

2(x) (1− ϑ)

4
{

[3]q h
2
2(x)− [2]2q (h3(x)− h2(x))

} .
Hence, in view of (1), we conclude that

∣∣a3 − ϑa2
2

∣∣ ≤


µ |h2(x)|
[3]q

, 0 ≤ |Ω (ϑ, x)| ≤ 1

4 [3]q

4 |h2(x)| |Ω (ϑ, x)| , |Ω (ϑ, x)| ≥ 1

4 [3]q
.
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Corollary 3.2. Let f ∈ HΣ (x) and ϑ ∈ R. Then

∣∣a3 − ϑa2
2

∣∣

b |x|

3
, if |ϑ− 1| ≤

∣∣∣∣14 − 4(pbx2 − bx+ ra)

3b2x2

∣∣∣∣
b3 |1− ϑ| |x|3

|(3b− 4p) bx2 + 4bx− 4qa|
, otherwise.

Corollary 3.3 ([1]). Let f ∈ HΣ(t) and η ∈ R. Then

∣∣a3 − ηa2
2

∣∣ ≤


2t

3
; |η − 1| ≤ 1+2t−t2

3t2
,

2 |1− η| t3

1 + 2t− t2
; |η − 1| ≥ 1+2t−t2

3t2
.

If we set ϑ = 1, we get the following corollaries.

Corollary 3.4. If f ∈ Hq
Σ (x), then

∣∣a3 − a2
2

∣∣ ≤ b |x|
[3]q

.

Corollary 3.5 ([1]). If f ∈ HΣ(t), then
∣∣a3 − a2

2

∣∣ ≤ 2t

3
.
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