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SHEETS OF CONJUGACY CLASSES
IN SIMPLE ALGEBRAIC GROUPS

IULIAN I. SIMION

Abstract. For a connected reductive algebraic group G defined over an alge-
braically closed field of characteristic p the sheets of conjugacy classes have been
parametrized by G. Carnovale and F. Esposito when p is good for G. We show
that the method is independent of characteristic and that a similar parametriza-
tion is possible for all p.
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1. INTRODUCTION

We consider three perspectives on conjugacy classes in a connected reductive
algebraic group G defined over an algebraically closed field of characteristic p:
sheets of conjugacy classes, induced conjugacy classes and Jordan classes (or
decomposition classes).

Induced unipotent conjugacy classes (see §2) were first described in [10] and
play an important role in the representation theory of finite groups associated
to G. These conjugacy classes are studied in more detail in [15]. Motivated
by the need for a geometric description of the space g/G of adjoint orbits in
the Lie algebra g of G, the similar notion of induced orbits is described in [2]
when G is semisimple. The orbit-space g/G is partitioned into sheets, i.e. into
irreducible sets of orbits having the same dimension, which are shown to be
in one-to-one correspondence with conjugacy classes of pairs (l, γ) where l is
a Levi subalgebra of g and γ a rigid nilpotent orbit in [l, l].

In [3], under the assumption that p is good for G, the authors extend the
notion of induced conjugacy classes to non-unipotent elements in G and show
that sheets of conjugacy classes are in one-to-one correspondence with G-
conjugacy classes of triples (M, t, γ) where M is the centralizer of a semisimple
element in G, t is a coset of Z(M)◦ in Z(M) such that CG(t)◦ = M and γ
is a rigid unipotent conjugacy class in M . The methods for obtaining this
bijection extend the analogous results in [2] to G.

In this article we show that the mild restriction on the characteristic can
be removed and that the methods in [3] lead to a similar parametrization of
sheets of conjugacy classes for all p. We do this without using the extended
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version of induced conjugacy classes. In §2 the needed facts about centralizers
of semisimple elements are described. In §3 Jordan classes are considered,
the arguments leading to the classification of sheets are given and some of
them are shortened. The main statement for the parametrization of sheets of
conjugacy classes is given in §4.

Notation. G will denote a connected reductive algebraic group defined
over an algebraically closed field of characteristic p. For g ∈ G the semisimple
and unipotent factors in the Jordan decomposition are denoted by gs and gu
respectively. For an algebraic group H, H◦ is the identity component of H.
If X ⊆ G, for the identity component of the centralizer CG(X) we use the
(non-standard) notation G(X). For X ⊆ G, we let OG(X) be the union of
conjugacy classes in G intersecting X ⊆ G non-trivially. For an integer n, G(n)

denotes the locally closed subset of G consisting of elements having centralizer
of dimension dimG− n.

2. PRELIMINARIES

2.1. Centralizers

For a subset A ⊆ G denote the element-wise product A · G(G(A)) by
Y(A). Let Yreg(A) be the subset of elements in Y(A) for which the dimen-
sion of the G-conjugacy class is maximal, i.e. Yreg(A) = Y(A) ∩ G(n) for

n = max{dimOG(x) : x ∈ Y(A)}.

Lemma 2.1. For a subset A ⊆ G such that A ⊆ G(A) we have:

(a) Z(G(A))◦ = G(G(A)),
(b) G(A) = G(Y(A)),
(c) If x ∈ Y(A) then G(A) ⊆ G(x).

In particular, if there exists a ∈ Y(A) such that G(a) = G(A) then G(x) =
G(A) for all x ∈ Yreg(A).

Proof. Since A ⊆ G(A) we have G(A) ⊇ G(G(A)), hence G(G(A)) =
CG(A)(G(A))◦ = Z(G(A))◦. For (b), as A ⊆ Y(A) clearly G(A) ⊇ G(Y(A)).
Since A ⊆ G(A) we have A ⊆ Z(G(A)) and Y(A) ⊆ Z(G(A)) (by (a)). Hence
G(Y(A)) ⊆ G(A) since G(A) ⊆ CG(Z(G(A))). For (c) fix x ∈ Y(A). Then
x = axa for some a ∈ A and xa ∈ G(G(A)). For y ∈ G(A), xy = ayxa

y = x⇔
xya = xa so CG(x) ⊇ G(A). �

If A is a set of commuting semisimple elements in G then A ⊆ G(A) [17,
II§4.1]. On the other hand, if a is a unipotent element and the characteristic
of k is bad for G, one no longer has a ∈ G(a) in all cases. If a is regular
unipotent then [16] showed that, in bad characteristic, a /∈ CG(a)◦. All unipo-
tent conjugacy classes in simple algebraic groups for which the elements do
not lie in the connected component of their centralizers are given in [9]. The
following Lemma is part of [14, Proposition 15].
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Lemma 2.2. Yreg(a) is open dense in Y(a) for any semisimple element
a ∈ G.

Remark 2.3. Considering iteratively connected components of centralizers
G(. . . G(a) . . . ) for a semisimple element a, the sequence obtained is

a M Z◦ L Z◦ L . . .

where M = G(a) is called pseudo-Levi in [14], L is the Levi-envelope of M ,
i.e. a minimal Levi subgroup of some parabolic subgroup containing M (see
[12, §3]) and Z◦ = G(G(a)) is the connected component of the center of M
and L. So Y(a) is a connected component of Z(M).

2.2. Centralizers of semisimple elements

Assume G to be semisimple and let Φ be the set of roots with respect to
some maximal torus T ⊆ G. For A ⊆ T let Φ(A) = {α ∈ Φ : α(A) = 1} and
for Ψ ⊆ Φ let G(Ψ) = 〈T,Uα : α ∈ Ψ〉. It is well known that G(A) = G(Φ(A))
for any subset A ⊆ T [17, II§4.1].

The description of those Ψ ⊆ Φ for which there exists a semisimple element
s ∈ G such that G(Ψ) = G(s) requires some more terminology. Recall that
a subset Ψ ⊆ Φ is called closed if: (C1) it is stable under reflections in the
roots of Ψ and (C2) it is stable under taking sums of roots (see for example
[13, 13.1]). Note that closed subsets Ψ are root systems and that if Ψ is such
that G(Ψ) = G(s) for some s ∈ T then Ψ is closed.

Let ∆ = {α1, . . . , αn} be a set of simple roots with respect to T , let α0

the highest root with respect to ∆ and ∆̃ = ∆ ∪ {−α0}. Let X∗(T ) be the
cocharacter group of T , let V = X∗(T ) ⊗ R and let C0 = {v ∈ V : αi(v) >
0, 1 ≤ i ≤ n, α0(v) < 1} be the fundamental alcove.

Assume that G is simple and simply connected and that k is the algebraic
closure of a prime field Fp. Then T ∼= X∗(T )⊗ k∗ ∼= X∗(T )⊗Qp′ [4, §3.1] and

the elements in (X∗(T )⊗Qp′)∩C0, called p′-rational points, are in one-to-one

correspondence with semisimple conjugacy classes in G (as in [5]). For J ( ∆̃,
let FJ be the set of v ∈ V such that α(v) = 0 for α ∈ J −{−α0}, α(v) > 0 for

α ∈ (∆̃− J)− {−α0}, α0(v) = 1 if −α0 ∈ J and α0(v) < 1 if −α0 /∈ J (as in
[6]). From the proof of [6, Proposition 2.3], with the above assumptions, we
have

Proposition 2.4 (Deriziotis’ Criterion). For a closed subset Ψ of Φ, there
exists a semisimple element s with G(Ψ) = G(s) if and only if Ψ has a set of
simple roots ∆Ψ such that

(1) ∆Ψ is conjugate under W to a subset of ∆̃ and
(2) the intersection of C0 with the W -orbit of F∆Ψ

contains a p′-rational
point.

In particular, for s ∈ G semisimple, G(s) equals G(Ψ) with Ψ generated by

the conjugate of some proper subset of ∆̃ (see also [8, §2.15]). If the charac-
teristic of k is good for G then the second condition in the above proposition
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is not needed. A proof for arbitrary algebraically closed fields k of good char-
acteristic is given in [14, §9]. Note that, for the construction in the proof of
Proposition 32 in loc.cit., in certain cases, one can choose α1 such that the
coefficient of α1 in α0 is coprime to p and the statement holds for some Ψ also
when p is bad for G.

2.3. Induced conjugacy classes

For a parabolic subgroup P ⊆ G with unipotent radical UP we have P =
LUP for a Levi subgroup L ⊆ P . As G has finitely many unipotent conjugacy
classes [11], there is a unique class IndPL (γ) intersecting γUP in an open dense
subset of γUP for any unipotent conjugacy class γ ⊆ L. These classes were
studied in [10] and are said to be induced from L. We write IndGL (g) for
IndGL (OL(g)). A conjugacy class is called rigid if it is not induced from any
proper subgroup L.

Induction for arbitrary conjugacy classes in a connected reductive group G
was recently investigated in [3] and [7] where the arguments for adjoint orbits
in the Lie algebras of G used in [2] are transferred to G.

The arguments in [3] build on the arguments for induced unipotent classes
in [10]. It follows form [15, II§3.2 and §10.15] that these arguments do not
depend on the characteristic of k. Moreover it is possible to adapt the approach
in [15, II§3] to arbitrary elements since most of the key statements there are
for general elements in G [15, II§2.8,§10.15].

3. JORDAN CLASSES

With notation as in §2, two conjugacy classes α, β in G are called Jordan
equivalent if there are elements x ∈ α and y ∈ β such that

xs ∈ Y(ys), G(xs) = G(ys) and xu = yu.

This is an equivalence relation on conjugacy classes - by definition of Y(ys) and
since G(xs) = G(ys). The union of the elements in the equivalence class of α is
called the Jordan class as in [3] (or decomposition class as in [2]) associated to
α. We denote it by J G(α) or J G(g) when we want to specify a representative
g ∈ α.

Lemma 3.1. For all g ∈ G, J G(g) = OG(Yreg(gs)gu). In particular Jordan
classes are irreducible.

Proof. First notice that since xu ∈ G(xs) for any x ∈ G [1, III.(9.3) Propo-
sition], the unipotent part of the Jordan decomposition of any element in
Y(gs)gu is gu. Indeed, by 2.1.a, Y(gs) = gsZ(G(gs))

◦ so it commutes with gu.
We also notice that gs belongs to Yreg(gs). Indeed, if x ∈ Y(gs) then

x = gsx
′ where [gs, x

′] = 1 so CG(x) = CG(gs)∩CG(x′) but x′ ∈ Z(G(gs)) (by
Lemma 2.1.a) so CG(x) ⊇ G(gs). It follows that dimOG(x) ≤ dimOG(gs),
hence gs ∈ Yreg(gs). This shows that J G(g) ⊆ OG(Yreg(gs)gu).
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Now, for the inclusion ⊇, if x ∈ Yreg(gs)gu then xs ∈ Yreg(gs) ⊆ Y(gs) and
xu = gu. By Lemma 2.1.c, with A = {gs}, we have G(gs) ⊆ G(xs). Hence
gs, xs ∈ Yreg(gs) and therefore dimG(gs) = dimG(xs) ⇒ G(gs) = G(xs).
For ⊆, choose x such that xs ∈ Y(gs), xu = gu and G(xs) = G(gs). Then
dimG(xs) = dimG(gs) so xs ∈ Yreg(gs) by definition of this set.

The irreducibility of J G(g) follows from the fact that it is the image of the
irreducible variety G × Yreg(gs)gu through the morphism (x, y) 7→ yx, where
the irreducibility of Yreg(gs) follows from Lemma 2.2. �

Remark 3.2. There is an action of G on the set of triples

{(G(gs),Y(gs),OG(gs)(gu)) : g ∈ G}

given by simultaneous conjugation. If T is the set of orbits for this action,
then, as in [3, Proposition 4.12], we have a bijection

T → Jordan classes in G, OG(G(gs),Y(gs),OG(gs)(gu)) 7→ OG(Yreg(gs)gu).

Lemma 3.3. For g ∈ G let L be the Levi envelope of G(gs) and Z◦ =

Z(L)◦. ThenJ G(g) = OG(OL(g)Z◦UP ), where UP is the unipotent radical of
a parabolic subgroup of G with Levi factor L.

Proof. We have by Lemma 3.1

J G(g) = OG(Yreg(gs)gu) = OG(OUP (Yreg(gs)gu))

⊆ OG(Yreg(gs)guUP ) = OG(OL(Yreg(gs)gu)UP ).

Moreover, the inclusion is dense since dimCUP
(tgu) = 0 for t ∈ Yreg(gs).

Indeed dimCUP
(tgu) = dim(CUP

(gu) ∩ G(t)) and G(t) = G(gs) ⊆ L so
CUP

(gu) ∩G(t) = 1.
By Lemma 2.2, OL(Yreg(gs)gu) is dense in the irreducible set OL(g)Z◦,

hence its closure isOL(g)Z◦, the preimage under φ : L→ L/Z◦ ofOL/Z◦(φ(g)).

ThereforeOL(g)Z◦UP is closed in P = LUP ∼= L×UP and is a subset of J G(g).

Moreover its G-orbit is dense in J G(g) and it is P -stable. The claim follows
from [18, II.13, Lemma 2]. �

As in [3, Proposition 5.3] we have the following lemma.

Lemma 3.4. Let n be the dimension of a conjugacy class in G. The maximal
elements in {J G(g) : g ∈ G(n)} with respect to the closure order are those

J G(g) with gu rigid in G(gs).

Proof. For g ∈ G(n) we show that if gu is an induced class in G(gs) then

there exists x ∈ G(n) such that g ∈ J (x). Let L̃ be a Levi subgroup of some

proper parabolic subgroup in G(gs) such that OG(gs)(gu) = Ind
G(gs)

L̃
(ũ) for

some ũ ∈ L̃. Let Z̃◦ := Z(L̃)◦. Then L̃ = CG(gs)(Z̃
◦) and L = CG(Z̃◦) is the

Levi-envelope of L̃ in G.
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By [14, Proposition 15], there is t ∈ gsZ̃◦ such that G(t) = CG(gsZ̃
◦)◦ =

(G(gs) ∩ L)◦ = L̃. As ũ is induced in G(gs) from L̃, by [10, 1.3 Theorem],

dimCG(gs)(u) = dimCL̃(ũ) = dimCG(t)(ũ). Since ũ ∈ L̃ = G(t) we have
[ũ, t] = 1 so CG(tũ) = CG(t) ∩ CG(ũ), hence dimCG(tũ) = dimCCG(t)(ũ) =

dimCG(t)(ũ) = n and therefore OG(tũ) ⊆ G(n). Moreover, since Z̃◦ ⊇
Z(G(gs))

◦ and Y(t) = tZ̃◦ 3 gs we have g ∈ J G(tũ) by Lemma 3.3. �

4. SHEETS OF CONJUGACY CLASSES

A sheet (of conjugacy classes) in G is an irreducible component of G(n)

for some n ∈ {0, . . . , rank(G)}. As Jordan classes are irreducible, if J G(g) is

maximal in G(n) with respect to the closure order, then SG(g) := J G(g) is a
sheet and every sheet is the closure in G(n) of a maximal Jordan class. The

set of all sheets in G are denoted by SG.
Let T max be the subset of T (Remark 3.2) given by triples (M, s, γ) where

γ is rigid in M and s is a coset of Z(M)◦ = G(G(s)) in Z(M). Notice that
M = G(s) (since we are taking a subset of T ).

The following result is [3, Theorem 5.6] without the condition on the char-
acteristic of k.

Theorem 4.1. The map OG(G(s),Y(s),OG(s)(u)) 7→ SG(su) induces a
bijection T max → SG.

Proof. From the discussion in the first paragraph of this section, it is enough
to see that OG(G(s),Y(s),OG(s)(u)) 7→ J G(su) is a bijection onto maximal
Jordan classes. From the definition of T max and Lemma 3.4 we see that it
is a map onto maximal Jordan classes. To see that it is injective, suppose
there is g ∈ G such that OG(G(gs),Y(gs),OG(gs)(gu)) maps to J G(su). By
Lemma 3.1 we may assume that gu = u and gs ∈ Yreg(s). By Lemma 2.1
G(gs) = G(s) and it remains to show that Y(s) = Y(gs). But this follows
from the fact that both of these sets are irreducible components of Z(G(s))
which intersect nontrivially. �

Centralizers of semisimple elements can be determined as explained in §2
and rigid orbits are described in [15]. A complete list of rigid orbit is, to the
knowledge of the author, not available.

Remark 4.2. It is clear from Lemma 3.1 that if 1 6= z ∈ Z(G) and g ∈ G
then J G(g) 6= J G(z) whenever z /∈ g−1

s Y(gs) = G(G(gs)). Moreover, for
any isogeny G → Gad of a simple algebraic group to the adjoint group and
a maximal J G(g) in a sheet, all sheets SG(zg) (z ∈ Z(G)) are mapped to a
single sheet in Gad.

Remark 4.3. Note that if G is of type B2, half the highest root lies in the
closure C0 of the fundamental alcove. This element is p′-rational whenever
p 6= 2, i.e. whenever p is a good prime for G. If p = 2 then there are two
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unipotent conjugacy classes of dimension 4 (see [15, p.233] or [9, p.121]) as
opposed to one such class when p is good for G.

By [15, Prop.3.2.b) p.60], if α is induced from β (hence β intersects the Levi
factor L of a proper parabolic subgroup of G) then dimBGv = dimBLu where
v ∈ α, u ∈ β and BGv is the variety of Borel subgroups in G containing v. If
p = 2 then dimBLu is either 0 or 1 and dimBGv are given in [15, p.233]. We see
that there are two classes with dimBGv = 2, which have to be rigid.

This suggests that the number of sheets in a connected and simply connected
algebraic group is independent of p.
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