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ON THE NON-COMMUTING GRAPH OF A GROUP

BEHNAZ TOLUE

Abstract. In this paper, groups whose non-commuting graphs are k-apex for
1 ≤ k ≤ 5 are classified. The 1-planarity of the non-commuting graph for an
AC-group G is discussed. Moreover, the k-connectivity of the non-commuting
graph is verified, for k ≤ 6. Finally, some properties of the line graph of the
non-commuting graph of a group are studied.
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1. INTRODUCTION

Graphs can be assigned to algebraic structures in many different ways. One
of such graphs is the non-commuting graph associated to a group [1, 8]. Let
G be a non-abelian group. The non-commuting graph ΓG associated to G is a
graph whose vertices are non-central elements of G and two distinct vertices
join by an edge if they do not commute.

Recall that a graph Γ is k-apex, if there exist t vertices v1, v2, · · · , vt of the
graph Γ such that the induced graph Γ−{v1, · · · , vt} is planar, where t ≤ k is
a positive integer. In the k-Apex problem the task is to find at most k vertices
whose deletion makes the given graph planar. In other words, for a given
graph Γ and a parameter k, the k-apex-ness is to decide whether deleting at
most k vertices from Γ can result in a planar graph. Such a set of vertices is
sometimes called a set of apex vertices or apices. Let us denote 1-apex graph
by apex graph.

Let D2n = 〈a, b : an = b2 = 1, ab = a−1〉 be the dihedral group of order
2n, n ≥ 4. In Section 2, we investigate the k-apex non-commuting graphs,
1 ≤ k ≤ 5. The non-commuting graph ΓG is 5-apex if and only if G is
symmetric group S3, dihedral groups D8, D10, D12, D14, quaternion group
Q8 or T = 〈a, b : a6 = 1, b2 = a3, ab = a−1〉. In the process of proving the
last result, the apex-ness of the non-commuting graphs of the groups of order
less than 21 is achieved.
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A graph is called 1-planar if it can be drawn in the plane such that each edge
is crossed at most once. Czap and Hudàk present the full characterization of 1-
planar complete k-partite graphs [3]. A non-abelian group G is an AC-group,
if all the centralizers of its non-central elements are abelian. By Theorem
2.11 in [11], we know the non-commuting graph associated to an AC-group is
complete s-partite graph, where s+1 is the number of distinct centralizers. All
these considerations imply that all AC-groups whose non-commuting graphs
are 1-planar, are S3, D8, and Q8.

Let W be a set of vertices. If Γ−W is not connected, then W separates Γ
and W is called a vertex-separator. For any k ≥ 1, Γ is k-connected if it has
the order at least k+ 1 and no set of k− 1 vertices is a separator. We discuss
the separator set of the non-commuting graph of an AC-group. Moreover, we
observe that ΓG is not k-connected, for k = 1, 2. The non-commuting graph
ΓD2p is p-connected, where p is an odd prime number.

In the third section, we observe that the line graph of the non-commuting
graph L(ΓG) is a connected graph with a hamiltonian cycle. It is not planar.
Furthermore, we study its domination, clique and independence number.

2. 5-APEX AND 1-PLANAR NON-COMMUTING GRAPHS

For positive integers l, r and t, let Kl[r] denote a complete l-partite graph
with each part of order r and let Kl[r],t denote a complete (l + 1)-partite graph
with l parts of order r and a part of order t (cf. [13]).

An example of a large class of AC-groups is given by the dihedral groups.
The structure of the non-commuting graph associated to dihedral group D2n

depends on the integer n. If n is an odd number, then it is a complete (n+1)-
partite graph with (n+1) parts {a, a2, · · · , an−1}, {b}, {ab}, · · · , {an−1b}. It is
not hard to deduce that by omitting the vertices a2b, · · · , an−1b the remaining
graph is planar, so ΓD2n is (n−2)-apex for odd n. The other graph parameters
can be obtained too. For instance, ΓD2n is n-connected, where n is an odd
number. Note that if we omit n vertices b, ab, · · · , an−1b, then ΓD2n is not
connected.

Now, assume n is an even integer. Therefore, ΓD2n is complete (n2 + 1)-

partite graph. The (n2 + 1) parts are {a, a2, · · · , a
n
2
−1, a

n
2

+1, · · · , an−1} and

{aib, ai+
n
2 b}, 0 ≤ i ≤ n

2 − 1. If n = 4, then ΓD8 = K3[2] which is planar
and 4-connected. Let n ≥ 6. Omit (n − 2) of the vertices which are not the

powers of a, say {aib, ai+
n
2 b}, 1 ≤ i ≤ n

2 − 1. Hence, ΓD2n is (n− 2)-apex for

even n. Moreover, it is n-connected, while the n vertices aib, ai+
n
2 b are vertex

separators, 0 ≤ i ≤ n
2 − 1 (for the structure of ΓD2n , see [13, Lemma 2.3]). We

conclude the following result.

Proposition 2.1. The non-commuting graph of D2n is (n − 2)-apex and
n-connected, for n ≥ 4.
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Let A4 be the alternating group on 4 letters, then ΓA4 = K4[2],3 and clearly
6-apex and 8-connected. The proof of Theorem 2.2 is inspired by the proof of
[1, Proposition 2.3].

Theorem 2.2. The non-commuting graph ΓG is apex if and only if G ∼=
S3, D8, Q8.

Proof. Suppose ΓG is apex. By definition, there is v ∈ V (ΓG) such that
ΓG−{v} is planar and so we have for the clique number ω(ΓG−{v}) < 5. We
have three cases for the vertex v.

(i) The vertex v commutes with all other vertices of ΓG.
(ii) The vertex v does not commute with some vertices of ΓG.

(iii) The vertex v does not commute with all other vertices of ΓG.

We claim that the first case does not occur, since non-commuting graphs are
connected (see [1, Proposition 2.1]). If (ii) or (iii) hold, then ω(ΓG) < 6.
Thus, G/Z(G) is a finite group, by the main result of [9]. Clearly, the size of
the set G − Z(G) − {v} is greater than 2. There are x, y ∈ G − Z(G) − {v}
such that [x, y] 6= 1, because otherwise ΓG is planar and the non-commuting
graph of S3, D8 or Q8 does not have the same figure as in this case explained.
We prove that |Z(G)| ≤ 5. If Z ⊆ Z(G) and |Z| > 5, then the induced
subgraph ∆ of ΓG − {v} on the vertices xZ ∪ yZ is not planar and we get a
contradiction. Hence G is finite and so ΓG is a finite graph. Therefore, there is
a vertex t ∈ G−Z(G)−{v} such that degΓG−{v}(t) ≤ 5 (see e.g. [2, Corollary

3.5.9]). Two cases can happen [t, v] = 1 or [t, v] 6= 1. Thus |G|−|CG(t)| ≤ 5 or
|G|−|CG(t)| ≤ 6. So, by the fact that |CG(t)| ≤ |G|/2, we conclude that |G| ≤
12 and G ∼= S3, D8, Q8, D10, D12, T = 〈a, b : a6 = 1, b2 = a3, ab = a−1〉,
and A4. By the argument before the theorem, ΓG is planar for S3, D8, Q8,
while ΓD10 = K5[1],4 is 3-apex, ΓD12 = K3[2],4 is 4-apex and ΓA4 = K4[2],3 is
6-apex. By the presentation of T , we deduce that ΓT

∼= K3[2],4 and 4-apex. �

As in the proof of Theorem 2.2, we can find the groups whose non-commu-
ting graphs are k-apex. Let ΓG be k-apex. So, ω(ΓG − {v1, v2, · · · , vk}) < 5,
where any vi are vertices that, by omitting them, the remaining graph is
planar 1 ≤ i ≤ k. By computations and the fact that G is a non-abelian
group, we have at least two elements x, y ∈ G − Z(G) − {v1, v2, · · · , vk}. If
[x, y] 6= 1, then |Z(G)| ≤ 5 and ΓG is a finite graph. Therefore, for the
vertex t ∈ G − Z(G) − {v1, v2, · · · , vk}, we have |G| − |CG(t)| ≤ 5 + k, in
the worst situation. This implies that |G| ≤ 2(5 + k). If for all vertices
x, y ∈ G − Z(G) − {v1, v2, · · · , vk} and x and y commute, then deg(x) =
|G| − |CG(x)| ≤ k and so |G| ≤ 2k. So, we shall investigate the groups with
the order less than 2(5 + k). Hence, we have the following result.

Theorem 2.3. Let ΓG be the non-commuting graph associated to the non-
abelian group G.

(i) ΓG is 2-apex if and only if G ∼= S3, D8, Q8.
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(ii) ΓG is 3-apex if and only if G ∼= S3, D8, Q8, D10.
(iii) ΓG is 4-apex if and only if G ∼= S3, D8, Q8, D10, D12, T .
(iv) ΓG is 5-apex if and only if G ∼= S3, D8, Q8, D10, D12, T, D14.

Proof. According to the arguments before the theorem, we check the as-
sertion for all non-abelian groups with |G| ≤ 20. Using GAP [5], we observe
that all these groups are AC-groups. Therefore, again [11, Theorem 2.1] im-
plies that ΓG is a complete s-partite graph. For instance, the only non-abelian
group of order 14 is D14, ΓD14 = K7[1],6. If we omit 5 vertices in the singleton
parts, then the graph is planar. There are nine non-abelian groups of order 16.
The non-commuting graph associate to 6 of them are K3[4] and so it is 6-apex.
Moreover, 3 of them are K4[2],6 and so 6-apex. There are 3 non-abelian groups
of order 18. The non-commuting graph of two of them are K9[1],8 and 7-apex,
while the non-commuting graph of the other one is K3[3],6 and 7-apex. Finally,
there are 3 non-abelian group of order 20. The non-commuting graph of two
of them is K5[2],8 and the other one is K5[3],4, which are 8-apex and 13-apex,
respectively. �

Note that from the results of [3] it follows that: if a graph Γ contains one
of the graphs K7,3, K5,4, K4,3,1, K2[3],2 or K4[1],3, then Γ is not 1-planar.
Moreover, if a non-1-planar graph contains a complete multipartite graph,
then it contains at least one from the list above.

Theorem 2.4. Let G be an AC-group. The non-commuting graph ΓG is
1-planar if and only if G ∼= S3, D8, Q8.

Proof. Suppose ΓG is 1-planar. Since G is an AC-group, again from [11,
Theorem 2.11] we deduce that ΓG is a complete s-partite graph. Now, 1-
planarity of the graph implies that it does not contain K7 (see [4] for more
details). This means ω(ΓG) < 7. Similar arguments to those in the proof
of Theorem 2.2 imply that G/Z(G) is finite. We claim that |Z(G)| < 4,
because otherwise if Z ⊂ Z(G) and |Z| ≥ 4, then the induced subgraph Γ0

on xZ ∪ yZ is not 1-planar as it contains K4[1],3, where x, y are two elements
of the non-abelian group G that [x, y] 6= 1. From this fact it follows that
ΓG is a finite graph. Since ΓG is 1-planar, there is a vertex like x such that
deg(x) = |G| − |CG(x)| ≤ 7. We conclude that |G| ≤ 14. We know that
ΓD10

∼= K5[1],4, ΓD14
∼= K7[1],6 ΓA4

∼= K4[2],3 all contain K4[1],3 and so they
are not 1-planar. Moreover, ΓD12

∼= ΓT
∼= K3[2],4 contain K4,3,1 and are not

1-planar. �

A graph is outer-planar if it does not contain the subdivisions K2,3 and
K4. By a similar argument to that in Theorem 2.4, we deduce that ΓG is an
outer-planar graph if and only if G is isomorphic to S3, D8 or Q8.

There is no complete non-commuting graph, so if ΓG is a non-commuting
graph associated to an AC-group G, then it is a complete s-partite graph [11,
Theorem 2.11] and at least there is a part with more than one vertex.
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Proposition 2.5. If G is an AC-group, then ΓG is k-connected, where
k ≥ s− 1 and s is the number of centralizers of distinct non-central elements.

Proof. By the argument before the theorem, the worst case is when ΓG is a
complete s-partite graph with just one part with more than one vertex. If we
choose s− 1 vertices of the parts with one vertex, then we obtain a separator
set. �

Let ΓG be k-connected. Suppose, by omitting {v1, · · · , vk}, there is no path
between two vertices x and y. The vertices x and y join all to vi, because
otherwise we can find a separator set with the size less than k and we get a
contradiction. Therefore, deg(x),deg(y) ≥ k. ΓS3 is 3-connected, the non-
commuting graph of D8 or Q8 is 4-connected and the non-commuting graph
of D12, T or A4 is 6-connected.

3. THE LINE GRAPH OF THE NON-COMMUTING GRAPH ΓGΓGΓG

Let us denote the line graph of the non-commuting graph ΓG by L(ΓG).
Clearly, L(ΓG) is a graph with edges of ΓG as its vertices and ei = {xi, yi} and
ej = {xj , yj} join if ei∩ej 6= ∅. Clearly, deg(ei) = 2|G|−|CG(xi)|−|CG(yi)|−2.
If ei = {xi, yi} is an isolated vertex in L(ΓG), then it does not have any
common vertex with the other edges, say e = {x, y}. As diam(ΓG) = 2, there
is a path between x and xi of length less than 2. But this fact shows there is
an edge for which one of its ends is the same as that of ei. Thus, there is no
isolated vertex in L(ΓG).

Proposition 3.1. For line graph of the non-commuting graph we have
diam(L(ΓG)) ≤ 3 and girth(L(ΓG)) = 3.

Proof. Let ei = {xi, yi} and ej = {xj , yj} be two non-adjacent vertices of
L(ΓG). Without loss of generality, we concentrate on one pair of end points xi
and xj . Since diam(ΓG) = 2, d(xi, xj) ≤ 2, if eij = {xi, xj}, then d(ei, ej) = 2.
Suppose d(xi, xj) = 2, eik = {xi, xk} and ekj = {xk, xj}. Hence, the rest
follows clearly. �

Two subgraphs ∆1 and ∆2 are said to be close in the graph Γ if they are
disjoint and there is an edge of Γ joining a vertex of ∆1 and one of ∆2. If ∆1

and ∆2 are disjoint and not close, then ∆1 and ∆2 are remote. The degree of
an edge in the graph Γ is denoted by degΓ(e), which is the number of vertices
of Γ close to e. A cycle ζ of the graph Γ is called a dominating cycle (D-cycle)
if every edge of G is incident with at least one vertex of ζ.

Proposition 3.2. The non-commuting graph ΓG is D-cyclic.

Proof. The non-commuting graph is not a tree and by the definition of the
degree of an edge. For any edge e, we have

degΓG
(e) = 2|G| − |CG(x)| − |CG(y)| − 2,
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where x and y are two end points of the edge e. Thus,

|G| − |Z(G)| − 2 ≤ 2|G| − |CG(x)| − |CG(x′)| − 2 ≤ degΓG
(e) + degΓG

(f),

where e and f are remote edges and x′ is an end point of f . Hence, by [12,
Theorem 2.], the result follows. �

Harary and Nash-Williams [7] showed that the existence of a dominating
cycle in Γ is essentially equivalent to the existence of a hamiltonian cycle in
the line graph of Γ, denoted L(Γ). Therefore, there is a hamiltonian cycle for
the line graph of the non-commuting graph ΓG.

Greenwell and Hemminger [6] proved that a graph Γ has a planar line graph
if and only if Γ has no subdivision isomorphic to K3,3, K1,5, P4+K1 or K2+K3.

Theorem 3.3. The line graph of the non-commuting graph of the group G
is not planar.

Proof. Suppose L(ΓG) is planar. Therefore, ΓG does not contain a subdi-
vision isomorphic to K1,5 and the degree of vertices are less than equal to
4. By the fact that degree of each vertex v of the non-commuting graph is
|G| − |CG(v)|, we deduce the possible non-abelian groups are S3, D8 or Q8.
But the diagram of ΓS3 includes the subdivision K2 +K3, while the diagram
of ΓD8

∼= ΓQ8 contains K3,3. �

The size of the largest complete induced subgraph of the graph Γ is called
the clique number and is denoted by ω(Γ).

Proposition 3.4. The clique number of the line non-commuting graph is
max{|G| − |CG(x)| : x ∈ V (ΓG)}.

Proof. For every vertex x ∈ V (ΓG), there are |G|−|CG(x)| vertices in L(ΓG).
All these vertices have x in common, so they are adjacent and form a clique
for L(ΓG). Hence, the assertion is clear. �

As a consequence of the above proposition, ω(L(ΓS3)) = 4 and ω(L(ΓD2n))
is 2n− 4 or 2n− 2, for even or odd integer n, respectively.

The subset S of vertices of the graph Γ is a dominating set if all the vertices
outside of S join to at least one of the inside vertices of S. The size of the
smallest dominating set is called domination number and is denoted by γ(Γ).

Proposition 3.5. For a non-abelian group G, γ(L(ΓG)) ≥ 2.

Proof. It is enough to prove L(ΓG) does not have a singleton dominating set.
If S = {e} is a dominating set for L(ΓG), then e dominate all other vertices
of L(ΓG), where e = {x, y}. This means for any vertex fi ∈ V (L(ΓG)), e and
fi have a vertex in common. Without lose of generality, suppose f1 = {y, t1}
and f2 = {y, t2}. The vertices t1, t2 are not adjacent, because otherwise an
edge formed by them is not dominated by e. By a similar argument, ti’s are
not adjacent to the vertices of N(x), where N(x) is the set of all neighbors of
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x, i = 1, 2. On the other hand, there is no vertex of degree one in the non-
commuting graph, which implies that t1, t2 both join to x. One can imagine
the diagram of the graph in triangles that have one side in common. Thus,
ΓG is planar and accordingly G ∼= S3, D8, Q8. But the diagram of the non-
commuting graph of these groups does not match to what we observed. �

The above bound is sharp, γ(L(ΓS3)) = 2. The non-commuting graph is a
connected graph and d(x, y) ≤ 2, for all pairs of vertices x and y. This fact is
used in Lemma 3.6 (period).

Lemma 3.6. Let e = {x, y} be a vertex of the line graph L(ΓG). Then the

independent set which contains the vertex e has at least
∑l

i=1 deg(ti) elements,
where ti’s are the vertices whose distance to x, y is 2 and l is the number of
them. Moreover, l = |CG(x) ∩ CG(y)| − |Z(G)|.

Proof. If t is a vertex such that d(t, x) = d(t, y) = 2, then there is a vertex
s ∈ N(x) and {s, t} is an edge which does not have a common vertex with e.
Since the degree of vertices in the non-commuting graph is larger than 2 and
t does not join to x and y directly, {t, si} and e are non-adjacent edges, where
si ∈ N(t). Thus, for every vertex of distance 2 to x, y, there are deg(t) edges
that are independent of e, which means there are deg(t) edges without the
common vertices with e. Hence, the first part is clear. As l is the number of
vertices whose distance to x, y is 2, we should count the vertices that commute
with x, y. �

We denote the size of the independent set of the graph Γ that includes the
vertex x by αx(Γ) and the independence number of the graph by α(Γ). There-

fore, with the notation from Lemma 3.6, we have αe(L(ΓG)) ≥
∑l

i=1 deg(ti).

Theorem 3.7. Let G be an AC-group. There is no independent vertex of
L(ΓG) for an arbitrary vertex e = {x, y}.

Proof. By Lemma 3.6, it is enough to consider vertices of ΓG such that their
distance to both x, y are 2. Let t be a vertex of ΓG such that d(t, x) = d(t, y) =
2. Then t ∈ CG(x) ∩CG(y)−Z(G). By the property of AC-groups, [x, y] = 1
(see [10, Lemma 3.2]), which gives a contradiction. �

For the line graph of the non-commuting graph associated to an AC-group,
α(L(ΓG)) = 1.
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