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OPERATORS IN MINIMAL SPACES
WITH HEREDITARY CLASSES

AHMAD AL-OMARI and TAKASHI NOIRI

Abstract. Quite recently, a new minimal structure m?
H has been introduced in

[12] by using a minimal structure m and a hereditary class H. In this paper, we
introduce and investigate an operator Γ?

mH , (?)-strongly m-codense hereditary
class H and a minimal structure m which is said to be m-compatible with a
hereditary class H in a hereditary m-space (X,m, H).
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1. INTRODUCTION

The notion of ideals in topological spaces was introduced by Kuratowski [10].
Janković and Hamlett [8] defined the local function on an ideal topological
space (X, τ, I). By using it they obtained a new topology τ? for X and
investigated relations between τ and τ?. A subfamily µ of the power set
P(X) on a nonempty set X is called a generalized topology (briefly GT) [6]
if ∅ ∈ µ and any union of elements of µ belongs to µ. Császár [7] defined a
hereditary class H which is weaker than an ideal and constructed a new GT
µ? from a GT µ and a hereditary class H. Moreover, he showed that many
properties related to τ and τ? remain valid (possibly with small modifications)
for µ and µ?.

In [12], Noiri and Popa introduced the minimal local function on a minimal
space (X,m) with a hereditary class H and constructed a minimal structure
m?

H which contains m. They showed that many properties related to τ and
τ? (or µ and µ?) remain similarly valid on m and m?

H .
In this paper, we investigate relationships between a minimal stracture m

and a hereditary class H. In Section 3, we define and study an operator, called
Γ?
mH , on a herediatary minimal space (X,m, H). In Section 4, we investigate a

minimal structure m which is said to be m-compatible with a hereditary class
H. In the last section, we define and investigate a heraditary class H which
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is said to be (?)-strongly m-codense. Several characterizations of minimal
stracture were provided in [1, 2, 3, 4, 5].

2. MINIMAL STRUCTURES

Definition 2.1. A subfamily m of the power set P(X) of a nonempty set
X is called a minimal structure (briefly m-structure) [13] on X if ∅ ∈ m and
X ∈ m.

By (X,m) we denote a nonempty set X with a minimal structure m on
X and call it an m-space. Each member of m is said to be m-open and the
complement of an m-open set is said to be m-closed. For a point x ∈ X, the
family {U : x ∈ U and U ∈ m} is denoted by m(x).

Definition 2.2. Let (X,m) be an m-space and A a subset of X. The m-
closure mCl(A) of A [11] is defined by mCl(A) = ∩{F ⊂ X : A ⊂ F,X \ F ∈
m}.

Lemma 2.3 (Maki et al. [11]). Let X be a nonempty set and m a minimal
structure on X. For subsets A and B of X, the following properties hold:

(1) A ⊂ mCl(A) and mCl(A) = A if A is m-closed,
(2) mCl(∅) = ∅, mCl(X) = X,
(3) If A ⊂ B, then mCl(A) ⊂ mCl(B),
(4) mCl(A) ∪mCl(B) ⊂ mCl(A ∪B),
(5) mCl(mCl(A)) = mCl(A).

Definition 2.4. A minimal structure m of a set X is said to have
(1) property B [11] if the union of any collection of elements of m is an

element of m,
(2) property [F ] if m is closed under finite intersections.

Lemma 2.5 (Popa and Noiri [13]). Let (X,m) be an m-space and A a subset
of X.

(1) x ∈ mCl(A) if and only if U ∩A 6= ∅ for every U ∈ m(x).
(2) Let m have property B. Then the following properties hold:

(i) A is m-closed if and only if mCl(A) = A,
(ii) mCl(A) is m-closed.

Definition 2.6. A nonempty subfamily H of P(X) is called a hereditary
class on X [7] if it satisfies the following properties: A ∈ H and B ⊂ A implies
B ∈ H. A hereditary class H is called an ideal if it satisfies the additional
condition: A ∈ H and B ∈ H implies A ∪B ∈ H.

A minimal space (X,m) with a hereditary classH on X is called a hereditary
minimal space (briefly hereditary m-space) and is denoted by (X,m,H).

Definition 2.7 ([12]). Let (X,m,H) be a hereditary m-space. For a subset
A of X, the minimal local function A?

mH(H, m) of A is defined as follows:

A?
mH(H, m) = {x ∈ X : U ∩A /∈ H for every U ∈ m(x)}.
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Hereafter, A?
mH(H, m) is simply denoted by A?

mH .

Remark 2.8 ([12]). Let (X,m,H) be a hereditary m-space and A a subset
of X. If H = {∅} (resp. P(X)), then A?

mH = mCl(A) (resp. A?
mH = ∅).

Lemma 2.9 ([12]). Let (X,m,H) be a hereditary m-space. For subsets A
and B of X, the following properties hold:

(1) If A ⊂ B, then A?
mH ⊂ B?

mH ,
(2) A?

mH = mCl(A?
mH) ⊂ mCl(A),

(3) A?
mH ∪B?

mH ⊂ (A ∪B)?mH ,
(4) (A?

mH)?mH ⊂ (A ∪A?
mH)?mH = A?

mH ,
(5) If A ∈ H, then A?

mH = ∅.

Lemma 2.10. Let (X,m,H) be a hereditary m-space and A a subset of X.
If U ∈ m and U ∩A ∈ H, then U ∩A?

mH = ∅.

3. THE OPERATOR Γ?
MHΓ?
MHΓ?
MH

Definition 3.1. Let (X,m,H) be a hereditarym-space. An operator Γ∗
mH :

P(X) → P(X) is defined as follows: for every A ∈ X, Γ∗
mH(A) = {x ∈ X :

there exists M ∈ m(x) such that M −A ∈ H}.

Theorem 3.2. Let (X,m,H) be a hereditary m-space. Then, for every
subset A of X, Γ∗

mH(A) = X − (X −A)∗mH .

Proof. Suppose x ∈ X − (X − A)∗mH . Then x /∈ (X − A)∗mH , and so there
exists M ∈ m(x) such that M ∩ (X −A) ∈ H, which implies that M −A ∈ H.
Therefore, X − (X − A)∗mH ⊆ {x ∈ X : there exists M ∈ m(x) such that
M − A ∈ H} = Γ∗

mH(A). Conversely, assume that y ∈ Γ∗
mH(A). Then there

exists M ∈ m(y) such that M −A ∈ H. Since M −A ∈ H, M ∩ (X −A) ∈ H
which implies that y /∈ (X − A)∗mH . Therefore, y ∈ X − (X − A)∗mH . Thus,
Γ∗
mH(A) = X − (X −A)∗mH . �

Definition 3.3 ([12]). Let (X,m, H) be a hereditary m-space and A a
subset of X. The minimal ?-closure mCl?H(A) of A is defined as mCl?H(A) =
A ∪ A?

mH . A new m-structure, m?
H , is defined as follows: m?

H = {U ⊂ X :
mCl?H(X \ U) = X \ U}. Each member of m?

H is said to be m?
H -open and the

complement of an m?
H -open set is said to be m?

H -closed.

Lemma 3.4. Let (X,m, H) be a hereditary m-space. A subset F of X is
m?

H-closed if and only if F ∗
mH ⊆ F .

Proof. F is m?
H -closed if and only if F = mCl?H(F ) = F ∪ F ∗

mH if and only
if F ∗

mH ⊆ F . �

Lemma 3.5. Let (X,m, H) be a hereditary m-space, then m?
H = {A ⊆ X :

A ⊆ Γ∗
mH(A)}.
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Proof. Let A ⊆ X and A ⊆ Γ∗
mH(A). By Theorem 3.2, A ⊆ X−(X−A)∗mH

and X − A ⊇ (X − A)∗mH . Therefore, X − A = mCl?H(X − A) and hence
A ∈ m?

H . Conversely, let A ∈ m?
H . Then X − A is m?

H -closed. Therefore,
(X −A)∗mH ⊆ X −A, which implies that X − (X −A) ⊆ X − (X −A)∗mH and
hence A ⊆ Γ∗

mH(A). �

Corollary 3.6. Let (X,m,H) be a hereditary m-space. Then U ⊆ Γ∗
mH(U)

for every m-open set U ⊆ X.

Proof. We know that Γ∗
mH(U) = X − (X − U)∗mH . Now, (X − U)∗mH ⊆

mCl(X−U) = X−U , since X−U is m-closed. Therefore, U = X−(X−U) ⊆
X − (X − U)∗mH = Γ∗

mH(U). �

Several basic properties concerning the behavior of the operator Γ∗
mH are

included in the following theorem.

Theorem 3.7. Let (X,m, H) be a hereditary m-space. Then, for a subset
A of X, the following properties hold:

(1) If m has property B, then Γ∗
mH(A) is m-open.

(2) If A ⊆ B ⊆ X, then Γ∗
mH(A) ⊆ Γ∗

mH(B).
(3) Γ∗

mH(A ∩B) ⊆ Γ∗
mH(A) ∩ Γ∗

mH(A).
(4) Γ∗

mH(A) = Γ∗
mH [Γ∗

mH(A)] if and only if (X −A)?mH =[(X −A)?mH ]?mH .
(5) Γ∗

mH(A) ⊂ Γ∗
mH(Γ∗

mH(A)).

Proof. (1) This follows from Lemma 2.9 (2) and Theorem 3.2.
(2) This follows from Lemma 2.9 (1).
(3) This is obvious by (2).
(4) This follows from the facts:

(i) Γ∗
mH(A) = X − (X −A)?mH .

(ii) Γ∗
mH [Γ∗

mH(A)] = X − [X − (X − (X −A)?mH)]?mH
= X − [(X −A)?mH ]?mH .

(5) By Lemma 2.9 and the above fact, ((X −A)?mH)?mH ⊂ (X −A)?mH and
Γ∗
mH(A) = X − (X −A)?mH ⊂ X − ((X −A)?mH)?mH = Γ∗

mH(Γ∗
mH(A)). �

The following example due to Renukadevi and Vimaladevi [14] shows that
the inequality in Theorem 3.7(5) will not be an equality.

Example 3.8. Let X = {a, b, c, d}, m = {∅, X, {a}, {a, b}, {b, c}, {a, b, c}}
and H = {∅, {b}, {c}}. Then (X,m, H) is a hereditary m-space. Let A =
{a, d}, then Γ?

mH(A) = {a, b} and Γ?
mH(Γ?

mH(A)) = Γ?
mH({a, b}) = {a, b, c}.

Therefore, Γ∗
mH(A) 6= Γ∗

mH(Γ∗
mH(A)).

Lemma 3.9. Let (X,m, I) be an ideal m-space and A,B any subsets of X.
If m has property [F ], then A∗

mH ∪B∗
mH = (A ∪B)∗mH .

Proof. It follows from Lemma 2.9 that (A ∪B)∗mH ⊇ A∗
mH∪B∗

mH . To prove
the reverse inclusion, let x /∈ A∗

mH ∪ B∗
mH . Then x belongs neither to A∗

mH
nor to B∗

mH . Therefore, there exist Ux, Vx ∈ m(x) such that Ux ∩ A ∈ I and
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Vx ∩B ∈ I. Since I is additive, Ux ∩A) ∪ (Vx ∩B) ∈ I. Moreover, since I is
hereditary and

(Ux ∩ Vx) ∩ (A ∪B) =((Ux ∩ Vx) ∩A) ∪ ((Ux ∩ Vx) ∩B)

⊆(Ux ∩A) ∪ (Vx ∩B),

(Ux∩Vx)∩(A∪B) ∈ I. Since Ux∩Vx ∈ m(x), x /∈ (A ∪B)∗mH . This shows that
(A ∪B)∗mH ⊆ A∗

mH ∪B∗
mH . Hence, we obtain A∗

mH ∪B∗
mH = (A ∪B)∗mH . �

Lemma 3.10. Let (X,m, I) be an ideal m-space. If m has property [F ] and
A,B are subsets of X, then A∗

mH −B∗
mH = (A−B)∗mH −B∗

mH .

Proof. We have, by Lemma 3.9, A∗
mH =[(A−B)∪(A ∩B)]∗mH =(A−B)∗mH

∪(A ∩B)∗mH ⊆ (A−B)∗mH ∪B∗
mH . Thus, A∗

mH −B∗
mH ⊆ (A−B)∗mH −B∗

mH .
By Lemma 2.9, (A−B)∗mH ⊆ A∗

mH and hence (A−B)∗mH − B∗
mH ⊆ A∗

mH −
B∗

mH . Hence, A∗
mH −B∗

mH = (A−B)∗mH −B∗
mH . �

Corollary 3.11. Let (X,m, I) be an ideal minimal space. If m has prop-
erty [F ] and A,B are subsets of X with B ∈ I, then (A ∪B)∗mH = A∗

mH =
(A−B)∗mH .

Proof. Since B ∈ I, by Lemma 2.9, B∗
mH = ∅. By Lemma 3.10, A∗

mH =
(A−B)∗mH and, by Lemma 3.9, (A ∪B)∗mH = A∗

mH ∪B∗
mH = A∗

mH �

Theorem 3.12. Let (X,m,H) be a hereditary m-space and A ⊆ X. Then
the following properties hold:

(1) Γ∗
mH(A) = ∪{U ∈ m : U −A ∈ H}.

(2) Γ∗
mH(A) ⊇ ∪{U ∈ m : (U −A) ∪ (A− U) ∈ H}.

Proof. (1) This follows immediately from the definition of Γ∗
mH -operator.

(2) Since H is heredity, it is obvious that ∪{U ∈ mX : (U −A)∪ (A−U) ∈
H} ⊆ ∪{U ∈ m : U −A ∈ H} = Γ∗

mH(A) for every A ⊆ X. �

Theorem 3.13. Let (X,m,H) be a hereditary m-space and σ = {A ⊆ X :
A ⊆ Γ∗

mH(A)}. Then the following properties hold:
(1) σ is a minimal structure with property B,
(2) If H is an ideal and m has property [F], then σ is a topology for X.

Proof. (1) By Lemma 3.5, σ = m?
H . It is known from [12, Theorem 2.1]

that m?
H is a minimal structure with property B.

(2) Let A,B ∈ σ, then A ∩ B ⊆ Γ∗
mH(A) ∩ Γ∗

mH(B). By Lemma 3.9, we
have

Γ∗
mH(A ∩B) =X − (X − (A ∩B))∗mH = X − [(X −A) ∪ (X −B)]∗mH

=X − [(X −A)∗mH ∪ (X −B)∗mH ]

=[X − (X −A)∗mH ] ∩ [X − (X −B)∗mH ]

=Γ∗
mH(A) ∩ Γ∗

mH(B).

Γ∗
mH(A)∩Γ∗

mH(B) = Γ∗
mH(A∩B). Therefore, A∩B ⊆ Γ∗

mH(A∩B) and hence
A ∩B ∈ σ. This shows that σ is a topology. �
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4. COMPATIBLITY OFMMM WITHHHH

Definition 4.1. Let (X,m,H) be a hereditary m-space. We say that m is
m-compatible with a hereditary class H, denoted m∼H, if the following holds:
for every A ⊆ X, A ∈ H whenever for each x ∈ A there exists U ∈ m(x) such
that U ∩A ∈ H.

Theorem 4.2. Let (X,m,H) be a hereditary m-space. Then the implica-
tions (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) hold. If m has property [F ] and H is an
ideal, then the following properties are equivalent:

(1) For every A ⊆ X, if A contains no nonempty subset B with B ⊆ B∗
mH ,

then A ∈ H;
(2) m∼H;
(3) If a subset A of X has a cover of m-open sets whose intersection with

A is in H, then A ∈ H;
(4) For every A ⊆ X, A ∩A∗

mH = ∅ implies that A ∈ H;
(5) For every A ⊆ X, A−A∗

mH ∈ H.

Proof. (1) ⇒ (2): Let A ⊆ X and assume that for every x ∈ A, there exists
U ∈ m(x) such that U ∩A ∈ H. Then A∩A∗

mH = ∅. Suppose that A contains
B such that B ⊆ B∗

mH . Then B = B ∩ B∗
mH ⊆ A ∩ A∗

mH = ∅. Therefore, A
contains no nonempty subset B with B ⊆ B∗

mH . Hence, A ∈ H.
(2) ⇒ (3): The proof is obvious.
(3) ⇒ (4): Let A ⊆ X and x ∈ A. Then x /∈ A∗

mH and there exists
Vx ∈ m(x) such that Vx ∩A ∈ H. Therefore, we have A ⊆ ∪{Vx : x ∈ A} and
Vx ∈ m(x) and by (3) A ∈ H.

(4)⇒ (5): For any A ⊆ X, A−A∗
mH ⊆ A and (A−A∗

mH)∩(A−A∗
mH)∗mH ⊆

(A−A∗
mH) ∩A∗

mH = ∅. By (4), A−A∗
mH ∈ H.

(5) ⇒ (1): By (5), for every A ⊆ X, A − A∗
mH ∈ H. Let A − A∗

mH =
J ∈ H, then A = J ∪ (A ∩ A∗

mH) and, by lemma 3.9 and Lemma 2.9, A∗
mH =

J∗
mH ∪ (A ∩A∗

mH)∗mH = (A ∩A∗
mH)∗mH . Therefore, we have A ∩ A∗

mH = A ∩
(A ∩A∗

mH)∗mH ⊆ (A ∩A∗
mH)∗mH and A ∩ A∗

mH ⊆ A. By the assumption,
A ∩A∗

mH = ∅ and hence A = A−A∗
mH ∈ H. �

Corollary 4.3. Let (X,m,H) be a hereditary m-space and m∼H. If
A ∩A∗

mH = ∅ for A ⊆ X, then A∗
mH = ∅.

Theorem 4.4. Let (X,m,H) be a hereditary m-space. Then m∼H if and
only if Γ∗

mH(A)−A ∈ H for every A ⊆ X.

Proof. Necessity. Assume m∼H and let A ⊆ X. Observe that x ∈
Γ∗
mH(A) − A if and only if x /∈ A and x /∈ (X −A)∗mH if and only if x /∈ A

and there exists Ux ∈ m(x) such that Ux − A ∈ H if and only if there exists
Ux ∈ m(x) such that x ∈ Ux − A ∈ H. Now, for each x ∈ Γ∗

mH(A) − A and
Ux ∈ m(x), Ux∩ (Γ∗

mH(A)−A) ∈ H, by heredity, and hence Γ∗
mH(A)−A ∈ H,

by the assumption that m∼H.
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Sufficiency. Let A ⊆ X and assume that for each x ∈ A there exists
Ux ∈ m(x) such that Ux ∩ A ∈ H. Observe that Γ∗

mH(X − A) − (X − A) =
A−A∗

mH = {x : there exists Ux ∈ m(x) such that x ∈ Ux ∩A ∈ H}. Thus we
have A ⊆ Γ∗

mH(X−A)− (X−A) ∈ H and hence A ∈ H by heredity of H. �

Proposition 4.5. Let (X,m,H) be a hereditary m-space with m∼H, A ⊆
X. If N is a nonempty m-open subset of A∗

mH ∩ Γ∗
mH(A), then N − A ∈ H

and N ∩A /∈ H.

Proof. If N ⊆ A∗
mH∩Γ∗

mH(A), then N−A ⊆ Γ∗
mH(A)−A ∈ H, by Theorem

4.4, and hence N − A ∈ H, by heredity. Since N ∈ m − {∅} and N ⊆ A∗
mH ,

we have N ∩A /∈ H, by the definition of A∗
mH . �

5. STRONGLYMMM -CODENSE HEREDITARY CLASSES

Definition 5.1. Let (X,m,H) be a hereditary m-space. The hereditary
class H is said to be

(1) m-codense if m ∩H = {∅},
(2) strongly m-codense if U, V ∈ m and U ∩ V ∈ H implies U ∩ V = ∅,
(3) (?)-strongly m-codense if for U, V ∈ m, (U∩V )∩A ∈ H and (U∩V )−A ∈

H implies U ∩ V = ∅ for every subset A of X.

Lemma 5.2. Let (X,m,H) be a hereditary m-space. Then, for the hereditary
class H, the following properties hold:

(1) If H is (?)-strongly m-codense, then it is strongly m-codense,
(2) If H is strongly m-codense, then it is m-codense.

Proof. (1) If U, V ∈ m and U∩V ∈ H, then (U∩V )∩∅ ∈ H and (U∩V )−∅ ∈
H and, by hypothesis, U ∩ V = ∅.

(2) Let H be strongly m-codense. Suppose that m ∩ H 6= {∅}. There
exists U ∈ m ∩ H such that U 6= ∅. Since x ∈ U ∈ m and U ∈ H, for any
V ∈ m(x), V ∩ U ⊂ U ∈ H and V ∩ U ∈ H. Since x ∈ U ∩ V , this is contrary
to the hypothesis. �

Remark 5.3. The following example due to Kim and Min [9] shows that
the converse of (1) in Lemma 5.2 is not always true. And also [12, Example
2.1] shows that the converse of (2) in Lemma 5.2 is not always true.

Example 5.4. (1) Let X={a, b, c},m={∅, {a, c}, X} and H={∅, {a}, {c}}.
Then H is strongly m-codense. Let U = {a, c} and V = X. Then for A =
{b, c}, (U ∩V )∩A = {c} ∈ H and (U ∩V )−A = {a} ∈ H but U ∩V = U 6= ∅.
Hence, H is not (?)-strongly m-codense.

(2) Let X = {a, b, c},m = {∅, {a, b}, {a, c}, X} and H = {∅, {a}}. Then H
is m-codense. Let U = {a, b} and V = {a, c}, then U ∩ V = {a} ∈ H and H
is not strongly m-codense.

Theorem 5.5. Let (X,m,H) be a hereditary m-space. Then, the following
properties hold:
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(1) If H is an ideal and strongly m-codense, then it is (?)-strongly m-
codense,

(2) If m has property [F ] and H is m-codense, then H is strongly m-codense.

Proof. (1) Let U, V ∈ m and (U ∩V )∩A ∈ H and (U ∩V )−A ∈ H. Then,
since H is an ideal, U ∩ V = ((U ∩ V ) ∩ A) ∪ ((U ∩ V )− A) ∈ H. Since H is
strongly m-codense, U ∩ V = ∅ and hence H is (?)-strongly m-codense.

(2) Let U, V ∈ m and (U ∩ V ) ∈ H. Since m has property [F ], U ∩ V ∈ m
and (U ∩ V ) ∈ m ∩H. Hence U ∩ V = ∅. �

Corollary 5.6. Let (X,m,H) be an ideal m-space and m have property
[F ]. Then the following properties are equivalent: (1) m-codense, (2) strongly
m-codense and (3) (?)-strongly m-codense.

Lemma 5.7. Let (X,m,H) be a hereditary m-space. Then the following
properties are equivalent:

(1) H is m-codense;
(2) X = X∗

mH ;
(3) Γ∗

mH(∅) = ∅.
Proof. (1) ⇒ (2): Suppose that H is m-codense. For any point x ∈ X and

any U ∈ m(x), U ∩X = U /∈ H. Hence, x ∈ X?
mH and X ⊂ X?

mH . Therefore,
X = X∗

mH .
(2) ⇒ (3): Since Γ∗

mH(∅) = X −X∗
mH , Γ∗

mH(∅) = ∅.
(3) ⇒ (1): Suppose that m ∩ H 6= {∅}. Then there exists U ∈ m ∩ H such

that U 6= ∅. There exists x ∈ U ∈ m and U ∩X = U ∈ H and hence x /∈ X?
mH .

Hence, x ∈ X −X?
mH = Γ∗

mH({∅}). This is contrary to Γ∗
mH(∅) = ∅. �

Lemma 5.8. Let (X,m,H) be a hereditary m-space and m have property B.
Then H is m-codense if and only if Int(H) = ∅ for every H ∈ H.

Proof. Let H be m-codense. Since m has property B, for every H ∈ H,
Int(H) ∈ m. Since Int(H) ⊂ H ∈ H, Int(H) ∈ H and hence Int(H) ∈
m ∩H = {∅}. Therefore, Int(H) = ∅.

Conversely, suppose that H is not m-codense. Then there exists U ∈ m∩H
such that U 6= ∅. Since U ∈ m, Int(U) = U 6= ∅ for U ∈ H. �

Theorem 5.9. Let (X,m,H) be a hereditary m-space and m have property
[F ]. The following properties are equivalent:

(1) H is m-codense;
(2) If A is m-closed, then Γ?

mH(A)−A = ∅;
(3) If U is m-open, then U ⊂ U?

mH ;
(4) H is strongly m-codense.

Proof. (1) ⇒ (2): Suppose that A is m-closed and x ∈ Γ?
mH(A)−A. Then

x ∈ X − (X −A)?mH and hence x /∈ (X −A)?mH . There exists U ∈ m(x) such
that U ∩ (X − A) ∈ H. Since A is m-closed, U ∩ (X − A) ∈ m and hence
U ∩ (X − A) ∈ m ∩ H = {∅}. This is contrary to x ∈ U ∩ (X − A). Hence,
Γ?
mH(A)−A = ∅.
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(2) ⇒ (3): Let U ∈ m. Then X − U is m-closed and by (2) ∅ = Γ?
mH(X −

U)− (X − U) = (X − U?
mH) ∩ U = U − U?

mH . Hence U ⊂ U?
mH .

(3) ⇒ (4): Suppose that U, V ∈ m and (U ∩ V ) ∈ H. If x ∈ U ∩ V , then by
(3) x ∈ U ⊂ U?

mH and hence V ∩ U /∈ H. This is a contradiction.
(4) ⇒ (1): This follows from Lemma 5.2 (2). �

Theorem 5.10. Let (X,m,H) be a hereditary m-space. If H is (?)-strongly
m-codense, then for a subset A of X the following properties hold:

(1) Γ∗
mH(A) ⊆ A∗

mH ⊆ mCl(A),
(2) Γ∗

mH(A) ∩ Γ∗
mH(X −A) = ∅.

Proof. (1) Suppose there exists an element x ∈ Γ∗
mH(A) such that x /∈ A∗

mH .
For x ∈ Γ∗

mH(A), since x /∈ (X − A)∗mH , there exists U ∈ m(x) such that
U ∩ (X −A) ∈ H. For x /∈ A∗

mH , there exists V ∈ m(x) such that V ∩A ∈ H.
Since H is (?)-strongly m-codense, for U, V ∈ m, (U ∩ V ) ∩ A ∈ H and
(U ∩ V )− A ∈ H implies U ∩ V = ∅. But this contradicts the fact that both
U and V are containing x. Hence, we have Γ∗

mH(A) ⊆ A∗
mH . It follows from

Lemma 2.9(2) that A∗
mH ⊆ mCl(A).

(2) Assume that z ∈ Γ∗
mH(A) ∩ Γ∗

mH(X − A) for some z ∈ X. Then there
exist U, V ∈ m(z) such that U ∩ A ∈ H and V ∩ (X − A) ∈ H. Hence,
(U ∩V )−A ∈ H and (U ∩V )∩A ∈ H. Since H is (?)-strongly m-codense, for
U, V ∈ m, (U∩V )∩A ∈ H and (U∩V )−A ∈ H implies U∩V = ∅ and we have
U ∩ V = ∅. This is contrary to z ∈ U ∩ V . Hence, Γ∗

mH(A) ∩ Γ∗
mH(X − A) =

∅. �

Corollary 5.11. Let (X,m,H) be a hereditary m-space. If H is (?)-
strongly m-codense, then for a subset A of X the following properties hold:

(1) Γ∗
mH(A) ⊆ A∗

mH ⊆ A if A is m-closed in X,
(2) A∗

mH ∪ (X −A)∗mH = X,
(3) If A ∈ H, then Γ∗

mH(A) = ∅,
(4) If X −A ∈ H, then A∗

mH = X.

Proof. (1) This is obvious by Theorem 5.10(1).
(2) By Theorem 5.10 (2), ∅ = Γ∗

mH(A)∩Γ∗
mH(X−A) = [X− (X−A)?mH ]∩

(X −A?
mH) = X − [(X −A)?mH ∪A?

mH ]. Hence A∗
mH ∪ (X −A)∗mH = X.

(3) By Theorem 5.10 (1), Γ∗
mH(A) ⊆ A∗

mH . Since A ∈ H, by Lemma 2.9
(5), A?

mH = ∅ and hence Γ∗
mH(A) = ∅.

(4) If X−A ∈ H, by (3), ∅=Γ∗
mH(X−A) = X−A?

mH . Hence, A∗
mH =X. �
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