ON THE NON-COMMUTING GRAPH OF A GROUP

BEHNAZ TOLUE

Abstract. In this paper, groups whose non-commuting graphs are k-apex for $1 \le k \le 5$ are classified. The 1-planarity of the non-commuting graph for an AC-group G is discussed. Moreover, the k-connectivity of the non-commuting graph is verified, for $k \le 6$. Finally, some properties of the line graph of the non-commuting graph of a group are studied.

MSC 2010. Primary 05C25, 05C10, 05C76; Secondary 20B05.

Key words. Apex graph, connected graph, non-commuting graph.

1. INTRODUCTION

Graphs can be assigned to algebraic structures in many different ways. One of such graphs is the non-commuting graph associated to a group [1, 8]. Let G be a non-abelian group. The non-commuting graph Γ_G associated to G is a graph whose vertices are non-central elements of G and two distinct vertices join by an edge if they do not commute.

Recall that a graph Γ is k-apex, if there exist t vertices v_1, v_2, \dots, v_t of the graph Γ such that the induced graph $\Gamma - \{v_1, \dots, v_t\}$ is planar, where $t \leq k$ is a positive integer. In the k-Apex problem the task is to find at most k vertices whose deletion makes the given graph planar. In other words, for a given graph Γ and a parameter k, the k-apex-ness is to decide whether deleting at most k vertices from Γ can result in a planar graph. Such a set of vertices is sometimes called a set of apex vertices or apices. Let us denote 1-apex graph by apex graph.

Let $D_{2n} = \langle a, b : a^n = b^2 = 1, a^b = a^{-1} \rangle$ be the dihedral group of order $2n, n \geq 4$. In Section 2, we investigate the k-apex non-commuting graphs, $1 \leq k \leq 5$. The non-commuting graph Γ_G is 5-apex if and only if G is symmetric group S_3 , dihedral groups D_8 , D_{10} , D_{12} , D_{14} , quaternion group Q_8 or $T = \langle a, b : a^6 = 1, b^2 = a^3, a^b = a^{-1} \rangle$. In the process of proving the last result, the apex-ness of the non-commuting graphs of the groups of order less than 21 is achieved.

The author thanks the referee for his helpful comments and suggestions.

DOI: 10.24193/mathcluj.2019.2.09

A graph is called 1-planar if it can be drawn in the plane such that each edge is crossed at most once. Czap and Hudàk present the full characterization of 1planar complete k-partite graphs [3]. A non-abelian group G is an AC-group, if all the centralizers of its non-central elements are abelian. By Theorem 2.11 in [11], we know the non-commuting graph associated to an AC-group is complete s-partite graph, where s+1 is the number of distinct centralizers. All these considerations imply that all AC-groups whose non-commuting graphs are 1-planar, are S_3 , D_8 , and Q_8 .

Let W be a set of vertices. If $\Gamma - W$ is not connected, then W separates Γ and W is called a vertex-separator. For any $k \geq 1$, Γ is k-connected if it has the order at least k + 1 and no set of k - 1 vertices is a separator. We discuss the separator set of the non-commuting graph of an AC-group. Moreover, we observe that Γ_G is not k-connected, for k = 1, 2. The non-commuting graph $\Gamma_{D_{2n}}$ is p-connected, where p is an odd prime number.

In the third section, we observe that the line graph of the non-commuting graph $L(\Gamma_G)$ is a connected graph with a hamiltonian cycle. It is not planar. Furthermore, we study its domination, clique and independence number.

2. 5-APEX AND 1-PLANAR NON-COMMUTING GRAPHS

For positive integers l, r and t, let $K_{l[r]}$ denote a complete l-partite graph with each part of order r and let $K_{l[r],t}$ denote a complete (l + 1)-partite graph with l parts of order r and a part of order t (cf. [13]).

An example of a large class of AC-groups is given by the dihedral groups. The structure of the non-commuting graph associated to dihedral group D_{2n} depends on the integer n. If n is an odd number, then it is a complete (n+1)-partite graph with (n+1) parts $\{a, a^2, \dots, a^{n-1}\}, \{b\}, \{ab\}, \dots, \{a^{n-1}b\}$. It is not hard to deduce that by omitting the vertices $a^2b, \dots, a^{n-1}b$ the remaining graph is planar, so $\Gamma_{D_{2n}}$ is (n-2)-apex for odd n. The other graph parameters can be obtained too. For instance, $\Gamma_{D_{2n}}$ is n-connected, where n is an odd number. Note that if we omit n vertices $b, ab, \dots, a^{n-1}b$, then $\Gamma_{D_{2n}}$ is not connected.

Now, assume n is an even integer. Therefore, $\Gamma_{D_{2n}}$ is complete $(\frac{n}{2} + 1)$ partite graph. The $(\frac{n}{2} + 1)$ parts are $\{a, a^2, \dots, a^{\frac{n}{2}-1}, a^{\frac{n}{2}+1}, \dots, a^{n-1}\}$ and $\{a^i b, a^{i+\frac{n}{2}}b\}, 0 \leq i \leq \frac{n}{2} - 1$. If n = 4, then $\Gamma_{D_8} = K_{3[2]}$ which is planar and 4-connected. Let $n \geq 6$. Omit (n-2) of the vertices which are not the powers of a, say $\{a^i b, a^{i+\frac{n}{2}}b\}, 1 \leq i \leq \frac{n}{2} - 1$. Hence, $\Gamma_{D_{2n}}$ is (n-2)-apex for even n. Moreover, it is n-connected, while the n vertices $a^i b, a^{i+\frac{n}{2}}b$ are vertex separators, $0 \leq i \leq \frac{n}{2} - 1$ (for the structure of $\Gamma_{D_{2n}}$, see [13, Lemma 2.3]). We conclude the following result.

PROPOSITION 2.1. The non-commuting graph of D_{2n} is (n-2)-apex and n-connected, for $n \ge 4$.

Let A_4 be the alternating group on 4 letters, then $\Gamma_{A_4} = K_{4[2],3}$ and clearly 6-apex and 8-connected. The proof of Theorem 2.2 is inspired by the proof of [1, Proposition 2.3].

THEOREM 2.2. The non-commuting graph Γ_G is apex if and only if $G \cong S_3$, D_8 , Q_8 .

Proof. Suppose Γ_G is apex. By definition, there is $v \in V(\Gamma_G)$ such that $\Gamma_G - \{v\}$ is planar and so we have for the clique number $\omega(\Gamma_G - \{v\}) < 5$. We have three cases for the vertex v.

- (i) The vertex v commutes with all other vertices of Γ_G .
- (ii) The vertex v does not commute with some vertices of Γ_G .
- (iii) The vertex v does not commute with all other vertices of Γ_G .

We claim that the first case does not occur, since non-commuting graphs are connected (see [1, Proposition 2.1]). If (ii) or (iii) hold, then $\omega(\Gamma_G) < 6$. Thus, G/Z(G) is a finite group, by the main result of [9]. Clearly, the size of the set $G - Z(G) - \{v\}$ is greater than 2. There are $x, y \in G - Z(G) - \{v\}$ such that $[x, y] \neq 1$, because otherwise Γ_G is planar and the non-commuting graph of S_3 , D_8 or Q_8 does not have the same figure as in this case explained. We prove that $|Z(G)| \leq 5$. If $Z \subseteq Z(G)$ and |Z| > 5, then the induced subgraph Δ of $\Gamma_G - \{v\}$ on the vertices $xZ \cup yZ$ is not planar and we get a contradiction. Hence G is finite and so Γ_G is a finite graph. Therefore, there is a vertex $t \in G - Z(G) - \{v\}$ such that $\deg_{\Gamma_G - \{v\}}(t) \leq 5$ (see e.g. [2, Corollary 3.5.9]). Two cases can happen [t, v] = 1 or $[t, v] \neq 1$. Thus $|G| - |C_G(t)| \leq 5$ or $|G| - |C_G(t)| \leq 6$. So, by the fact that $|C_G(t)| \leq |G|/2$, we conclude that $|G| \leq$ 12 and $G \cong S_3$, D_8 , Q_8 , D_{10} , D_{12} , $T = \langle a, b : a^6 = 1$, $b^2 = a^3$, $a^b = a^{-1} \rangle$, and A_4 . By the argument before the theorem, Γ_G is planar for S_3 , D_8 , Q_8 , while $\Gamma_{D_{10}} = K_{5[1],4}$ is 3-apex, $\Gamma_{D_{12}} = K_{3[2],4}$ is 4-apex and $\Gamma_{A_4} = K_{4[2],3}$ is 6-apex. By the presentation of T, we deduce that $\Gamma_T \cong K_{3[2],4}$ and 4-apex. \Box

As in the proof of Theorem 2.2, we can find the groups whose non-commuting graphs are k-apex. Let Γ_G be k-apex. So, $\omega(\Gamma_G - \{v_1, v_2, \cdots, v_k\}) < 5$, where any v_i are vertices that, by omitting them, the remaining graph is planar $1 \leq i \leq k$. By computations and the fact that G is a non-abelian group, we have at least two elements $x, y \in G - Z(G) - \{v_1, v_2, \cdots, v_k\}$. If $[x, y] \neq 1$, then $|Z(G)| \leq 5$ and Γ_G is a finite graph. Therefore, for the vertex $t \in G - Z(G) - \{v_1, v_2, \cdots, v_k\}$, we have $|G| - |C_G(t)| \leq 5 + k$, in the worst situation. This implies that $|G| \leq 2(5 + k)$. If for all vertices $x, y \in G - Z(G) - \{v_1, v_2, \cdots, v_k\}$ and x and y commute, then deg(x) = $|G| - |C_G(x)| \leq k$ and so $|G| \leq 2k$. So, we shall investigate the groups with the order less than 2(5 + k). Hence, we have the following result.

THEOREM 2.3. Let Γ_G be the non-commuting graph associated to the nonabelian group G.

(i) Γ_G is 2-apex if and only if $G \cong S_3$, D_8 , Q_8 .

- (ii) Γ_G is 3-apex if and only if $G \cong S_3$, D_8 , Q_8 , D_{10} .
- (iii) Γ_G is 4-apex if and only if $G \cong S_3$, D_8 , Q_8 , D_{10} , D_{12} , T.
- (iv) Γ_G is 5-apex if and only if $G \cong S_3$, D_8 , Q_8 , D_{10} , D_{12} , T, D_{14} .

Proof. According to the arguments before the theorem, we check the assertion for all non-abelian groups with $|G| \leq 20$. Using GAP [5], we observe that all these groups are AC-groups. Therefore, again [11, Theorem 2.1] implies that Γ_G is a complete s-partite graph. For instance, the only non-abelian group of order 14 is D_{14} , $\Gamma_{D_{14}} = K_{7[1],6}$. If we omit 5 vertices in the singleton parts, then the graph is planar. There are nine non-abelian groups of order 16. The non-commuting graph associate to 6 of them are $K_{3[4]}$ and so it is 6-apex. Moreover, 3 of them are $K_{4[2],6}$ and so 6-apex. There are 3 non-abelian groups of order 18. The non-commuting graph of two of them are $K_{9[1],8}$ and 7-apex, while the non-commuting graph of the other one is $K_{3[3],6}$ and 7-apex. Finally, there are 3 non-abelian group of order 20. The non-commuting graph of two of them are $K_{5[2],8}$ and the other one is $K_{5[3],4}$, which are 8-apex and 13-apex, respectively.

Note that from the results of [3] it follows that: if a graph Γ contains one of the graphs $K_{7,3}$, $K_{5,4}$, $K_{4,3,1}$, $K_{2[3],2}$ or $K_{4[1],3}$, then Γ is not 1-planar. Moreover, if a non-1-planar graph contains a complete multipartite graph, then it contains at least one from the list above.

THEOREM 2.4. Let G be an AC-group. The non-commuting graph Γ_G is 1-planar if and only if $G \cong S_3$, D_8 , Q_8 .

Proof. Suppose Γ_G is 1-planar. Since G is an AC-group, again from [11, Theorem 2.11] we deduce that Γ_G is a complete s-partite graph. Now, 1planarity of the graph implies that it does not contain K_7 (see [4] for more details). This means $\omega(\Gamma_G) < 7$. Similar arguments to those in the proof of Theorem 2.2 imply that G/Z(G) is finite. We claim that |Z(G)| < 4, because otherwise if $Z \subset Z(G)$ and $|Z| \ge 4$, then the induced subgraph Γ_0 on $xZ \cup yZ$ is not 1-planar as it contains $K_{4[1],3}$, where x, y are two elements of the non-abelian group G that $[x, y] \ne 1$. From this fact it follows that Γ_G is a finite graph. Since Γ_G is 1-planar, there is a vertex like x such that $\deg(x) = |G| - |C_G(x)| \le 7$. We conclude that $|G| \le 14$. We know that $\Gamma_{D_{10}} \cong K_{5[1],4}, \Gamma_{D_{14}} \cong K_{7[1],6} \Gamma_{A_4} \cong K_{4[2],3}$ all contain $K_{4[1],3}$ and so they are not 1-planar. Moreover, $\Gamma_{D_{12}} \cong \Gamma_T \cong K_{3[2],4}$ contain $K_{4,3,1}$ and are not 1-planar.

A graph is outer-planar if it does not contain the subdivisions $K_{2,3}$ and K_4 . By a similar argument to that in Theorem 2.4, we deduce that Γ_G is an outer-planar graph if and only if G is isomorphic to S_3 , D_8 or Q_8 .

There is no complete non-commuting graph, so if Γ_G is a non-commuting graph associated to an AC-group G, then it is a complete s-partite graph [11, Theorem 2.11] and at least there is a part with more than one vertex.

PROPOSITION 2.5. If G is an AC-group, then Γ_G is k-connected, where $k \geq s-1$ and s is the number of centralizers of distinct non-central elements.

Proof. By the argument before the theorem, the worst case is when Γ_G is a complete s-partite graph with just one part with more than one vertex. If we choose s - 1 vertices of the parts with one vertex, then we obtain a separator set.

Let Γ_G be k-connected. Suppose, by omitting $\{v_1, \dots, v_k\}$, there is no path between two vertices x and y. The vertices x and y join all to v_i , because otherwise we can find a separator set with the size less than k and we get a contradiction. Therefore, $\deg(x), \deg(y) \geq k$. Γ_{S_3} is 3-connected, the noncommuting graph of D_8 or Q_8 is 4-connected and the non-commuting graph of D_{12} , T or A_4 is 6-connected.

3. THE LINE GRAPH OF THE NON-COMMUTING GRAPH Γ_G

Let us denote the line graph of the non-commuting graph Γ_G by $L(\Gamma_G)$. Clearly, $L(\Gamma_G)$ is a graph with edges of Γ_G as its vertices and $e_i = \{x_i, y_i\}$ and $e_j = \{x_j, y_j\}$ join if $e_i \cap e_j \neq \emptyset$. Clearly, $\deg(e_i) = 2|G| - |C_G(x_i)| - |C_G(y_i)| - 2$. If $e_i = \{x_i, y_i\}$ is an isolated vertex in $L(\Gamma_G)$, then it does not have any common vertex with the other edges, say $e = \{x, y\}$. As $\operatorname{diam}(\Gamma_G) = 2$, there is a path between x and x_i of length less than 2. But this fact shows there is an edge for which one of its ends is the same as that of e_i . Thus, there is no isolated vertex in $L(\Gamma_G)$.

PROPOSITION 3.1. For line graph of the non-commuting graph we have $\operatorname{diam}(L(\Gamma_G)) \leq 3$ and $\operatorname{girth}(L(\Gamma_G)) = 3$.

Proof. Let $e_i = \{x_i, y_i\}$ and $e_j = \{x_j, y_j\}$ be two non-adjacent vertices of $L(\Gamma_G)$. Without loss of generality, we concentrate on one pair of end points x_i and x_j . Since diam $(\Gamma_G) = 2$, $d(x_i, x_j) \leq 2$, if $e_{ij} = \{x_i, x_j\}$, then $d(e_i, e_j) = 2$. Suppose $d(x_i, x_j) = 2$, $e_{ik} = \{x_i, x_k\}$ and $e_{kj} = \{x_k, x_j\}$. Hence, the rest follows clearly.

Two subgraphs Δ_1 and Δ_2 are said to be close in the graph Γ if they are disjoint and there is an edge of Γ joining a vertex of Δ_1 and one of Δ_2 . If Δ_1 and Δ_2 are disjoint and not close, then Δ_1 and Δ_2 are remote. The degree of an edge in the graph Γ is denoted by $\deg_{\Gamma}(e)$, which is the number of vertices of Γ close to e. A cycle ζ of the graph Γ is called a dominating cycle (D-cycle) if every edge of G is incident with at least one vertex of ζ .

PROPOSITION 3.2. The non-commuting graph Γ_G is D-cyclic.

Proof. The non-commuting graph is not a tree and by the definition of the degree of an edge. For any edge e, we have

$$\deg_{\Gamma_G}(e) = 2|G| - |C_G(x)| - |C_G(y)| - 2,$$

where x and y are two end points of the edge e. Thus,

 $|G| - |Z(G)| - 2 \le 2|G| - |C_G(x)| - |C_G(x')| - 2 \le \deg_{\Gamma_G}(e) + \deg_{\Gamma_G}(f),$

where e and f are remote edges and x' is an end point of f. Hence, by [12, Theorem 2.], the result follows.

Harary and Nash-Williams [7] showed that the existence of a dominating cycle in Γ is essentially equivalent to the existence of a hamiltonian cycle in the line graph of Γ , denoted $L(\Gamma)$. Therefore, there is a hamiltonian cycle for the line graph of the non-commuting graph Γ_G .

Greenwell and Hemminger [6] proved that a graph Γ has a planar line graph if and only if Γ has no subdivision isomorphic to $K_{3,3}$, $K_{1,5}$, P_4+K_1 or $K_2+\overline{K_3}$.

THEOREM 3.3. The line graph of the non-commuting graph of the group G is not planar.

Proof. Suppose $L(\Gamma_G)$ is planar. Therefore, Γ_G does not contain a subdivision isomorphic to $K_{1,5}$ and the degree of vertices are less than equal to 4. By the fact that degree of each vertex v of the non-commuting graph is $|G| - |C_G(v)|$, we deduce the possible non-abelian groups are S_3 , D_8 or Q_8 . But the diagram of Γ_{S_3} includes the subdivision $K_2 + \overline{K_3}$, while the diagram of $\Gamma_{D_8} \cong \Gamma_{Q_8}$ contains $K_{3,3}$.

The size of the largest complete induced subgraph of the graph Γ is called the clique number and is denoted by $\omega(\Gamma)$.

PROPOSITION 3.4. The clique number of the line non-commuting graph is $max\{|G| - |C_G(x)|: x \in V(\Gamma_G)\}.$

Proof. For every vertex $x \in V(\Gamma_G)$, there are $|G| - |C_G(x)|$ vertices in $L(\Gamma_G)$. All these vertices have x in common, so they are adjacent and form a clique for $L(\Gamma_G)$. Hence, the assertion is clear.

As a consequence of the above proposition, $\omega(L(\Gamma_{S_3})) = 4$ and $\omega(L(\Gamma_{D_{2n}}))$ is 2n - 4 or 2n - 2, for even or odd integer *n*, respectively.

The subset S of vertices of the graph Γ is a dominating set if all the vertices outside of S join to at least one of the inside vertices of S. The size of the smallest dominating set is called domination number and is denoted by $\gamma(\Gamma)$.

PROPOSITION 3.5. For a non-abelian group $G, \gamma(L(\Gamma_G)) \geq 2$.

Proof. It is enough to prove $L(\Gamma_G)$ does not have a singleton dominating set. If $S = \{e\}$ is a dominating set for $L(\Gamma_G)$, then e dominate all other vertices of $L(\Gamma_G)$, where $e = \{x, y\}$. This means for any vertex $f_i \in V(L(\Gamma_G))$, e and f_i have a vertex in common. Without lose of generality, suppose $f_1 = \{y, t_1\}$ and $f_2 = \{y, t_2\}$. The vertices t_1, t_2 are not adjacent, because otherwise an edge formed by them is not dominated by e. By a similar argument, t_i 's are not adjacent to the vertices of N(x), where N(x) is the set of all neighbors of x, i = 1, 2. On the other hand, there is no vertex of degree one in the noncommuting graph, which implies that t_1, t_2 both join to x. One can imagine the diagram of the graph in triangles that have one side in common. Thus, Γ_G is planar and accordingly $G \cong S_3$, D_8 , Q_8 . But the diagram of the noncommuting graph of these groups does not match to what we observed. \Box

The above bound is sharp, $\gamma(L(\Gamma_{S_3})) = 2$. The non-commuting graph is a connected graph and $d(x, y) \leq 2$, for all pairs of vertices x and y. This fact is used in Lemma 3.6 (period).

LEMMA 3.6. Let $e = \{x, y\}$ be a vertex of the line graph $L(\Gamma_G)$. Then the independent set which contains the vertex e has at least $\sum_{i=1}^{l} \deg(t_i)$ elements, where t_i 's are the vertices whose distance to x, y is 2 and l is the number of them. Moreover, $l = |C_G(x) \cap C_G(y)| - |Z(G)|$.

Proof. If t is a vertex such that d(t, x) = d(t, y) = 2, then there is a vertex $s \in N(x)$ and $\{s, t\}$ is an edge which does not have a common vertex with e. Since the degree of vertices in the non-commuting graph is larger than 2 and t does not join to x and y directly, $\{t, s_i\}$ and e are non-adjacent edges, where $s_i \in N(t)$. Thus, for every vertex of distance 2 to x, y, there are deg(t) edges that are independent of e, which means there are deg(t) edges without the common vertices with e. Hence, the first part is clear. As l is the number of vertices whose distance to x, y is 2, we should count the vertices that commute with x, y.

We denote the size of the independent set of the graph Γ that includes the vertex x by $\alpha_x(\Gamma)$ and the independence number of the graph by $\alpha(\Gamma)$. Therefore, with the notation from Lemma 3.6, we have $\alpha_e(L(\Gamma_G)) \geq \sum_{i=1}^l \deg(t_i)$.

THEOREM 3.7. Let G be an AC-group. There is no independent vertex of $L(\Gamma_G)$ for an arbitrary vertex $e = \{x, y\}$.

Proof. By Lemma 3.6, it is enough to consider vertices of Γ_G such that their distance to both x, y are 2. Let t be a vertex of Γ_G such that d(t, x) = d(t, y) = 2. Then $t \in C_G(x) \cap C_G(y) - Z(G)$. By the property of AC-groups, [x, y] = 1 (see [10, Lemma 3.2]), which gives a contradiction.

For the line graph of the non-commuting graph associated to an AC-group, $\alpha(L(\Gamma_G)) = 1.$

REFERENCES

- A. Abdollahi, S. Akbari and H.R. Maimani, Non-commuting graph of a group, J. Algebra, 298 (2006), 468–492.
- [2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Elsevier Science Publishing, New York, 1976.
- [3] J. Czap and D. Hudàk, 1-planarity of complete multipartite graphs, Discrete Appl. Math., 160 (2012), 505–512.

В.	Tolue

- [4] I. Fabrici and T. Madaras, The structure of 1-planar graph, Discrete Math., 307 (2007), 854-865.
- [5] GAP, GAP Groups, Algorithms and Programming, http://www.gap-system.org, 2002.
- [6] D.L. Greenwell and R.L. Hemminger, Forbidden subgraphs for graphs with planar line graphs, Discrete Math., 2 (1972), 31–34.
- [7] F. Harary and C.St.J.A. Nash-Williams, On Eulerian and Hamiltonian graphs and line graphs, Canad. Math. Bull., 8 (1965), 701–710.
- [8] B.H. Neumann, A problem of Paul Erdös on groups, J. Aust. Math. Soc., 21 (1976), 467–472.
- [9] L. Pyber, The number of pairwise noncommuting elements and the index of the centre in a finite group, J. Lond. Math. Soc. (2), **35** (1987), 287–295.
- [10] D.M. Rocke, p-groups with abelian centralizers, Proc. Lond. Math. Soc. (3), 30 (1975), 55–75.
- [11] B. Tolue, The non-centralizer graph of a finite group, Math. Rep. (Bucur.), 17 (67) (2015), 265–275.
- [12] H.J. Veldman, Existence of dominating cycles and pathes, Discrete Math., 43 (1983), 281–296.
- [13] Y. Wei, X. Ma and K.Wang, Rainbow connectivity of the non-commuting graph of a finite group, J. Algebra Appl., 15 (2016), 1650127.

Received July 9, 2018 Accepted November 7, 2018 Hakim Sabzevari University Department of Pure Mathematics Sabzevar, Iran E-mail: b.tolue@gmail.com b.tolue@hsu.ac.ir

198