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SOME PROPERTIES OF FUZZY NORMED LINEAR SPACES
AND FUZZY RIESZ BASES

BAYAZ DARABY, FATANEH DELZENDEH, and ASGHAR RAHIMI

Abstract. Some results of fuzzy frames on fuzzy Hilbert spaces from the point
of view of Bag and Samanta are proved. In this paper, we define dual fuzzy
frames and fuzzy Riesz bases and establish some fundamental results via dual
fuzzy frames and fuzzy Ries bases. Next, we investigate the relation between
fuzzy frame and fuzzy Riesz bases.
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1. INTRODUCTION

The idea of fuzzy norms on a linear space was first introduced by Katsaras
[15] in 1984. Later on, many authors: Felbin [13], Cheng, Mordeson [5], Bag,
Samanta [2] etc. gave different definitions of fuzzy normed linear spaces. R.
Biswas [4], A. M. El-Abye, H. M. El-Hamouly [12] tried to give a meaningful
definition to fuzzy inner product space and associated fuzzy norm function
restricted to a real linear space. P. Mazumder and S. K. Samanta introduced
the definition of fuzzy inner product space from the point of view of Bag and
Samanta using fuzzy norm [2]. Recently, Daraby and et al. [8] studied some
properties of fuzzy Hilbert spaces and they showed that all results in classical
Hilbert spaces are immediate consequences of the corresponding results for
Felbin-fuzzy Hilbert spaces. Moreover, by an example, they showed that the
spectrum of the category of Felbin-fuzzy Hilbert spaces is broader than the
category of classical Hilbert spaces [7].

One of the important concepts in the study of vector spaces is the concept
of basis, which allows every vector to be uniquely represented as a linear
combination of the basis elements. The main feature of a basis {xk} in a
Hilbert space H is that every x ∈ H can be represented as a linear combination
of the elements xk in the form:

(1) x =

∞∑
k=1

ck(x)xk.
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However, the linear independence property for a basis – which implies the
uniqueness of coefficients ck(x) – is restrictive in applications. Sometimes
it is impossible to find vectors which both fulfill the basis requirements and
also satisfy external conditions demanded by applied problems. For such pur-
poses, a more flexible type of spanning sets is needed. Frames provide this
alternative. Frames are used in signal and image processing, non-harmonic
Fourier series, data compression and sampling theory. Today, frame theory
has applications to problems in both pure and applied mathematics, physics,
engineering, computer science, etc.

Many physical systems are inherently nonlinear functions and must be de-
scribed by non-linear models. But some systems have an uncertain structure
and it is not possible to provide an accurate mathematical model. There-
fore, to these systems, the conventional control models can not be used for
solving this problems; we need to use new concepts, namely fuzzy frames
theory and fuzzy wavelets. Fuzzy frame and fuzzy wavelet are inspired from
frame theory, wavelet theory and fuzzy concepts. For achieving approxima-
tion functions, control and identification of nonlinear systems are presented
in [3, 18] . It does not only retain the frame and wavelet properties, but also
has other advantages, such as a simple structure of approximation and good
interpretability of the approximation of non-linear functions.

In this paper, some results of fuzzy frames on fuzzy Hilbert spaces from the
point of view of Bag and Samanta are proved. We define dual fuzzy frames
and fuzzy Riesz bases and establish some fundamental results via dual fuzzy
frames and fuzzy Ries bases. Next, we investigate the relation between fuzzy
frame and fuzzy Riesz bases.

2. SOME PRELIMINARIES

In this section, some definitions and preliminary results, which are used in
this paper, are presented.

Definition 2.1 ([2]). Let U be a linear space over the field F . A fuzzy
subset N of U × R is called a fuzzy norm on U if for all x, u ∈ U and c ∈ F
the following conditions are satisfied:

(N1) ∀t ∈ R with t ≤ 0, N (x, t) = 0;
(N2) (∀t ∈ R, t > 0, N (x, t) = 1) iff x = 0;
(N3) ∀t ∈ R, t > 0, N (cx, t) = N(x, t

|c|) if c 6= 0;

(N4) ∀s, t ∈ R, x, u ∈ U,N (x+ u, s+ t) ≥ min {N (x, s) , N (u, t)};
(N5) N (x, .) is a non-decreasing function on R and limt→∞N (x, t) = 1.

The pair (U,N) will be referred to as a fuzzy normed linear space.

Theorem 2.2 ([2]). Let (U,N) be a fuzzy normed linear space. Assume
further that

(N6) ∀t > 0, N (x, t) > 0⇒ x = 0.



3 Fuzzy normed linear spaces and fuzzy Riesz bases 113

Define ‖x‖α =
∧
{t > 0 : N (x, t) ≥ α}, α ∈ (0, 1). Then {‖.‖α : α ∈ (0, 1)}

is an ascending family of norms on U and they are called α-norms on U
corresponding to the fuzzy norm N on U .

Definition 2.3 ([1]). Let (U,N) be a fuzzy normed linear space. Let {xn}
be a sequence in U . Then {xn} is said to be convergent if there exists x ∈ U
such that limn→∞N (xn − x, t) = 1, for all t > 0. In that case, x is called the
limit of the sequence {xn} and it is denoted by limxn.

Proposition 2.4 ([5]). Let (U,N) be a fuzzy normed linear space satisfying
(N6) and {xn} be a sequence in U . Then {xn} converges to x iff xn → x w.r.t.
‖.‖α, for all α ∈ (0, 1).

Definition 2.5 ([1]). Let (U,N) be a fuzzy normed linear space and α ∈
(0, 1). A sequence {xn} in U is said to be α-convergent in U if there exists
x ∈ U such that limn→∞N (xn − x, t) > α, for all t > 0, and x is called the
limit of {xn}.

Proposition 2.6 ([17]). Let (U,N) be a fuzzy normed linear space satisfying
(N6). If {xn} is an α-convergent sequence in (U,N), then ‖xn − x‖α → 0 as
n→∞.

Definition 2.7 ([16]). Let U be a linear space over the field C of complex
numbers. Let µ : U×U×C −→ I = [0, 1] be a mapping such that the following
hold:

(FIP1) for s, t ∈ C, µ (x+ y, z, |t|+ |s|) ≥ min {µ (x, z, |t|) , µ (y, z, |s|)};
(FIP2) for s, t ∈ C, µ (x, y, |st|) ≤ min

{
µ
(
x, x, |s|2

)
, µ
(
y, y, |t|2

)}
;

(FIP3) for t ∈ C, µ (x, y, t) = µ
(
y, x, t

)
;

(FIP4) µ (αx, y, t) = µ(x, y, t
|α|), α (6= 0) ∈ C, t ∈ C;

(FIP5) µ (x, x, t) = 0,∀t ∈ C\R+;
(FIP6) (µ (x, x, t) = 1,∀t > 0) iff x = 0;
(FIP7) µ (x, x, .) : R → I is a monotonic non-decreasing function on R and

limt→∞ µ (αx, x, t) = 1.

We call µ fuzzy inner product function on U and (U, µ) fuzzy inner product
space (FIP space).

Theorem 2.8 ([16]). Let U be a linear space over C. Let µ be a FIP on U .
Then

N(x, t) =

{
µ(x, x, t2)
0

if t ∈ R, t > 0,
if t ≤ 0

is a fuzzy norm on U . Now, if µ satisfies the following conditions:

(FIP8)
(
µ
(
x, x, t2

)
> 0, ∀t > 0

)
⇒ x = 0 and

(FIP9) for all x, y ∈ U and p, q ∈ R,

µ
(
x+ y, x+ y, 2q2

)∧
µ
(
x− y, x− y, 2p2

)
≥ µ

(
x, x, p2

)∧
µ
(
y, y, q2

)
,
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then ‖x‖α =
∧
{t > 0 : N (x, t) ≥ α} , α ∈ (0, 1) is an ordinary norm satisfying

parallelogram law. By using the polarization identity, we can get an ordinary
inner product, called the α-inner product, as follows:

〈x, y〉α =
1

4

(
‖x+ y‖2α − ‖x− y‖2α

)
+

1

4
i
(
‖x+ iy‖2α − ‖x− iy‖2α

)
,∀α ∈ (0, 1) .

Definition 2.9 ([16]). Let (U, µ) be a FIP space satisfying (FIP8). The
linear space U is said to be level complete if for any α ∈ (0, 1) every Cauchy
sequence converges w.r.t. ‖.‖α (the α-norm generated by the fuzzy norm N
which is induced by the fuzzy inner product µ).

Definition 2.10 ([1]). Let T : (U,N1) −→ (V,N2) be a fuzzy linear opera-
tor, where (U,N1) and (V,N2) are fuzzy normed linear spaces. The mapping T
is said to be strongly fuzzy bounded on U if and only if there exists a positive
real number M such that

N2(T (x), s) ≥ N1(x,
s
M ), ∀x ∈ U,∀s ∈ R.

Definition 2.11 ([1]). Let T : (U,N1) −→ (V,N2) be a fuzzy linear oper-
ator where (U,N1) and (V,N2) are fuzzy normed linear spaces. The mapping
T is said to be uniformly bounded if there exists M > 0 such that

‖Tx‖2α ≤M‖x‖1α ∀α ∈ (0, 1)

where ‖.‖1α and ‖.‖2α are α-norms on N1 and N2, respectively.

Remark 2.12. Let us denote the set of all uniformly bounded linear oper-
ators from a fuzzy normed linear space (U,N1) to (V,N2) by B(U, V ).

Theorem 2.13 ([1]). Let T : (U,N1) −→ (V,N2) be a fuzzy linear operator
where (U,N1) and (V,N2) are fuzzy normed linear spaces satisfying (N6). Then
T is strongly fuzzy bounded if and only if it is uniformly bounded with respect
to α-norms of N1 to N2.

Definition 2.14 ([1]). Let (U,N1) and (V,N2) be two fuzzy normed linear
spaces satisfying (N6). For T ∈ B(U, V ), let

‖T‖′β =
∨
x∈U,x 6=0

‖Tx‖2β
‖x‖1β

, β ∈ (0, 1),

and

‖T‖α =
∨
β≤α ‖T‖

′
β, α ∈ (0, 1).

Then {‖.‖α : α ∈ (0, 1)} is an ascending family of norms in B(U, V ).

Definition 2.15 ([16]). Let (U, µ) be a FIP space. The linear space U is
said to be a fuzzy Hilbert space if it is level complete.

Definition 2.16 ([16]). Let α ∈ (0, 1) and (U, µ) be a FIP space satisfying
(FIP8) and (FIP9). Now, if x, y ∈ U are such that 〈x, y〉α = 0, then we say
that x, y are α-fuzzy orthogonal to each other and we denote x ⊥α y. Let M
be a subset of U and x ∈ U . If 〈x, y〉α = 0, for all y ∈ M , then we say that



5 Fuzzy normed linear spaces and fuzzy Riesz bases 115

x is α-fuzzy orthogonal to M and we denote x ⊥α M . The set of all α-fuzzy
orthogonal elements to M is called α-fuzzy orthogonal set.

Definition 2.17 ([16]). Let (U, µ) be a FIP space satisfying (FIP8) and
(FIP9). If x, y ∈ U are such that 〈x, y〉α = 0, for all α ∈ (0, 1), then we say
that x, y are fuzzy orthogonal to each other and we denote x ⊥α y. Thus x ⊥ y
if and only if x ⊥α y, for all (0, 1). The set of all fuzzy orthogonal elements to
each other is called fuzzy orthogonal set.

Definition 2.18 ([17]). Let (U, µ) be a FIP space satisfying (FIP8) and
(FIP9) and α ∈ (0, 1). An α-fuzzy orthogonal set M in U is said to be α-fuzzy
orthonormal if the elements have α-norm 1, that is for all x, y ∈M ,

〈x, y〉α =

{
1, x = y

0, x 6= y,

where 〈., .〉α is the inner product induced by µ.

Definition 2.19 ([17]). Let (U, µ) be a FIP space satisfying (FIP8) and
(FIP9). A fuzzy orthonormal set M in U is said to be fuzzy orthonormal if
the elements have α-norm 1 for all α ∈ (0, 1), that is for all x, y ∈M

〈x, y〉α =

{
1, x = y

0, x 6= y,

where 〈., .〉α is the inner product induced by µ.

Proposition 2.20 ([17]). An α-fuzzy orthonormal set and a fuzzy orthonor-
mal set in a FIP space are linearly independent.

3. SOME PROPERTIES OF FUZZY INNER PRODUCT SPACES

In this section, we present some properties of the space (B(U, V ), ‖.‖α) and
of fuzzy linear spaces analogous to properties of the ordinary normed spaces.

Definition 3.1. Let (U, µ) and (V, µ) be two fuzzy Hilbert spaces satisfying
(FIP8) and (FIP9). Let T be a strongly fuzzy bounded linear operator from
U to V . If there exists an operator T ∗ from V to U such that for all α ∈ (0, 1)

〈Tx, y〉α = 〈x, T ∗y〉α,∀x ∈ U, y ∈ V ,

then the operator T ∗ is called fuzzy adjoint of operator T .

In the following example, we give that a fuzzy inner product induces a
classic inner product.

Example 3.2. Let (U, 〈., .〉) be a real inner product space. Define a function
µ : U × U × C→ [0, 1] by

µ(x, y, t) =


|t|

|t|+ ‖x‖‖y‖
0
0

if t > ‖x‖‖y‖,
if t ≤ ‖x‖‖y‖,
if t ∈ C \ R+.
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Then µ is a fuzzy inner product function on U and (U, µ) is a fuzzy inner
product space.

Hence, we conclude that every classic inner product induces the fuzzy inner
product. In what follows, we show that (FIP8) also holds. So, we have a
fuzzy norm from the point of view of Bag and Samanta.

(FIP8) µ(x, x, t2) > 0,∀t > 0⇒ t > ‖x‖2 ∀t > 0⇒ x = 0.

‖x‖α =
∧{

t : µ(x, x, t2) ≥ α
}

=
∧{

t :
|t|2

|t|2 + ‖x‖2
≥ α

}
=

√
α

1− α
‖x‖.

It is clear that (FIP9) holds. By using the polarization identity, the α-inner
product follows from the classic inner product.

‖x− y‖2α + ‖x+ y‖2α =
α

1− α
‖x− y‖2 +

α

1− α
‖x+ y‖2

=
α

1− α
(‖x− y‖2 + ‖x+ y‖2)

=
α

1− α
(2‖x‖2 + 2‖y‖2)

= 2(‖x‖2α + ‖y‖2α).

so, we have

‖x− y‖2α + ‖x+ y‖2α =
α

1− α
(2‖x‖2 + 2‖y‖2) = 2(‖x‖2α + ‖y‖2α).

It follows that

〈x, y〉α =
1

4
(‖x+ y‖2α − ‖x− y‖2α) +

i

4
(‖x+ iy‖2α − ‖x− iy‖2α)

=
α

4(1− α)
(‖x+ y‖2 − ‖x− y‖2) +

αi

4(1− α)
(‖x+ iy‖2 − ‖x− iy‖2)

=
α

1− α
〈x, y〉.

Example (3.2) shows that the fuzzy inner product implies the classic inner
product.

Lemma 3.3. Let (U, µ) be a fuzzy Hilbert space satisfying (FIP8) and
(FIP9). For any α ∈ (0, 1) and y, z ∈ U , if 〈x, y〉α = 〈x, z〉α for all x ∈ U ,
then y = z.
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Proof. Using Example 3.2 we have 〈x, y〉α =
α

1− α
〈x, y〉. Following func-

tional analysis, if 〈x, y〉 = 〈x, z〉, then y = z. So, if 〈x, y〉α = 〈x, z〉α, then
y = z. �

Theorem 3.4. Let (U, µ) be a fuzzy Hilbert space satisfying (FIP8) and
(FIP9). Let T be a fuzzy linear operator on (U, µ). Then T ∗ is also a linear
operator on (U, µ) and the following properties hold:

(i) (T ∗)∗ = T ;
(ii) (T1 + T2)

∗ = T ∗1 + T ∗2 ;

(iii) (λT )∗ = λT ∗, ∀λ ∈ C;
(iv) (ST )∗ = T ∗S∗.

Proof. Suppose that y1, y2 ∈ U and λ, β ∈ C. For each x ∈ U and by using
〈x, y〉α = α

1−α〈x, y〉 we have:

〈x, T ∗(λy1 + βy2)〉α =
α

1− α
〈x, T ∗(λy1 + βy2)〉

=
α

1− α
〈Tx, λy1 + βy2〉

=
α

1− α
λ〈Tx, y1〉+

α

1− α
β〈Tx, y2〉

=
α

1− α
〈x, λT ∗y1〉+

α

1− α
〈x, βT ∗y2〉

=
α

1− α
〈x, λT ∗y1 + βT ∗y2〉

= 〈x, λT ∗y1 + βT ∗y2〉α.

It follows from Lemma 3.3 that T ∗(λy1 + βy2) = λT ∗y1 + βT ∗y2, that is, T ∗

is linear.
For each x, y ∈ U

〈y, (T ∗)∗x〉α = 〈T ∗y, x〉α = 〈x, T ∗y〉α = 〈Tx, y〉α = 〈y, Tx〉α.

Hence, (T ∗)∗ = T , so we have (i).
For proving (ii), obviously we have

〈x, (T1 + T2)
∗y〉α = 〈(T1 + T2)x, y〉α

= 〈T1x, y〉α + 〈T2x, y〉α
= 〈x, T ∗1 y〉α + 〈x, T ∗2 y〉α
= 〈x, (T ∗1 + T ∗2 )y〉α.

For each α ∈ (0, 1) and λ ∈ C, we have

〈λTx, y〉α = λ〈Tx, y〉α = λ〈x, T ∗y〉α = 〈x, λT ∗y〉α, so we get (iii).

For each x, y ∈ U ,

〈STx, y〉α = 〈Tx, S∗y〉α = 〈x, T ∗S∗y〉α.
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Therefore, (ST )∗ = T ∗S∗. �

Definition 3.5. Let (U, µ) be a fuzzy Hilbert space satisfying (FIP8) and
(FIP9). A bijective strongly fuzzy bounded linear operator T : (U, µ) −→
(U, µ) is unitary if TT ∗ = T ∗T = I.

Theorem 3.6. Let (U, µ) be a fuzzy Hilbert space satisfying (FIP8) and
(FIP9) and let {ek}∞k=1 be a fuzzy orthonormal sequence in U . Then the
following statements are equivalent:

(i) {ek}∞k=1 is complete fuzzy orthonormal;
(ii) if 〈x, ek〉α = 0 for k ∈ N, then x = 0;
(iii) For every x ∈ U, x =

∑∞
k=1〈x, ek〉αek for all α ∈ (0, 1) and hence

〈x, ek〉α = 〈x, ek〉β, ∀α, β ∈ (0, 1) ;

i.e. x is independent of α.
(iv) For every x, y ∈ U , 〈x, y〉α =

∑∞
k=1〈x, ek〉α〈ek, y〉α for all α ∈ (0, 1).

(v) For every x ∈ U , ‖x‖2α =
∑∞

k=1 |〈x, ek〉α|2 for all α ∈ (0, 1) and hence

‖x‖2α = ‖x‖2β, ∀α, β ∈ (0, 1) .

Proof. (i)→(ii). Let {ek}∞k=1 be a complete fuzzy orthonormal sequence and

〈x, ek〉α = 0 for k ∈ N and α ∈ (0, 1). Set for a fixed α0, e
α0 =

x

‖x‖α0

. Then

‖eα0‖2α0
= 〈eα0 , eα0〉α0 = 1 and 〈eα0 , ek〉α0 = 0 for k ∈ N. Therefore, we get an

α0-fuzzy orthonormal sequence {eα0 , e1, e2, · · · } of which {e1, e2, · · · } is proper
subset, a contraction to completeness. Therefore, eα0 = 0, thus x = 0.

(ii)→(iii). Suppose 〈x, ek〉α = 0 for k ∈ N, implies x = 0. Therefore,

〈x−
∑∞

k=1〈x, ek〉αek, ej〉α = 0 ∀j ∈ N,∀α ∈ (0, 1),

i.e.

x−
∑∞

k=1〈x, ek〉αek = 0, ∀α ∈ (0, 1).

Thus,

x =
∑∞

k=1〈x, ek〉αek =
∑∞

k=1〈x, ek〉βek, ∀α, β ∈ (0, 1).

Therefore, we have∑∞
k=1(〈x, ek〉α − 〈x, ek〉β)ek = 0, ∀α, β ∈ (0, 1).

Since {ek}∞k=1 is linearly independent,

〈x, ek〉α − 〈x, ek〉β = 0, k ∈ N,∀α, β ∈ (0, 1),

i.e.

〈x, ek〉α = 〈x, ek〉β, k ∈ N,∀α, β ∈ (0, 1).
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(iii)→(iv). Suppose x =
∑∞

k=1〈x, ek〉αek. For all x, y ∈ U and α ∈ (0, 1),
we have

〈x, y〉α =

〈 ∞∑
k=1

〈x, ek〉αek, y

〉
α

=
∞∑
k=1

〈x, ek〉α〈ek, y〉α.

(iv)→(v). Since 〈x, y〉α =
∑∞

k=1〈x, ek〉α〈ek, y〉α, we write for α ∈ (0, 1)

‖x‖2α = 〈x, x〉α =

∞∑
k=1

〈x, ek〉α〈ek, x〉α

=

∞∑
k=1

〈x, ek〉α〈x, ek〉α

=

∞∑
k=1

|〈x, ek〉α|2.

Now, from (iii), we have 〈x, ek〉α = 〈x, ek〉β for all k ∈ N and α, β ∈ (0, 1).
Using this we get

‖x‖2α =

∞∑
k=1

|〈x, ek〉α|2 =

∞∑
k=1

|〈x, ek〉β|2 = ‖x‖2β.

(v)→(i). Suppose (v) holds and {ek}∞k=1 is not complete. Then we get
for an α ∈ (0, 1), a proper subset {el, e1, e2, · · · } of the set {e1, e2, · · · } that
‖el‖2α = 〈el, el〉α = 1 and 〈el, ek〉α = 0 for k ∈ N. Now,

‖el‖2α =
∑∞

k=1 |〈el, ek〉α|2 = 0.

Therefore, el = 0. �

Definition 3.7. Let (U, µ) be a fuzzy Hilbert space satisfying (FIP8) and
(FIP9). A countable family of elements {xk}∞k=1 in U is a fuzzy frame for U
if there exist constants A,B > 0 such that for all x ∈ U and α ∈ (0, 1):

(2) A‖x‖2α ≤
∞∑
k=1

|〈x, xk〉α|2 ≤ B‖x‖2α.

The numbers A and B are called fuzzy frame bounds. Fuzzy frame bounds
are not unique. The optimal lower fuzzy frame bound is the supremum over
all lower fuzzy frame bounds and the optimal upper fuzzy frame bound is
the infimum over all upper fuzzy frame bounds. Note that the optimal fuzzy
frame bounds are actually fuzzy frame bounds. If ‖xk‖α = 1, the fuzzy frame
is normalized. A fuzzy frame {xk}∞k=1 is tight if A = B and in the case
A = B = 1 we call it Parseval fuzzy frame. In the case the upper inequality in



120 B. Daraby, F. Delzendeh, and A. Rahimi 10

(2) holds, {xk}∞k=1 is called fuzzy Bessel sequence. It follows from the definition
that if {xk}∞k=1 is a fuzzy frame for (U, µ), then span {xk}∞k=1 = U .

Consider now a vector space U equipped with a fuzzy frame {xk}∞k=1 and
define a linear mapping

T : (l2 (N) , µ) −→ (U, µ), T {βk}∞k=1 =
∑∞

k=1 βkxk

T is usually called the pre-fuzzy frame operator or the fuzzy synthesis operator.
The adjoint operator is given by

T ∗ : (U, µ) −→ (l2 (N) , µ), T ∗x = {〈x, xk〉α}∞k=1 ,

and it called the fuzzy analysis operator. Composing T with its adjoint T ∗,
we obtain the fuzzy frame operator,

S : (U, µ) −→ (U, µ), Sx = TT ∗x =

∞∑
k=1

〈x, xk〉αxk.

Note that in terms of the fuzzy frame operator we have

〈Sx, x〉α =

∞∑
k=1

|〈x, xk〉α|2, ∀x ∈ U,∀α ∈ (0, 1).

Theorem 3.8. Let {xk}∞k=1 be a fuzzy frame in fuzzy Hilbert space (U, µ)
satisfying (FIP8) and (FIP9) with fuzzy frame operator S. Then the follow-
ing holds:

i) S is invertible and self-adjoint.
ii) Every x ∈ U can be represented as

(3) x =
∞∑
k=1

〈x, S−1xk〉αxk, x ∈ U,

and

(4) x =
∞∑
k=1

〈x, xk〉αS−1xk, x ∈ U.

Both series converges (w.r.t. ‖.‖α; α ∈ (0, 1), where ‖.‖α are the α-
norms of N induced by U) iff

∑∞
k=1 |〈x, S−1xk〉α|2 converges.

Proof. i) Since S∗ = (TT ∗)∗ = TT ∗ = S, the operator S is self-adjoint.
For invertibility of S, first, we show that S is one to one. By definition,
one has to show if Sx = 0, then x = 0. If for all x ∈ U , Sx = 0, then
0 = 〈Sx, x〉α =

∑∞
k=1 |〈x, xk〉α|2.

A‖x‖2α ≤
∑∞

k=1 |〈x, xk〉α|2 = 0

A‖x‖2α = 0⇒ ‖x‖2α = 0⇒ x = 0.

So, S is injective and actually implies that S∗ is surjective and S = S∗, thus S
is surjective , but let us give a direct proof. The fuzzy frame condition implies
that span {xk}∞k=1 = U . So, the fuzzy synthesis operator T is surjective.
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Given x ∈ U we can therefore find y ∈ l2(N) such that Ty = x, we can choose
y ∈ N⊥T = RT ∗ , so it follows that RS = RTT ∗ = U . This shows that S is
invertible. ii) Every x ∈ U has the representation

x = SS−1x = TT ∗S−1x =
∑∞

k=1〈S−1x, xk〉αxk
using that S is self-adjoint, we arrive at

x =
∑∞

k=1〈x, S−1xk〉αxk.

Suppose Φn =
∑n

k=1〈x, S−1xk〉αxk and ϕn =
∑n

k=1 |〈x, S−1xk〉α|2. Then for
all α ∈ (0, 1) and n > m

‖Φn − Φm‖2α =
〈∑n

k=1〈x, S−1xk〉αxk,
∑m

k=1〈x, S−1xk〉αxk
〉
α
,

i.e.

‖Φn − Φm‖2α = |〈x, S−1xm+1〉α|2 + |〈x, S−1xm+2〉α|2 + · · ·+ |〈x, S−1xn〉α|2,

i.e.

‖Φn − Φm‖2α = ϕn − ϕm, ∀α ∈ (0, 1).

Hence, Φn is Cauchy w.r.t. ‖.‖α, for all α ∈ (0, 1) iff ϕn is Cauchy in R. Hence,
Φn is Cauchy iff ϕn is Cauchy in R. The expansion (4) is proved similarly,
using x = S−1Sx. �

Theorem 3.8 shows that all information about a given vector x ∈ U is
contained in the sequence {〈x, S−1xk〉α}∞k=1. The numbers 〈x, S−1xk〉α are
called fuzzy frame coefficients.

Note that, since S : (U, µ) −→ (U, µ) is bijective, the sequence
{
S−1xk

}∞
k=1

is also a fuzzy frame; it is called the canonical dual fuzzy frame of {xk}∞k=1.

Lemma 3.9. Let (U, µ) be a fuzzy Hilbert spaces satisfying (FIP8) and
(FIP9). If {xk}∞k=1 is a tight fuzzy frame with fuzzy bound A, then the canon-

ical dual fuzzy frame is
{
A−1xk

}∞
k=1

and

x =
1

A

∑∞
k=1〈x, xk〉αxk, ∀x ∈ U,α ∈ (0, 1).

Proof. If {xk}∞k=1 is a tight fuzzy frame with fuzzy frame bound A and fuzzy
frame operator S, by Definition 3.7, for all x ∈ U and α ∈ (0, 1) we have

〈Sx, x〉α =
∑∞

k=1 |〈x, xk〉α|2 = A‖x‖2α = 〈Ax, x〉α.

This implies that S = AI. Thus, S−1 is equal to A−1 and the result follows
from Theorem 3.8. �

Example 3.10. Let (U, µ) be a fuzzy Hilbert spaces satisfying (FIP8) and

(FIP9) and α ∈ (0, 1) and let {ek}2k=1 be a fuzzy orthonormal sequence in U .

Suppose x1 = e1, x2 = e1 − e2, x3 = e1 + e2. Then {xk}3k=1 is a fuzzy frame
for U . Using the definition of the fuzzy frame operator

Sx =
∑3

k=1〈x, xk〉αxk,



122 B. Daraby, F. Delzendeh, and A. Rahimi 12

and noting that 〈x, y〉α =
α

1− α
〈x, y〉, we obtain that

Se1 = 〈e1, x1〉αx1 + 〈e1, x2〉αx2 + 〈e1, x3〉αx3
=

α

1− α
(〈e1, x1〉x1 + 〈e1, x2〉x2 + 〈e1, x3〉x3)

=
α

1− α
(e1 + e1 − e2 + e1 + e2)

=
3α

1− α
e1,

and

Se2 = 〈e2, x1〉αx1 + 〈e2, x2〉αx2 + 〈e2, x3〉αx3
=

α

1− α
(〈e2, x1〉x1 + 〈e2, x2〉x2 + 〈e2, x3〉x3)

=
2α

1− α
e2.

Thus, S−1e1 =
1− α

3α
e1, S−1e2 =

1− α
2α

e2. By linearity, the canonical dual

fuzzy frame is{
S−1xk

}3
k=1

=
{
S−1x1, S

−1x2, S
−1x3

}
=

{
S−1e1, S

−1e1 − S−1e2, S−1e1 + S−1e2
}

=

{
1− α

3α
e1,

1− α
3α

e1 −
1− α

2α
e2,

1− α
3α

e1 +
1− α

2α
e2

}
.

Via Theorem 3.8, the representation of x ∈ U in terms of fuzzy frame is given
by

x =
3∑

k=1

〈x, S−1xk〉αxk

=
1− α

3α
〈x, e1〉αe1 + 〈x, 1− α

3α
e1 −

1− α
2α

e2〉α(e1 − e2)

+〈x, 1− α
3α

e1 +
1− α

2α
e2〉α(e1 + e2)

= 3(
1− α

3α
)〈x, e1〉αe1 + 2(

1− α
2α

)〈x, e2〉αe2

=
1− α
α
〈x, e1〉αe1 +

1− α
α
〈x, e2〉αe2

= 〈x, e1〉e1 + 〈x, e2〉e2.

We identify now a characterization of all dual fuzzy frames {yk}∞k=1 as-
sociated with a given fuzzy frame {xk}∞k=1. Since {xk}∞k=1 and {yk}∞k=1 are
assumed to be fuzzy Bessel sequence, we can consider the associated pre-fuzzy
frame operators; we will denote the pre-fuzzy frame operator for {xk}∞k=1 by T
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and the pre-fuzzy frame operator for {yk}∞k=1 by L. Two fuzzy Bessel sequence
{xk}∞k=1 and {yk}∞k=1 are dual fuzzy frame if

(5) x =
∞∑
k=1

〈x, yk〉αxk, ∀x ∈ U,α ∈ (0, 1).

In terms of the fuzzy operator S and L, (5) means that TL∗ = I. We begin
with a lemma, which shows that the roles of {xk}∞k=1 and {yk}∞k=1 can be
interchanged and that lower fuzzy frame condition automatically is satisfied
for fuzzy Bessel sequences {xk}∞k=1 and {yk}∞k=1, if (5) holds.

Lemma 3.11. Let (U, µ) be a fuzzy Hilbert spaces satisfying (FIP8) and
(FIP9), α ∈ (0, 1), {xk}∞k=1 and {yk}∞k=1 be fuzzy Bessel sequences in U .
Then the following are equivalent:

(i) for all x ∈ U , x =
∑∞

k=1〈x, yk〉αxk.
(ii) for all x ∈ U , x =

∑∞
k=1〈x, xk〉αyk.

(iii) for all x, y ∈ U , 〈x, y〉α =
∑∞

k=1〈x, xk〉α〈yk, y〉α.

Proof. Using Theorem 3.6, the proof is straightforward. �

In case the equivalent conditions are satisfied, then {xk}∞k=1 and {yk}∞k=1
are dual fuzzy frames for U .

Lemma 3.12. Let (U, µ) be a fuzzy Hilbert spaces satisfying (FIP8) and
(FIP9), let {xk}∞k=1 be a fuzzy frame for U and {ek}∞k=1 be a fuzzy orthonormal
sequence in U . Then dual fuzzy frames for {xk}∞k=1 form a family {yk}∞k=1 =
{Lek}∞k=1, where L : (U, µ) −→ (U, µ) is an invertible strongly fuzzy bounded
operator and LT ∗ = I.

Proof. If L is a strongly fuzzy bounded and LT ∗ = I, then L is surjective.
We have the fuzzy bounded operator L on (U, µ), hence {yk}∞k=1 is a fuzzy
Bessel sequence. Let L−1 : (U, µ) −→ (U, µ) denote the inverse of L. For
y ∈ U we have that

y = LL−1y =
∑∞

k=1(L
−1y)kyk,

where (L−1y)k denotes the k-th coordinate of L−1y. Thus, for α ∈ (0, 1) we
have

‖y‖4α = |〈y, y〉α|2

= |〈
∞∑
k=1

(L−1y)kyk, y〉α|2

≤
∞∑
k=1

|(L−1y)k|2
∞∑
k=1

|〈y, yk〉α|2

≤ ‖L−1‖2α‖y‖2α
∞∑
k=1

|〈y, yk〉α|2.
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It follows that∑∞
k=1 |〈y, yk〉α|2 ≥

1

‖L−1‖2α
‖y‖2α, ∀y ∈ U,α ∈ (0, 1),

i.e. {yk}∞k=1 is a fuzzy frame. Note that in terms of {ek}∞k=1,

T ∗x = {〈x, xk〉α}∞k=1 =
∑∞

k=1〈x, xk〉αek;

thus, for all x ∈ U and α ∈ (0, 1),

x = LT ∗x =
∑∞

k=1〈x, xk〉αyk,

i.e. {yk}∞k=1 is a dual fuzzy frame of {xk}∞k=1. For the other implication, as-
sume that {yk}∞k=1 is a dual fuzzy frame of {xk}∞k=1. Then the pre-fuzzy frame
operator L for {yk}∞k=1 satisfies the condition. In fact, {yk}∞k=1 = {Lek}∞k=1
and, by Lemma 3.11, LT ∗ = I. �

We finish this section by an example for the canonical dual fuzzy frame and
non-canonical dual fuzzy frame.

Example 3.13. Let (U, µ) be a fuzzy Hilbert spaces satisfying (FIP8) and
(FIP9) and let {ek}∞k=1 be a fuzzy orthonormal sequence in U . Consider the
fuzzy frame

{xk}∞k=1 = {e1, e1, e2, e3, e4, · · · },

with fuzzy bounds A =
α

1− α
, B =

2α

1− α
. The canonical dual fuzzy frame is

given by {
S−1xk

}∞
k=1

=

{
1 + α

2α
e1,

1 + α

2α
e1, e2, e3, e4, · · ·

}
.

As examples of non-canonical dual fuzzy frames, we have

{yk}∞k=1 =

{
0,

1− α
α

e1, e2, e3, e4, · · ·
}

,

and

{yk}∞k=1 =

{
1− α

3α
e1,

2− 2α

3α
e1, e2, e3, e4, · · ·

}
.

4. FUZZY FRAMES AND FUZZY RIESZ BASES

In this section, we note that all fuzzy Riesz bases are fuzzy frames.

Proposition 4.1. Let (U, µ) be a fuzzy Hilbert spaces satisfying (FIP8)
and (FIP9) and let {ek}∞k=1 be a fuzzy orthonormal sequence in U . If the
series

∑∞
k=1 βkek is α-convergent w.r.t. N induced by µ, then x ∈ U has

expansion

(6) x =
∞∑
k=1

〈x, ek〉αek, ∀α ∈ (0, 1),

i.e.
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βk = 〈x, ek〉α = 〈x, ek〉β, ∀α, β ∈ (0, 1) ,

where 〈., .〉 denotes the α-inner product induced by µ, x denotes the sum of∑∞
k=1 βkek. Hence,

x =
∑∞

k=1〈x, ek〉αek =
∑∞

k=1〈x, ek〉βek, ∀α, β ∈ (0, 1) .

Proof. Since
∑∞

k=1 βkek is α-convergent. So it is convergent w.r.t. ‖.‖α.
Let Sn =

∑n
k=1 βkek. Taking fuzzy inner product with Sn and ej and using

the definition of fuzzy orthonormality we have

〈Sn, ej〉α = βj , ∀α ∈ (0, 1)∀j = 1.2, · · · , k.

Now Sn → x w.r.t. ‖.‖α, hence

〈Sn, ej〉α −→ 〈x, ej〉α = βj .

Therefore x =
∑∞

k=1 βkek =
∑∞

k=1〈x, ek〉αek, for all α ∈ (0, 1). By Theorem
3.6 we have

βk = 〈x, ek〉α = 〈x, ek〉β, ∀α, β ∈ (0, 1) .

�

Theorem 4.2. Let (U, µ) be a fuzzy Hilbert spaces satisfying (FIP8) and
(FIP9) and α ∈ (0, 1) and let {ek}∞k=1 be a fuzzy orthonormal sequence in U .
Then the fuzzy orthonormal bases for U are precisely the sets {Tek}∞k=1, where
T : (U, µ) −→ (U, µ) is a unitary operator.

Proof. Let {xk}∞k=1 be a fuzzy orthonormal basis for U . Define the linear
operator

T : (U, µ) −→ (U, µ), T (
∑∞

k=1 βkek) =
∑∞

k=1 βkxk.

Then T is a fuzzy bounded and bijective mapping and xk = Tek. If for
x, y ∈ U , we write x =

∑∞
k=1〈x, ek〉αek and y =

∑∞
k=1〈y, ek〉αek, then, via the

definition of T and Theorem 3.6 for α ∈ (0, 1), we have

〈T ∗Tx, y〉α = 〈Tx, Ty〉α

= 〈
∞∑
k=1

〈x, ek〉αxk,
∞∑
k=1

〈y, ek〉αxk〉α

=

∞∑
k=1

〈x, ek〉α〈y, ek〉α

= 〈x, y〉α.
This implies that T ∗T = I. Since T is surjective, it is unitary. On the other
hand, if T is a given unitary operator, then

〈Tei, T ej〉α = 〈T ∗Tei, ej〉α = 〈ei, ej〉α,

i.e. {Tek}∞k=1 is fuzzy orthonormal. �
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In Theorem 4.2, we characterized all orthonormal bases in terms of unitary
operators that follow from fuzzy orthonormal bases. Formally, the definition
of a fuzzy Riesz basis appears by a weak condition on the linear operator:

Definition 4.3. A fuzzy Riesz basis for fuzzy Hilbert space (U, µ) which
satisfying (FIP8) and (FIP9) is a family of the form {Tek}∞k=1, where {ek}∞k=1
is a fuzzy orthonormal basis for U and T : (U, µ) −→ (U, µ) is a uniformly
bounded bijective operator.

A fuzzy Riesz basis {fk}∞k=1 is actually a basis; this follows form the proof
of Theorem 4.4, which we state in the following. Note that the expansion (6)
of the elements f ∈ U in terms of a fuzzy Riesz basis is more involved than
the expression (6), which we obtained via fuzzy orthonormal bases.

Theorem 4.4. Let (U, µ) be a fuzzy Hilbert space satisfying (FIP8) and
(FIP9) and {fk}∞k=1 be a fuzzy Riesz basis for (U, µ). Then {fk}∞k=1 is a fuzzy
Bessel sequence. Furthermore, there exists a sequence {gk}∞k=1 in (U, µ) such
that

(7) f =
∞∑
k=1

〈f, gk〉αfk, ∀f ∈ U,∀α ∈ (0, 1).

The sequence {fk}∞k=1 is also a fuzzy Bessel basis and the series (7) converges
(w.r.t. ‖.‖α, where ‖.‖α are α-norms of N induced by µ).

Proof. According to the definition, we can write {fk}∞k=1 = {Tek}∞k=1,where
T is a bounded bijective operator and {ek}∞k=1 is a fuzzy orthonormal basis.
Let now f ∈ U and α ∈ (0, 1). By expanding T−1f in the fuzzy orthonormal
basis {ek}∞k=1 we have

T−1f =
∑∞

k=1〈T−1f, ek〉αek =
∑∞

k=1〈f, (T−1)∗ek〉αek, ∀α ∈ (0, 1).

Therefore, with gk = (T−1)∗ek,

f = TT−1f =

∞∑
k=1

〈f, (T−1)∗ek〉αTek =

∞∑
k=1

〈f, gk〉αfk.

Since the operator (T−1)∗ is uniformly bounded and bijective, {gk}∞k=1 is a
fuzzy Riesz basis by definition.

For f ∈ U and for all α ∈ (0, 1),
∞∑
k=1

|〈f, fk〉α|2 =
∞∑
k=1

|〈f, Tek〉α|2 = ‖T ∗f‖2α ≤ ‖T ∗‖2α‖f‖2α = ‖T‖2α‖f‖2α.

This proves that a fuzzy Riesz basis is a fuzzy Bessel sequence. Thus, the series
(7) converges (w.r.t. ‖.‖α; α ∈ (0, 1), where ‖.‖α are α-norms of N which are
induced by µ). We complete the proof by showing that the sequence {gk}∞k=1
constructed in the proof is the only one that satisfies 7. For that purpose, we
first note that if
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f =
∑∞

k=1〈f, gk〉αfk =
∑∞

k=1〈f, gk〉βfk, ∀α, β ∈ (0, 1)

for some coefficients 〈f, gk〉α and 〈f, gk〉β, then necessarily 〈f, gk〉α = 〈f, gk〉β.
By Theorem 3.6, we have 〈f, gk〉α = 〈f, gk〉β, ∀α, β ∈ (0, 1). �

The sequence {gk}∞k=1 satisfying (7) is called the fuzzy dual Riesz basis of
{fk}∞k=1. Let us find the fuzzy dual of {gk}∞k=1. With the notation used in the
proof of Theorem 4.4, we have that the fuzzy dual of {fk}∞k=1 = {Tek}∞k=1 is

given by {gk}∞k=1 =
{

(T−1)∗ek
}∞
k=1

; thus, the fuzzy dual of {gk}∞k=1 is{((
(T−1)∗

)−1)∗
ek

}∞
k=1

= {Tek}∞k=1 = {fk}∞k=1 .

That is {fk}∞k=1 and {gk}∞k=1 are fuzzy duals of each other.

Proposition 4.5. Let (U, µ) be a fuzzy Hilbert space satisfying (FIP8) and
(FIP9) and let {fk}∞k=1 = {Tek}∞k=1 be a fuzzy Riesz basis for (U, µ). Then
there exist constants A,B > 0 such that

A‖f‖2α ≤
∑∞

k=1 |〈f, fk〉α|2 ≤ B‖f‖2α, ∀f ∈ U,α ∈ (0, 1).

The largest possible value for the constant A is
1

‖T−1‖2α
and the smallest pos-

sible value for B is ‖T‖2α.

Proof. The fuzzy Riesz basis {Tek}∞k=1 is a fuzzy Bessel sequence with op-
timal upper bound ‖T‖2α, by the estimate in Theorem 4.4. The result about
the lower bound is a consequence of

‖f‖α = ‖(T ∗)−1T ∗f‖α ≤ ‖(T ∗)−1‖α‖T ∗f‖α = ‖T−1‖α‖T ∗f‖α.

�

5. CONCLUSION

In this paper, we consider fuzzy inner product space introduced by Bag and
Samanta. Some important concepts viz. α- fuzzy orthonormal set, complete
fuzzy orthonormal set etc. have been introduced. We define dual fuzzy frames
and fuzzy Riesz bases and establish some fundamental results via dual fuzzy
frames and fuzzy Ries bases. Next, we investigate the relation between fuzzy
frames and fuzzy Riesz bases. We establish Bessels inequality and the Riesz
representation theorem in fuzzy setting. We think that these results will be
helpful for the researchers to develop fuzzy functional analysis, especially for
frame theory.
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