ON THE NON-COMMUTING GRAPH OF A GROUP

BEHNAZ TOLUE

Abstract

In this paper, groups whose non-commuting graphs are k-apex for $1 \leq k \leq 5$ are classified. The 1-planarity of the non-commuting graph for an AC-group G is discussed. Moreover, the k-connectivity of the non-commuting graph is verified, for $k \leq 6$. Finally, some properties of the line graph of the non-commuting graph of a group are studied.

MSC 2010. Primary 05C25, 05C10, 05C76; Secondary 20 B 05.
Key words. Apex graph, connected graph, non-commuting graph.

1. INTRODUCTION

Graphs can be assigned to algebraic structures in many different ways. One of such graphs is the non-commuting graph associated to a group $[1,8]$. Let G be a non-abelian group. The non-commuting graph Γ_{G} associated to G is a graph whose vertices are non-central elements of G and two distinct vertices join by an edge if they do not commute.

Recall that a graph Γ is k-apex, if there exist t vertices $v_{1}, v_{2}, \cdots, v_{t}$ of the graph Γ such that the induced graph $\Gamma-\left\{v_{1}, \cdots, v_{t}\right\}$ is planar, where $t \leq k$ is a positive integer. In the k-Apex problem the task is to find at most k vertices whose deletion makes the given graph planar. In other words, for a given graph Γ and a parameter k, the k-apex-ness is to decide whether deleting at most k vertices from Γ can result in a planar graph. Such a set of vertices is sometimes called a set of apex vertices or apices. Let us denote 1-apex graph by apex graph.

Let $D_{2 n}=\left\langle a, b: a^{n}=b^{2}=1, a^{b}=a^{-1}\right\rangle$ be the dihedral group of order $2 n, n \geq 4$. In Section 2, we investigate the k-apex non-commuting graphs, $1 \leq k \leq 5$. The non-commuting graph Γ_{G} is 5 -apex if and only if G is symmetric group S_{3}, dihedral groups $D_{8}, D_{10}, D_{12}, D_{14}$, quaternion group Q_{8} or $T=\left\langle a, b: a^{6}=1, b^{2}=a^{3}, a^{b}=a^{-1}\right\rangle$. In the process of proving the last result, the apex-ness of the non-commuting graphs of the groups of order less than 21 is achieved.

The author thanks the referee for his helpful comments and suggestions.

A graph is called 1-planar if it can be drawn in the plane such that each edge is crossed at most once. Czap and Hudàk present the full characterization of 1planar complete k-partite graphs [3]. A non-abelian group G is an AC-group, if all the centralizers of its non-central elements are abelian. By Theorem 2.11 in [11], we know the non-commuting graph associated to an AC-group is complete s-partite graph, where $s+1$ is the number of distinct centralizers. All these considerations imply that all AC-groups whose non-commuting graphs are 1-planar, are S_{3}, D_{8}, and Q_{8}.

Let W be a set of vertices. If $\Gamma-W$ is not connected, then W separates Γ and W is called a vertex-separator. For any $k \geq 1, \Gamma$ is k-connected if it has the order at least $k+1$ and no set of $k-1$ vertices is a separator. We discuss the separator set of the non-commuting graph of an AC-group. Moreover, we observe that Γ_{G} is not k-connected, for $k=1,2$. The non-commuting graph $\Gamma_{D_{2 p}}$ is p-connected, where p is an odd prime number.

In the third section, we observe that the line graph of the non-commuting graph $L\left(\Gamma_{G}\right)$ is a connected graph with a hamiltonian cycle. It is not planar. Furthermore, we study its domination, clique and independence number.

2. 5-APEX AND 1-PLANAR NON-COMMUTING GRAPHS

For positive integers l, r and t, let $K_{l[r]}$ denote a complete l-partite graph with each part of order r and let $K_{l[r], t}$ denote a complete $(l+1)$-partite graph with l parts of order r and a part of order t (cf. [13]).

An example of a large class of AC-groups is given by the dihedral groups. The structure of the non-commuting graph associated to dihedral group $D_{2 n}$ depends on the integer n. If n is an odd number, then it is a complete $(n+1)$ partite graph with $(n+1)$ parts $\left\{a, a^{2}, \cdots, a^{n-1}\right\},\{b\},\{a b\}, \cdots,\left\{a^{n-1} b\right\}$. It is not hard to deduce that by omitting the vertices $a^{2} b, \cdots, a^{n-1} b$ the remaining graph is planar, so $\Gamma_{D_{2 n}}$ is $(n-2)$-apex for odd n. The other graph parameters can be obtained too. For instance, $\Gamma_{D_{2 n}}$ is n-connected, where n is an odd number. Note that if we omit n vertices $b, a b, \cdots, a^{n-1} b$, then $\Gamma_{D_{2 n}}$ is not connected.

Now, assume n is an even integer. Therefore, $\Gamma_{D_{2 n}}$ is complete $\left(\frac{n}{2}+1\right)$ partite graph. The $\left(\frac{n}{2}+1\right)$ parts are $\left\{a, a^{2}, \cdots, a^{\frac{n}{2}-1}, a^{\frac{n}{2}+1}, \cdots, a^{n-1}\right\}$ and $\left\{a^{i} b, a^{i+\frac{n}{2}} b\right\}, 0 \leq i \leq \frac{n}{2}-1$. If $n=4$, then $\Gamma_{D_{8}}=K_{3[2]}$ which is planar and 4 -connected. Let $n \geq 6$. Omit $(n-2)$ of the vertices which are not the powers of a, say $\left\{a^{i} b, a^{i+\frac{n}{2}} b\right\}, 1 \leq i \leq \frac{n}{2}-1$. Hence, $\Gamma_{D_{2 n}}$ is $(n-2)$-apex for even n. Moreover, it is n-connected, while the n vertices $a^{i} b, a^{i+\frac{n}{2}} b$ are vertex separators, $0 \leq i \leq \frac{n}{2}-1$ (for the structure of $\Gamma_{D_{2 n}}$, see [13, Lemma 2.3]). We conclude the following result.

Proposition 2.1. The non-commuting graph of $D_{2 n}$ is ($n-2$)-apex and n-connected, for $n \geq 4$.

Let A_{4} be the alternating group on 4 letters, then $\Gamma_{A_{4}}=K_{4[2], 3}$ and clearly 6 -apex and 8 -connected. The proof of Theorem 2.2 is inspired by the proof of [1, Proposition 2.3].

THEOREM 2.2. The non-commuting graph Γ_{G} is apex if and only if $G \cong$ S_{3}, D_{8}, Q_{8}.

Proof. Suppose Γ_{G} is apex. By definition, there is $v \in V\left(\Gamma_{G}\right)$ such that $\Gamma_{G}-\{v\}$ is planar and so we have for the clique number $\omega\left(\Gamma_{G}-\{v\}\right)<5$. We have three cases for the vertex v.
(i) The vertex v commutes with all other vertices of Γ_{G}.
(ii) The vertex v does not commute with some vertices of Γ_{G}.
(iii) The vertex v does not commute with all other vertices of Γ_{G}.

We claim that the first case does not occur, since non-commuting graphs are connected (see [1, Proposition 2.1]). If (ii) or (iii) hold, then $\omega\left(\Gamma_{G}\right)<6$. Thus, $G / Z(G)$ is a finite group, by the main result of [9]. Clearly, the size of the set $G-Z(G)-\{v\}$ is greater than 2 . There are $x, y \in G-Z(G)-\{v\}$ such that $[x, y] \neq 1$, because otherwise Γ_{G} is planar and the non-commuting graph of S_{3}, D_{8} or Q_{8} does not have the same figure as in this case explained. We prove that $|Z(G)| \leq 5$. If $Z \subseteq Z(G)$ and $|Z|>5$, then the induced subgraph Δ of $\Gamma_{G}-\{v\}$ on the vertices $x Z \cup y Z$ is not planar and we get a contradiction. Hence G is finite and so Γ_{G} is a finite graph. Therefore, there is a vertex $t \in G-Z(G)-\{v\}$ such that $\operatorname{deg}_{\Gamma_{G}-\{v\}}(t) \leq 5$ (see e.g. [2, Corollary 3.5.9]). Two cases can happen $[t, v]=1$ or $[t, v] \neq 1$. Thus $|G|-\left|C_{G}(t)\right| \leq 5$ or $|G|-\left|C_{G}(t)\right| \leq 6$. So, by the fact that $\left|C_{G}(t)\right| \leq|G| / 2$, we conclude that $|G| \leq$ 12 and $G \cong S_{3}, D_{8}, Q_{8}, D_{10}, D_{12}, T=\left\langle a, b: a^{6}=1, b^{2}=a^{3}, a^{b}=a^{-1}\right\rangle$, and A_{4}. By the argument before the theorem, Γ_{G} is planar for S_{3}, D_{8}, Q_{8}, while $\Gamma_{D_{10}}=K_{5[1], 4}$ is 3-apex, $\Gamma_{D_{12}}=K_{3[2], 4}$ is 4-apex and $\Gamma_{A_{4}}=K_{4[2], 3}$ is 6 -apex. By the presentation of T, we deduce that $\Gamma_{T} \cong K_{3[2], 4}$ and 4-apex.

As in the proof of Theorem 2.2, we can find the groups whose non-commuting graphs are k-apex. Let Γ_{G} be k-apex. So, $\omega\left(\Gamma_{G}-\left\{v_{1}, v_{2}, \cdots, v_{k}\right\}\right)<5$, where any v_{i} are vertices that, by omitting them, the remaining graph is planar $1 \leq i \leq k$. By computations and the fact that G is a non-abelian group, we have at least two elements $x, y \in G-Z(G)-\left\{v_{1}, v_{2}, \cdots, v_{k}\right\}$. If $[x, y] \neq 1$, then $|Z(G)| \leq 5$ and Γ_{G} is a finite graph. Therefore, for the vertex $t \in G-Z(G)-\left\{v_{1}, v_{2}, \cdots, v_{k}\right\}$, we have $|G|-\left|C_{G}(t)\right| \leq 5+k$, in the worst situation. This implies that $|G| \leq 2(5+k)$. If for all vertices $x, y \in G-Z(G)-\left\{v_{1}, v_{2}, \cdots, v_{k}\right\}$ and x and y commute, then $\operatorname{deg}(x)=$ $|G|-\left|C_{G}(x)\right| \leq k$ and so $|G| \leq 2 k$. So, we shall investigate the groups with the order less than $2(5+k)$. Hence, we have the following result.

THEOREM 2.3. Let Γ_{G} be the non-commuting graph associated to the nonabelian group G.
(i) Γ_{G} is 2-apex if and only if $G \cong S_{3}, D_{8}, Q_{8}$.
(ii) Γ_{G} is 3-apex if and only if $G \cong S_{3}, D_{8}, Q_{8}, D_{10}$.
(iii) Γ_{G} is 4-apex if and only if $G \cong S_{3}, D_{8}, Q_{8}, D_{10}, D_{12}, T$.
(iv) Γ_{G} is 5-apex if and only if $G \cong S_{3}, D_{8}, Q_{8}, D_{10}, D_{12}, T, D_{14}$.

Proof. According to the arguments before the theorem, we check the assertion for all non-abelian groups with $|G| \leq 20$. Using GAP [5], we observe that all these groups are AC-groups. Therefore, again [11, Theorem 2.1] implies that Γ_{G} is a complete s-partite graph. For instance, the only non-abelian group of order 14 is $D_{14}, \Gamma_{D_{14}}=K_{7[1], 6}$. If we omit 5 vertices in the singleton parts, then the graph is planar. There are nine non-abelian groups of order 16. The non-commuting graph associate to 6 of them are $K_{3[4]}$ and so it is 6 -apex. Moreover, 3 of them are $K_{4[2], 6}$ and so 6 -apex. There are 3 non-abelian groups of order 18. The non-commuting graph of two of them are $K_{9[1], 8}$ and 7-apex, while the non-commuting graph of the other one is $K_{3[3], 6}$ and 7 -apex. Finally, there are 3 non-abelian group of order 20 . The non-commuting graph of two of them is $K_{5[2], 8}$ and the other one is $K_{5[3], 4}$, which are 8-apex and 13-apex, respectively.

Note that from the results of [3] it follows that: if a graph Γ contains one of the graphs $K_{7,3}, K_{5,4}, K_{4,3,1}, K_{2[3], 2}$ or $K_{4[1], 3}$, then Γ is not 1-planar. Moreover, if a non-1-planar graph contains a complete multipartite graph, then it contains at least one from the list above.

THEOREM 2.4. Let G be an AC-group. The non-commuting graph Γ_{G} is 1-planar if and only if $G \cong S_{3}, D_{8}, Q_{8}$.

Proof. Suppose Γ_{G} is 1-planar. Since G is an AC-group, again from [11, Theorem 2.11] we deduce that Γ_{G} is a complete s-partite graph. Now, 1planarity of the graph implies that it does not contain K_{7} (see [4] for more details). This means $\omega\left(\Gamma_{G}\right)<7$. Similar arguments to those in the proof of Theorem 2.2 imply that $G / Z(G)$ is finite. We claim that $|Z(G)|<4$, because otherwise if $Z \subset Z(G)$ and $|Z| \geq 4$, then the induced subgraph Γ_{0} on $x Z \cup y Z$ is not 1-planar as it contains $K_{4[1], 3}$, where x, y are two elements of the non-abelian group G that $[x, y] \neq 1$. From this fact it follows that Γ_{G} is a finite graph. Since Γ_{G} is 1-planar, there is a vertex like x such that $\operatorname{deg}(x)=|G|-\left|C_{G}(x)\right| \leq 7$. We conclude that $|G| \leq 14$. We know that $\Gamma_{D_{10}} \cong K_{5[1], 4}, \Gamma_{D_{14}} \cong K_{7[1], 6} \Gamma_{A_{4}} \cong K_{4[2], 3}$ all contain $K_{4[1], 3}$ and so they are not 1-planar. Moreover, $\Gamma_{D_{12}} \cong \Gamma_{T} \cong K_{3[2], 4}$ contain $K_{4,3,1}$ and are not 1-planar.

A graph is outer-planar if it does not contain the subdivisions $K_{2,3}$ and K_{4}. By a similar argument to that in Theorem 2.4, we deduce that Γ_{G} is an outer-planar graph if and only if G is isomorphic to S_{3}, D_{8} or Q_{8}.

There is no complete non-commuting graph, so if Γ_{G} is a non-commuting graph associated to an AC-group G, then it is a complete s-partite graph [11, Theorem 2.11] and at least there is a part with more than one vertex.

Proposition 2.5. If G is an $A C$-group, then Γ_{G} is k-connected, where $k \geq s-1$ and s is the number of centralizers of distinct non-central elements.

Proof. By the argument before the theorem, the worst case is when Γ_{G} is a complete s-partite graph with just one part with more than one vertex. If we choose $s-1$ vertices of the parts with one vertex, then we obtain a separator set.

Let Γ_{G} be k-connected. Suppose, by omitting $\left\{v_{1}, \cdots, v_{k}\right\}$, there is no path between two vertices x and y. The vertices x and y join all to v_{i}, because otherwise we can find a separator set with the size less than k and we get a contradiction. Therefore, $\operatorname{deg}(x), \operatorname{deg}(y) \geq k$. $\Gamma_{S_{3}}$ is 3-connected, the noncommuting graph of D_{8} or Q_{8} is 4-connected and the non-commuting graph of D_{12}, T or A_{4} is 6 -connected.

3. THE LINE GRAPH OF THE NON-COMMUTING GRAPH Γ_{G}

Let us denote the line graph of the non-commuting graph Γ_{G} by $L\left(\Gamma_{G}\right)$. Clearly, $L\left(\Gamma_{G}\right)$ is a graph with edges of Γ_{G} as its vertices and $e_{i}=\left\{x_{i}, y_{i}\right\}$ and $e_{j}=\left\{x_{j}, y_{j}\right\}$ join if $e_{i} \cap e_{j} \neq \emptyset$. Clearly, $\operatorname{deg}\left(e_{i}\right)=2|G|-\left|C_{G}\left(x_{i}\right)\right|-\left|C_{G}\left(y_{i}\right)\right|-2$. If $e_{i}=\left\{x_{i}, y_{i}\right\}$ is an isolated vertex in $L\left(\Gamma_{G}\right)$, then it does not have any common vertex with the other edges, say $e=\{x, y\}$. As $\operatorname{diam}\left(\Gamma_{G}\right)=2$, there is a path between x and x_{i} of length less than 2 . But this fact shows there is an edge for which one of its ends is the same as that of e_{i}. Thus, there is no isolated vertex in $L\left(\Gamma_{G}\right)$.

Proposition 3.1. For line graph of the non-commuting graph we have $\operatorname{diam}\left(L\left(\Gamma_{G}\right)\right) \leq 3$ and $\operatorname{girth}\left(L\left(\Gamma_{G}\right)\right)=3$.

Proof. Let $e_{i}=\left\{x_{i}, y_{i}\right\}$ and $e_{j}=\left\{x_{j}, y_{j}\right\}$ be two non-adjacent vertices of $L\left(\Gamma_{G}\right)$. Without loss of generality, we concentrate on one pair of end points x_{i} and x_{j}. Since diam $\left(\Gamma_{G}\right)=2, d\left(x_{i}, x_{j}\right) \leq 2$, if $e_{i j}=\left\{x_{i}, x_{j}\right\}$, then $d\left(e_{i}, e_{j}\right)=2$. Suppose $d\left(x_{i}, x_{j}\right)=2, e_{i k}=\left\{x_{i}, x_{k}\right\}$ and $e_{k j}=\left\{x_{k}, x_{j}\right\}$. Hence, the rest follows clearly.

Two subgraphs Δ_{1} and Δ_{2} are said to be close in the graph Γ if they are disjoint and there is an edge of Γ joining a vertex of Δ_{1} and one of Δ_{2}. If Δ_{1} and Δ_{2} are disjoint and not close, then Δ_{1} and Δ_{2} are remote. The degree of an edge in the graph Γ is denoted by $\operatorname{deg}_{\Gamma}(e)$, which is the number of vertices of Γ close to e. A cycle ζ of the graph Γ is called a dominating cycle (D-cycle) if every edge of G is incident with at least one vertex of ζ.

Proposition 3.2. The non-commuting graph Γ_{G} is D-cyclic.
Proof. The non-commuting graph is not a tree and by the definition of the degree of an edge. For any edge e, we have

$$
\operatorname{deg}_{\Gamma_{G}}(e)=2|G|-\left|C_{G}(x)\right|-\left|C_{G}(y)\right|-2
$$

where x and y are two end points of the edge e. Thus,

$$
|G|-|Z(G)|-2 \leq 2|G|-\left|C_{G}(x)\right|-\left|C_{G}\left(x^{\prime}\right)\right|-2 \leq \operatorname{deg}_{\Gamma_{G}}(e)+\operatorname{deg}_{\Gamma_{G}}(f),
$$

where e and f are remote edges and x^{\prime} is an end point of f. Hence, by [12, Theorem 2.], the result follows.

Harary and Nash-Williams [7] showed that the existence of a dominating cycle in Γ is essentially equivalent to the existence of a hamiltonian cycle in the line graph of Γ, denoted $L(\Gamma)$. Therefore, there is a hamiltonian cycle for the line graph of the non-commuting graph Γ_{G}.

Greenwell and Hemminger [6] proved that a graph Γ has a planar line graph if and only if Γ has no subdivision isomorphic to $K_{3,3}, K_{1,5}, P_{4}+K_{1}$ or $K_{2}+\overline{K_{3}}$.

ThEOREM 3.3. The line graph of the non-commuting graph of the group G is not planar.

Proof. Suppose $L\left(\Gamma_{G}\right)$ is planar. Therefore, Γ_{G} does not contain a subdivision isomorphic to $K_{1,5}$ and the degree of vertices are less than equal to 4. By the fact that degree of each vertex v of the non-commuting graph is $|G|-\left|C_{G}(v)\right|$, we deduce the possible non-abelian groups are S_{3}, D_{8} or Q_{8}. But the diagram of $\Gamma_{S_{3}}$ includes the subdivision $K_{2}+\overline{K_{3}}$, while the diagram of $\Gamma_{D_{8}} \cong \Gamma_{Q_{8}}$ contains $K_{3,3}$.

The size of the largest complete induced subgraph of the graph Γ is called the clique number and is denoted by $\omega(\Gamma)$.

Proposition 3.4. The clique number of the line non-commuting graph is $\max \left\{|G|-\left|C_{G}(x)\right|: x \in V\left(\Gamma_{G}\right)\right\}$.

Proof. For every vertex $x \in V\left(\Gamma_{G}\right)$, there are $|G|-\left|C_{G}(x)\right|$ vertices in $L\left(\Gamma_{G}\right)$. All these vertices have x in common, so they are adjacent and form a clique for $L\left(\Gamma_{G}\right)$. Hence, the assertion is clear.

As a consequence of the above proposition, $\omega\left(L\left(\Gamma_{S_{3}}\right)\right)=4$ and $\omega\left(L\left(\Gamma_{D_{2 n}}\right)\right)$ is $2 n-4$ or $2 n-2$, for even or odd integer n, respectively.

The subset S of vertices of the graph Γ is a dominating set if all the vertices outside of S join to at least one of the inside vertices of S. The size of the smallest dominating set is called domination number and is denoted by $\gamma(\Gamma)$.

Proposition 3.5. For a non-abelian group $G, \gamma\left(L\left(\Gamma_{G}\right)\right) \geq 2$.
Proof. It is enough to prove $L\left(\Gamma_{G}\right)$ does not have a singleton dominating set. If $S=\{e\}$ is a dominating set for $L\left(\Gamma_{G}\right)$, then e dominate all other vertices of $L\left(\Gamma_{G}\right)$, where $e=\{x, y\}$. This means for any vertex $f_{i} \in V\left(L\left(\Gamma_{G}\right)\right)$, e and f_{i} have a vertex in common. Without lose of generality, suppose $f_{1}=\left\{y, t_{1}\right\}$ and $f_{2}=\left\{y, t_{2}\right\}$. The vertices t_{1}, t_{2} are not adjacent, because otherwise an edge formed by them is not dominated by e. By a similar argument, t_{i} 's are not adjacent to the vertices of $N(x)$, where $N(x)$ is the set of all neighbors of
$x, i=1,2$. On the other hand, there is no vertex of degree one in the noncommuting graph, which implies that t_{1}, t_{2} both join to x. One can imagine the diagram of the graph in triangles that have one side in common. Thus, Γ_{G} is planar and accordingly $G \cong S_{3}, D_{8}, Q_{8}$. But the diagram of the noncommuting graph of these groups does not match to what we observed.

The above bound is sharp, $\gamma\left(L\left(\Gamma_{S_{3}}\right)\right)=2$. The non-commuting graph is a connected graph and $d(x, y) \leq 2$, for all pairs of vertices x and y. This fact is used in Lemma 3.6 (period).

Lemma 3.6. Let $e=\{x, y\}$ be a vertex of the line graph $L\left(\Gamma_{G}\right)$. Then the independent set which contains the vertex e has at least $\sum_{i=1}^{l} \operatorname{deg}\left(t_{i}\right)$ elements, where t_{i} 's are the vertices whose distance to x, y is 2 and l is the number of them. Moreover, $l=\left|C_{G}(x) \cap C_{G}(y)\right|-|Z(G)|$.

Proof. If t is a vertex such that $d(t, x)=d(t, y)=2$, then there is a vertex $s \in N(x)$ and $\{s, t\}$ is an edge which does not have a common vertex with e. Since the degree of vertices in the non-commuting graph is larger than 2 and t does not join to x and y directly, $\left\{t, s_{i}\right\}$ and e are non-adjacent edges, where $s_{i} \in N(t)$. Thus, for every vertex of distance 2 to x, y, there are $\operatorname{deg}(t)$ edges that are independent of e, which means there are $\operatorname{deg}(t)$ edges without the common vertices with e. Hence, the first part is clear. As l is the number of vertices whose distance to x, y is 2 , we should count the vertices that commute with x, y.

We denote the size of the independent set of the graph Γ that includes the vertex x by $\alpha_{x}(\Gamma)$ and the independence number of the graph by $\alpha(\Gamma)$. Therefore, with the notation from Lemma 3.6, we have $\alpha_{e}\left(L\left(\Gamma_{G}\right)\right) \geq \sum_{i=1}^{l} \operatorname{deg}\left(t_{i}\right)$.

Theorem 3.7. Let G be an AC-group. There is no independent vertex of $L\left(\Gamma_{G}\right)$ for an arbitrary vertex $e=\{x, y\}$.

Proof. By Lemma 3.6, it is enough to consider vertices of Γ_{G} such that their distance to both x, y are 2. Let t be a vertex of Γ_{G} such that $d(t, x)=d(t, y)=$ 2. Then $t \in C_{G}(x) \cap C_{G}(y)-Z(G)$. By the property of AC-groups, $[x, y]=1$ (see [10, Lemma 3.2]), which gives a contradiction.

For the line graph of the non-commuting graph associated to an AC-group, $\alpha\left(L\left(\Gamma_{G}\right)\right)=1$.

REFERENCES

[1] A. Abdollahi, S. Akbari and H.R. Maimani, Non-commuting graph of a group, J. Algebra, 298 (2006), 468-492.
[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Elsevier Science Publishing, New York, 1976.
[3] J. Czap and D. Hudàk, 1-planarity of complete multipartite graphs, Discrete Appl. Math., 160 (2012), 505-512.
[4] I. Fabrici and T. Madaras, The structure of 1-planar graph, Discrete Math., 307 (2007), 854-865.
[5] GAP, GAP - Groups, Algorithms and Programming, http://www.gap-system.org, 2002.
[6] D.L. Greenwell and R.L. Hemminger, Forbidden subgraphs for graphs with planar line graphs, Discrete Math., 2 (1972), 31-34.
[7] F. Harary and C.St.J.A. Nash-Williams, On Eulerian and Hamiltonian graphs and line graphs, Canad. Math. Bull., 8 (1965), 701-710.
[8] B.H. Neumann, A problem of Paul Erdös on groups, J. Aust. Math. Soc., 21 (1976), 467-472.
[9] L. Pyber, The number of pairwise noncommuting elements and the index of the centre in a finite group, J. Lond. Math. Soc. (2), 35 (1987), 287-295.
[10] D.M. Rocke, p-groups with abelian centralizers, Proc. Lond. Math. Soc. (3), 30 (1975), 55-75.
[11] B. Tolue, The non-centralizer graph of a finite group, Math. Rep. (Bucur.), $\mathbf{1 7}$ (67) (2015), 265-275.
[12] H.J. Veldman, Existence of dominating cycles and pathes, Discrete Math., 43 (1983), 281-296.
[13] Y. Wei, X. Ma and K.Wang, Rainbow connectivity of the non-commuting graph of a finite group, J. Algebra Appl., 15 (2016), 1650127.

Received July 9, 2018
Accepted November 7, 2018

Hakim Sabzevari University
Department of Pure Mathematics
Sabzevar, Iran
E-mail: b.tolue@gmail.com
b.tolue@hsu.ac.ir

