COURNOT EQUILIBRIUM
 IN CASE OF (-1)-CONCAVE PRICE FUNCTION

DETELINA KAMBUROVA and RUMEN MARINOV

Abstract

We consider a class of homogeneous Cournot oligopolies with (-1)concave price function. We show some useful properties of the revenue function in case of (-1)-concave price function and prove the existence of an equilibrium in the continuous and non-differentiable case. A simple proof of an equilibrium uniqueness result in the smooth case with $(-1) / N$-concave (N-number of the firms in the market) price function is provided.

MSC 2010. 26A51, 91A06, 91A10.
Key words. Cournot games, generalized concavity, price function, pure-strategy Nash equilibrium.

1. INTRODUCTION

Various results in the literature guarantee the existence of a unique Cournot equilibrium in homogeneous Cournot oligopolies. One of the first results is in Murphy et. al (1982) [8], and employs concave revenue functions and convex cost functions. Amir (1996) [1], shows that log-concavity of the inverse demand guarantees the existence of an equilibrium and in case of convex cost functions the uniqueness of the equilibrium. Deneckere and Kovenock (1999) [4] derive an existence and uniqueness theorem using assumptions based on the direct demand function. This theorem is restated, using the concept of ρ-concavity, in [2]. Biconcavity is a condition on the inverse demand that corresponds to concavity after a simultaneous parametrization of price and quantity, the price function is (α, β)-biconcave if and only if the demand function is (β, α)-biconcave. Ewerhart (2014) [5] uses this concept to analyze the Cournot model. The existence theorem in his paper admits values of $0 \leq \alpha \leq 1$ in the non-smooth case and $\alpha<0$ in the case of twice differentiable price function. von Mouche and Quartieri (2013) [9] define the concept of concave integrated price flexibility to provide new results about semi-uniqueness and uniqueness of Cournot equilibria.

[^0](-1)-concavity of the price function corresponds to $(-1,1)$-biconcavity, i.e. $\alpha<0$. We prove some properties of the revenue function in case of (-1) concavity of the price function without assuming differentiability and we prove the existence theorem in the non-smooth case with convex costs functions. Employing the same approach as in [9] and [10] we derive a simple proof of the uniqueness theorem in the smooth case with $(-1) / N$-concave price function and convex costs functions (N -number of the firms in the market), without assuming twice differentiability. The uniqueness theorem for log-concave (0 concave) price function is a consequence of our result. We also show that the property of concave price flexibility, assumed in [9] does not entail (-1)concavity. To the best of our knowledge the conditions we impose are not entailed by any other conditions used in the proofs of the existence and uniqueness theorems of a Cournot equilibrium so far.

The paper is organized as follows: Section 2 introduces the concept of a Cournot game and lists some results from the literature that will be used in our proofs. Section 3 introduces the concept of generalized concavity and provides some properties of the revenue function in the case of $(-1) / N$-concavity of the price function. In Section 4 existence and uniqueness theorems are derived. In Section 5 concluding remarks are given.

2. BACKGROUND AND SETTINGS

Cournot oligopoly is a game with perfect information, N players (firms) that produce a homogenous product and compete on quantities. Each firm has a cost $c_{i}\left(x_{i}\right)$ for producing $x_{i} \geq 0, i=1, \ldots, N$. The market price is a function of the firms' total output $x_{1}+\ldots+x_{N}=X$. Let $\widetilde{N}=\{1, \ldots, N\}$; the profit of the i-th firm is given by:

$$
f_{i}(X)=x_{i} P\left(x_{i}+\sum_{j \in \widetilde{N}, j \neq i} x_{j}\right)-c_{i}\left(x_{i}\right) .
$$

A Nash equilibrium of an oligopoly is called a Cournot equilibrium.
We will provide the following results from [9] in the framework for our needs.
Lemma 2.1. Suppose each cost function is convex and:

- p is left and right differentiable at each point of R_{+};
- $\mathrm{d}^{+} p(x) \leq \mathrm{d}^{-} p(x)<0\left(x \in R_{+}\right)$.

If there exists more than one equilibrium, then 0 is not an equilibrium.
Theorem 2.2. Suppose each cost function is convex and:

- p is left and right differentiable at each point of R_{+};
- $\mathrm{d}^{-} p(x) \leq \mathrm{d}^{+} p(x)<0\left(x \in R_{+}\right)$.

Then the Nash-sums are injective.
We will use the following classical existence theorem (Debreu, Glicksberg, Fan (1952) $[3,6,7]$):

Theorem 2.3. Consider a game with $N \geq 2$ players with strategies $s_{i} \in S_{i}$, $i=1, \ldots, N$. If:

- $S_{i}, i=1, \ldots, N$ are nonempty, compact, convex subsets of finite dimensional Euclidean spaces,
- all pay-off functions are continuous on $S_{1} \times \ldots \times S_{N}$,
- all payoff functions are quasi-concave of s_{i} over S_{i}, if all the other strategy sets are held fixed,
then there exists at least one equilibrium.

3. GENERALIZED CONCAVITY OF FUNCTIONS

We consider a function $p: \Omega \rightarrow R_{+}$defined on a convex set $\Omega \subseteq R_{+}$.
Definition 3.1. A positive function defined on a convex set $\Omega \subseteq R_{+}$is said to be α-concave, where $\alpha \in[-\infty,+\infty]$, if for all $x, y \in \Omega$ and all $\lambda \in[0,1]$ the following inequality holds true:

$$
p(\lambda x+(1-\lambda) y) \geq m_{\alpha}(p(x), p(y), \lambda)
$$

where $m_{\alpha}: R_{+} \times R_{+} \times[0,1] \rightarrow R$ is defined as follows:

$$
m_{\alpha}(a, b, \lambda)= \begin{cases}a^{\lambda} b^{1-\lambda}, & \text { if } \alpha=0 \\ \max \{a, b\}, & \text { if } \alpha=\infty \\ \min \{a, b\}, & \text { if } \alpha=-\infty \\ \left(\lambda a^{\alpha}+(1-\lambda) b^{\alpha}\right)^{1 / \alpha}, & \text { otherwise }\end{cases}
$$

In the case $\alpha=0$ the function is log-concave, in the case $\alpha=1$ the function is simply concave.

The following lemma is very important, because it implies that α-concavity entails β-concavity, for all $\beta \leq \alpha$.

Lemma 3.2. The mapping $\alpha \rightarrow m_{\alpha}(a, b, \lambda)$ is non-decreasing and continuous.

We are interested especially in $(-1) / n$-concave functions, $n \geq 1$:
Definition 3.3. A positive function defined on a convex set $\Omega \subseteq R_{+}$is said to be $(-1) / n-$ concave, $n \geq 1$, if for all $x, y \in \Omega$ and all $\lambda \in[0,1]$ the following inequality holds true:

$$
p(\lambda x+(1-\lambda) y) \geq\left(\lambda(p(x))^{-1 / n}+(1-\lambda)(p(y))^{-1 / n}\right)^{-n}
$$

From Lemma 3.2 it follows that all concave $(\alpha=1)$ and log-concave $(\alpha=0)$ functions are $(-1) / n$-concave. It is clear that a positive function $p(\cdot)$ is $(-1) / n$ concave if and only if $1 / p(\cdot)^{1 / n}$ is convex.

ThEOREM 3.4. Let $p: \Omega \subseteq R_{+} \cup\{0\} \rightarrow R_{+}$be a decreasing, continuous and $(-1) / n$-concave function and let $n \geq 1$. Then $x p(x+k)^{1 / n}$ is strictly concave on the interval where it is strictly increasing for all $k \geq 0$.

Proof. Let $x_{1}, x_{2} \in \Omega$ with $x_{1}<x_{2}$ and

$$
\begin{equation*}
x_{1} p\left(x_{1}+k\right)^{1 / n}<x_{2} p\left(x_{2}+k\right)^{1 / n} . \tag{1}
\end{equation*}
$$

Note that convexity (concavity) is equivalent to midpoint convexity (concavity) in the case of a continuous function. The function $p(\cdot)$ is a continuous and $(-1) / n$-concave function, therefore $1 / p(x+k)^{1 / n}, k \geq 0$, is convex and midpoint convex. We get

$$
\frac{1}{p\left(\frac{x_{1}+x_{2}}{2}+k\right)^{1 / n}} \leq\left(\frac{1}{p\left(x_{1}+k\right)^{1 / n}}+\frac{1}{p\left(x_{2}+k\right)^{1 / n}}\right) / 2 .
$$

Hence,

$$
\begin{equation*}
p\left(\frac{x_{1}+x_{2}}{2}+k\right)^{1 / n} \geq \frac{2 p\left(x_{1}+k\right)^{1 / n} p\left(x_{2}+k\right)^{1 / n}}{p\left(x_{1}+k\right)^{1 / n}+p\left(x_{2}+k\right)^{1 / n}} . \tag{2}
\end{equation*}
$$

Suppose $x p(x+k)^{1 / n}$ is not strictly midpoint concave on the interval where it is strictly increasing:

$$
\frac{x_{1}+x_{2}}{2} p\left(\frac{x_{1}+x_{2}}{2}+k\right)^{1 / n} \leq \frac{x_{1} p\left(x_{1}+k\right)^{1 / n}+x_{2} p\left(x_{2}+k\right)^{1 / n}}{2} .
$$

From (2), we have

$$
\frac{x_{1}+x_{2}}{2} \frac{2 p\left(x_{1}+k\right)^{1 / n} p\left(x_{2}+k\right)^{1 / n}}{p\left(x_{1}+k\right)^{1 / n}+p\left(x_{2}+k\right)^{1 / n}} \leq \frac{x_{1} p\left(x_{1}+k\right)^{1 / n}+x_{2} p\left(x_{2}+k\right)^{1 / n}}{2}
$$

which yields

$$
\left(x_{1}+x_{2}\right) p\left(x_{1}+k\right)^{1 / n} p\left(x_{2}+k\right)^{1 / n} \leq x_{1} p\left(x_{1}+k\right)^{2 / n}+x_{2} p\left(x_{2}+k\right)^{2 / n}
$$

or

$$
\begin{array}{r}
x_{1}\left(\left(p\left(x_{1}+k\right)\right)^{2 / n}-p\left(x_{1}+k\right)^{1 / n} p\left(x_{2}+k\right)^{1 / n}\right) \\
\geq x_{2}\left(p\left(x_{1}+k\right)^{1 / n}\left(p\left(x_{2}+k\right)^{1 / n}-p\left(x_{2}+k\right)^{2 / n}\right) .\right.
\end{array}
$$

Dividing by $p\left(x_{1}+k\right)^{1 / n}-p\left(x_{2}+k\right)^{1 / n}>0$, we obtain

$$
x_{1} p\left(x_{1}+k\right)^{1 / n} \geq x_{2} p\left(x_{2}+k\right)^{1 / n} .
$$

The last inequality is in contradiction with (1).
Theorem 3.5. Let $p: \Omega \subseteq R_{+} \cup\{0\} \rightarrow R_{+}$be a $(-1) / n$-concave function, $n \geq 1, k \geq 0$. Then, if $x p(x+k)^{1 / n}$ has an extremum greater than 0 , it is a global maximum.

Proof. First we will prove $x p(x+k)^{1 / n}$ does not possess a positive local minimum x^{*} such that: $x^{*} p\left(x^{*}+k\right)^{1 / n} \leq x p(x+k)^{1 / n}$, where x is in a small
neighbourhood of x^{*} and the inequality is strict at least for $x>x^{*}$ or $x<x^{*}$. Suppose $x^{*}=\left(x_{1}+x_{2}\right) / 2$ is a local minimum, $x_{1}, x_{2}>0$ and

$$
\begin{align*}
& \frac{x_{1}+x_{2}}{2} p\left(\frac{x_{1}+x_{2}}{2}+k\right)^{1 / n}<p\left(x_{1}+k\right)^{1 / n} x_{1} \tag{3}\\
& \frac{x_{1}+x_{2}}{2} p\left(\frac{x_{1}+x_{2}}{2}+k\right)^{1 / n} \leq p\left(x_{2}+k\right)^{1 / n} x_{2} \tag{4}
\end{align*}
$$

From (3) we obtain:

$$
0<p\left(\frac{x_{1}+x_{2}}{2}+k\right)^{1 / n}<\frac{x_{1}}{x_{2}}\left(2 p\left(x_{1}+k\right)^{1 / n}-p\left(\frac{x_{1}+x_{2}}{2}+k\right)^{1 / n}\right)
$$

and

$$
\begin{equation*}
\frac{x_{1}}{x_{2}}>\frac{p\left(\frac{x_{1}+x_{2}}{2}+k\right)^{1 / n}}{2 p\left(x_{1}+k\right)^{1 / n}-p\left(\frac{x_{1}+x_{2}}{2}+k\right)^{1 / n}} . \tag{5}
\end{equation*}
$$

Using (4), we have:

$$
\frac{x_{1}}{x_{2}} p\left(\frac{x_{1}+x_{2}}{2}+k\right)^{1 / n} \leq 2 p\left(x_{2}+k\right)^{1 / n}-p\left(\frac{x_{1}+x_{2}}{2}+k\right)^{1 / n},
$$

that is

$$
\begin{equation*}
\frac{x_{1}}{x_{2}} \leq \frac{2 p\left(x_{2}+k\right)^{1 / n}-p\left(\frac{x_{1}+x_{2}}{2}+k\right)^{1 / n}}{p\left(\frac{x_{1}+x_{2}}{2}+k\right)^{1 / n}} . \tag{6}
\end{equation*}
$$

From (5) and (6), we get

$$
\frac{p\left(\frac{x_{1}+x_{2}}{2}+k\right)^{1 / n}}{2 p\left(x_{1}+k\right)^{1 / n}-p\left(\frac{x_{1}+x_{2}}{2}+k\right)^{1 / n}}<\frac{2 p\left(x_{2}+k\right)^{1 / n}-p\left(\frac{x_{1}+x_{2}}{2}+k\right)^{1 / n}}{p\left(\frac{x_{1}+x_{2}}{2}+k\right)^{1 / n}}
$$

or

$$
p\left(\frac{x_{1}+x_{2}}{2}+k\right)^{1 / n}<\frac{2 p\left(x_{1}+k\right)^{1 / n} p\left(x_{2}+k\right)^{1 / n}}{p\left(x_{1}+k\right)^{1 / n}+p\left(x_{2}+k\right)^{1 / n}} .
$$

The last is in contradiction with (2).
If $x p(x+k)^{1 / n}$ is non-increasing around 0 , it will be non-increasing for all $x>0$, since there is no local minimum and the function will not change its behavior. If $x p(x+k)^{1 / n}$ is increasing around 0 and there is a local maximum $x^{*}, x p(x+k)^{1 / n}$ will be non-increasing for all $x>x^{*}$ and x^{*} is a global maximum.

Corollary 3.6. Let $p: \Omega \subseteq R_{+} \cup\{0\} \rightarrow R_{+}$be a decreasing, continuous and $(-1) / n$-concave function, $n \geq 1$. If $0<x_{1} \leq x_{2}, k \geq 0,1 \leq s \leq n$, then from $x_{2} \mathrm{~d}^{-} p\left(x_{2}+k\right)+s p\left(x_{2}+k\right)>0$, it follows that $x_{1} \mathrm{~d}^{+} p\left(x_{1}+k\right)+s p\left(x_{1}+k\right)>$ $x_{2} \mathrm{~d}^{-} p\left(x_{2}+k\right)+s p\left(x_{2}+k\right)$.

Proof. If p is $(-1) / n$-concave, it is $(-1) / s$-concave, $1 \leq s \leq n$ (Lemma 3.2). From Theorem 3.4 and Theorem 3.5, it follows that if there is an interval where the function $x p(x+k)^{1 / s}$ is increasing, it is unique and its left boundary point is 0 ; moreover, $x p(x+k)^{1 / s}$ is strictly concave in this interval, therefore, if $0<x_{1} \leq x_{2}, k \geq 0$ and

$$
\mathrm{d}^{-}\left(x_{2} p\left(x_{2}+k\right)^{1 / s}\right) \geq 0 \Leftrightarrow \frac{x_{2} \mathrm{~d}^{-} p\left(x_{2}+k\right)+s p\left(x_{2}+k\right)}{s} p\left(x_{2}\right)^{1 / s-1} \geq 0,
$$

which is

$$
x_{2} \mathrm{~d}^{-} p\left(x_{2}+k\right)+s p\left(x_{2}+k\right) \geq 0,
$$

then it follows

$$
\mathrm{d}^{+}\left(x p(x+k)^{1 / s}\right)\left(x_{1}\right) \geq \mathrm{d}^{-}\left(x p(x+k)^{1 / s}\right)\left(x_{2}\right)
$$

or

$$
\begin{aligned}
& p\left(x_{1}\right)^{1 / s-1} \frac{x_{1} \mathrm{~d}^{+} p\left(x_{1}+k\right)+s p\left(x_{1}+k\right)}{s} \\
& \quad \geq p\left(x_{2}\right)^{1 / s-1} \frac{x_{2} \mathrm{~d}^{-} p\left(x_{2}+k\right)+s p\left(x_{2}+k\right)}{s}
\end{aligned}
$$

and, since $p(x)$ is decreasing and, for $s \geq 1, p\left(x_{1}\right)^{1 / s-1} \leq p\left(x_{2}\right)^{1 / s-1}$,

$$
x_{1} \mathrm{~d}^{+} p\left(x_{1}+k\right)+s p\left(x_{1}+k\right) \geq x_{2} \mathrm{~d}^{-} p\left(x_{2}+k\right)+s p\left(x_{2}+k\right) .
$$

4. EXISTENCE AND UNIQUENESS OF AN EQUILIBRIUM

Theorem 4.1. Suppose each cost function is convex and strictly increasing, p_{i} is a positive, strictly decreasing, continuous and (-1)-concave function on $R_{+} \cup\{0\}$ for each $i=1, \ldots, N$. Then there exists at least one equilibrium.

Proof. From Theorem 3.4 and Theorem 3.5, it follows that $x p_{i}(x+k)-c_{i}(x)$ is a quasi-concave function. As $p_{i}(\cdot)$ is positive, (-1)-concave and decreasing, $1 / p_{i}(\cdot)$ is positive, convex and increasing, therefore for each $x_{0} \geq 0$ and each i there exists a supporting line $a_{i}\left(x_{0}\right) x+b_{i}\left(x_{0}\right)$ such that: $1 / p_{i}(x) \geq a_{i}\left(x_{0}\right) x+$ $b_{i}\left(x_{0}\right)$ (with an equality at $x=x_{0}$). From the fact that p_{i} is positive and strictly increasing it follows that $a_{i}\left(x_{0}\right) x+b_{i}\left(x_{0}\right)>0$ for each $x \geq 0$ and $a_{i}\left(x_{0}\right) \geq 0$. Moreover, there exists \bar{x}_{0} such that $a_{i}\left(\bar{x}_{0}\right)>0$. Then

$$
\limsup _{x \rightarrow \infty} x p_{i}(x+k)-c_{i}(x) \leq \lim _{x \rightarrow \infty} x \frac{1}{a_{i}\left(\bar{x}_{0}\right) x+b_{i}\left(\bar{x}_{0}\right)}-c_{i}(x)=-\infty
$$

Consequently, there exists X_{i} such that: $x p_{i}(x)-c_{i}(x) \leq-c_{i}(0)$ for all $x \geq X_{i}$ and the effective strategy of each firm is contained in $\left[0, X_{i}\right]$.

The conditions of Theorem 2.3 are fulfilled and there exists at least one equilibrium.

Theorem 4.2. Suppose each cost function is convex and increasing, p_{i} is a positive, strictly decreasing, continuous and $(-1) / N$-concave function on R_{+}, for each $i=1, \ldots, N N \geq 2$. Then the Nash-sums σ are constant.

Proof. As in [9], Theorem 2, suppose a, b are equilibria with:

$$
x_{a}=\sum_{l \in N} a_{l}<\sum_{l \in N} b_{l}=x_{b} .
$$

Let $J=\left\{l \in N \mid a_{l}<b_{l}\right\}, \widetilde{x_{a}}=\sum_{l \in J} a_{l}, \widetilde{x_{b}}=\sum_{l \in J} b_{l}, s$ - the number of elements of J. Note that $x_{a} \neq 0$ (Lemma 2.1), $x_{b}>0, s \geq 1, \widetilde{x_{a}} \leq x_{a}$, $\widetilde{x_{b}} \leq x_{b}, \widetilde{x_{a}}<\widetilde{x_{b}}, \widetilde{x_{b}}-\widetilde{x_{a}} \geq x_{b}-x_{a}$.

As a and b are equilibria, $\mathrm{d}^{+}{ }_{i} \pi_{i}(a) \leq 0 \leq \mathrm{d}^{-}{ }_{i} \pi_{i}(b)(i \in J)$, i.e.

$$
\mathrm{d}^{+} p\left(x_{a}\right) a_{i}+p\left(x_{a}\right)-\mathrm{d}^{+} c_{i}\left(a_{i}\right) \leq 0 \leq \mathrm{d}^{-} p\left(x_{b}\right) b_{i}+p\left(x_{b}\right)-\mathrm{d}^{-} c_{i}\left(b_{i}\right),
$$

or

$$
\mathrm{d}^{+} p\left(x_{a}\right) \widetilde{x_{a}}+s p\left(x_{a}\right)-\sum_{i \in J} \mathrm{~d}^{+} c_{i}\left(a_{i}\right) \leq 0 \leq \mathrm{d}^{-} p\left(x_{b}\right) \widetilde{x_{b}}+s p\left(x_{b}\right)-\sum_{i \in J} \mathrm{~d}^{-} c_{i}\left(b_{i}\right) .
$$

As each c_{i} is convex this inequality implies:

$$
\begin{equation*}
\mathrm{d}^{+} p\left(x_{a}\right) \widetilde{x_{a}}+s p\left(x_{a}\right) \leq \mathrm{d}^{-} p\left(x_{b}\right) \widetilde{x_{b}}+s p\left(x_{b}\right) . \tag{7}
\end{equation*}
$$

Consider the two points $x_{1}=x_{a}-\left(x_{b}-\widetilde{x_{b}}\right)>0, x_{2}=\widetilde{x_{b}}>0, x_{1}<x_{2}$, $k=x_{b}-\widetilde{x_{b}}>0$. From Corollary 3.6:

$$
\left(x_{a}-\left(x_{b}-\widetilde{x_{b}}\right)\right) \mathrm{d}^{+} p\left(x_{a}\right)+s p\left(x_{a}\right)>\widetilde{x_{b}} \mathrm{~d}^{-} p\left(x_{b}\right)+s p\left(x_{b}\right) \geq 0 .
$$

From $\widetilde{x_{b}}-\widetilde{x_{a}} \geq x_{b}-x_{a}$ it follows $x_{a}-\left(x_{b}-\widetilde{x_{b}}\right) \geq \widetilde{x_{a}}$; furthermore, p_{i} is strictly decreasing and consequently:

$$
\widetilde{x_{a}} \mathrm{~d}^{+} p\left(x_{a}\right)>\left(x_{a}-\left(x_{b}-\widetilde{x_{b}}\right)\right) \mathrm{d}^{+} p\left(x_{a}\right),
$$

therefore

$$
\widetilde{x_{a}} \mathrm{~d}^{+} p\left(x_{a}\right)+s p\left(x_{a}\right)>\widetilde{x_{b}} \mathrm{~d}^{-} p\left(x_{b}\right)+s p\left(x_{b}\right),
$$

in contradiction with (7).
Corollary 4.3. Suppose each cost function is convex and increasing, p_{i} is a positive, strictly decreasing, continuous, differentiable and (-1)/ N-concave function on $R_{+} \cup\{0\}$, for each $i=1, \ldots, N, N \geq 2$. Then there exists a unique equilibrium.

Proof. This is a direct consequence of Theorems 2.2, 4.2 and 4.1.

5. CONCLUDING REMARKS

As noticed in the Introduction, our results are not equivalent to the results presented in [9]. An example of a function that is (-1)-concave, but without concave integrated price flexibility, is $p(x)=\frac{1}{(x+1) \ln (x+2)}$. In this case the revenue function is quasi-concave (but not concave). There are examples of functions that are with concave integrated price flexibility, but not (-1)concave $\left((x+1)^{\alpha}, 0<\alpha<1\right)$, therefore, our results neither imply, nor are
implied by the results in [9]. The existence theorem [5, Theorem 3.3] supposes the payoff and costs functions are twice differentiable. The existence theorem 4.1 is in the non-smooth case. So, to the best of our knowledge, the results presented here are new.

REFERENCES

[1] R. Amir, Cournot oligopoly and the theory of supermodular games, Games Econom. Behav., 15 (1996), 132-148.
[2] S.P. Anderson and R. Renault, Efficiency and surplus bounds in Cournot competition, J. Econom. Theory, 113 (2003), 253-264.
[3] H. Debreu, A social equilibrium existence theorem, Proc. Natl. Acad. Sci. USA, 38 (1952), 886-893.
[4] R. Deneckere and D. Kovenock, Direct demand-based Cournot existence and uniqueness conditions, Purdue University, mimeo, 1999.
[5] C. Ewerhart, Cournot games with biconcave demand, Games Econom. Behav., 85 (2014), 37-47.
[6] K. Fan, Fixed point and minimax theorems in locally convex topological linear spaces, Proc. Natl. Acad. Sci. USA, 38 (1952), 121-126.
[7] I.L. Glicksberg, A further generalization of the Kakutani fixed point theorem with application to Nash equilibrium points, Proc. Amer. Math. Soc., 38 (1952), 170-174.
[8] F.H. Murphy, H. D. Sherali and A.L. Soyster, A mathematical programming approach for determining oligopolistic market equilibrium, Math. Program., 24 (1982), 92-106.
[9] P. von Mouche and F. Quartieri, On the uniqueness of Cournot equilibrium in case of concave integrated price flexibility, J. Global Optim., 57 (2013), 707-718.
[10] P. von Mouche and F. Quartieri, Cournot equilibrium uniqueness in case of concave industry revenue: a simple proof, Economics Bulletin, 35 (2015), 1299-1305.

Received June 14, 2018
Accepted February 2, 2019

Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Sofia, Bulgaria
E-mail: detelinak@math.bas.bg

Technical University Department of Mathematics
Varna, Bulgaria
E-mail: marinov_r@yahoo.com

[^0]: The first author was supported by the Bulgarian National Fund for Scientific Research, under grant KP-06-H22/4. We would like to thank the reviewer for valuable comments that helped us to improve the paper.

