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OSCILLATION ANALYSIS FOR NONLINEAR NEUTRAL
DIFFERENTIAL EQUATIONS OF SECOND ORDER WITH

SEVERAL DELAYS AND FORCING TERM

SHYAM SUNDAR SANTRA

Abstract. In this paper, sufficient conditions are obtained for the oscillation of
the nonlinear neutral forced differential equations of second-order with several
delays of the form

d

dt

[
r(t)

d

dt

[
x(t) + p(t)x(t− τ)

]]
+

m∑
i=1

qi(t)H
(
x(t− σi)

)
= f(t), t ≥ t0 > 0,

(E)

under the assumptions
∫∞ 1

r(η)
dη =∞ and

∫∞ 1
r(η)

dη <∞ for various ranges of

the bounded neutral coefficient p. Also, an attempt is made to discuss existence
of bounded positive solutions of (E). Further, one illustrative example showing
the applicability of the new results is included.
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1. INTRODUCTION

The neutral differential equations find numerous applications in natural
sciences and technology. For instance, they are frequently used for the study
of distributed networks containing lossless transmission lines (see e.g. [5]). In
this paper, we restrict our attention to study (E), which includes a class of
nonlinear functional differential equations of neutral type.

There have been many investigations into the oscillation and nonoscillation
of second order nonlinear neutral delay differential equations (see e.g. [1, 2, 6],
[7-15], [19-23]. However, the study of oscillatory and asymptotic behaviour of
the solutions of (E) has received much less attention, which is mainly due
to the technical difficulties arising in its analysis. In what follows, we pro-
vide some background details that motivated this study. In [16], Santra has
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considered

d

dt

[
x(t) + p(t)x(t− τ)

]
+

m∑
i=1

qi(t)H
(
x(t− σi)

)
= f(t),(E1)

and

d

dt

[
x(t) + p(t)x(t− τ)

]
+

m∑
i=1

qi(t)H
(
x(t− σi)

)
= 0.(E2)

He has established sufficient conditions for the oscillation of the solutions of
(E1) and (E2) for |p(t)| < +∞, when H is linear, sublinear and superlinear.
Also, he has studied the existence of a bounded positive solution of (E1). In
[17], Santra has studied necessary and sufficient conditions for the asymptotic
behaviour of (E2) for various ranges of the bounded neutral coefficient p. In
[14], Pinelas and Santra have established necessary and sufficient conditions
for the oscillation of (E2) for |p(t)| <∞. In [18], Santra has obtained sufficient
conditions for the oscillatory and asymptotic behaviour of the homogeneous
counterpart of (E) for different ranges of p. In an another paper [8], Karpuz
and Santra have studied sufficient conditions for the oscillatory and asymptotic
behaviour of the homogeneous counterpart of (E) with variable delays for
|p(t)| <∞. Many references regarding some applications of the equation

d2

dt2
[
x(t) + p(t)x(t− τ)

]
+ q(t)H

(
x(t− σ)

)
= 0, t ≥ t0 > 0,

can be found in [3] and [5]. In this direction, we refer the reader to some of the
works on equation (E) for single constant delay (see e.g. [6, 7, 9, 12, 19, 20, 23])
or single variable delay (see e.g. [1, 2, 6, 10, 11]). All of them established
sufficient conditions for the oscillation of the solutions of equation (E), only

under the assumption
∫∞
0

dη
r(η) =∞ and only for 0 ≤ p(t) ≤ 1.

Hence, in this work, an attempt is made to study the oscillatory behaviour
of the solutions of a class of nonlinear neutral second order delay differential
equations of the form

d

dt

[
r(t)

d

dt

[
x(t) + p(t)x(t− τ)

]]
+

m∑
i=1

qi(t)H
(
x(t− σi)

)
= f(t), t ≥ t0 > 0,

(1)

where

(A1) τ, σi ∈ R+ = (0,+∞), p ∈ C([0,∞),R), qi, r ∈ C(R+,R+), i =
1, 2, . . . ,m, f ∈ C(R,R);

(A2) H ∈ C(R,R) is nondecreasing with uH(u) > 0 for u 6= 0.

This investigation on the oscillatory behavior of the solutions of (1) depends
on various ranges of the bounded neutral coefficient p and follows two possible
conditions:

(C1)
∫∞ 1

r(η)dη =∞,
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(C2)
∫∞ 1

r(η)dη <∞.

By a solution of (1) we understand a function x ∈ C([−ρ,∞),R) such that

z(t) = x(t) + p(t)x(t− τ)(2)

is twice continuously differentiable, rz′(t) is once continuously differentiable
and equation (1) is satisfied for t ≥ t0 + ρ, where ρ = max{τ, σi} for i =
1, 2, . . . ,m, and sup{|x(t)| : t ≥ t0} > 0 for every t0 ≥ 0. A solution of (1)
is said to be oscillatory if it has arbitrarily large zeros; otherwise, it is called
nonoscillatory.

Remark 1.1. When the domain is not specied explicitly, all functional
inequalities considered in this paper are assumed to hold eventually, i.e., they
are satisfied for all t large enough.

2. SUFFICIENT CONDITIONS FOR OSCILLATION

In this section, sufficient conditions are obtained for the oscillation of the
solutions for nonlinear second order forced neutral differential equations with
several delays of the form (1). We need to work with the following conditions
in the sequel:

(A3) there exists F ∈ C(R,R) such that F (t) changes sign,

−∞ < lim inf
t→∞

F (t) < 0 < lim sup
t→∞

F (t) <∞

and f(t) =
(
rF ′
)′

(t);
(A4) F+(t) = max{F (t), 0} and F−(t) = max{−F (t), 0};
(A5) there exists λ > 0 such that

H(u) +H(v) ≥ λH(u+ v) for u, v ≥ 0

and
H(u) +H(v) ≤ λH(u+ v) for u, v ≤ 0;

(A6)
H(uv) ≤ H(u)H(v) for u, v ≥ 0

and
H(uv) ≥ H(u)H(v) for u, v ≤ 0.

2.1. Oscillation under the condition (C1)

Throughout this discussion we will assume that

w(t) = z(t)− F (t) for t ≥ t0 > 0.(1)

Lemma 2.1. Assume that (C1), (A1) and (A2) hold. Let x be an eventually
positive solution of (1). If w defined by (1) is eventually positive, then w
satisfies

(2) w′(t) > 0 and (rw′)′(t) < 0 for all large t.
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Proof. Suppose that x(t) > 0 and w(t) > 0 for t ≥ t1, where t1 ≥ t0 > 0.
So, we may assume without loss of generality that x(t−σi) > 0 for t ≥ t1 and
i = 1, ..,m. From (1), (2), (1) and (A2), it follows that

(3) (rw′)′(t) = −
m∑
i=1

qi(t)H (x(t− σi)) < 0 for t ≥ t1.

Consequently, rw′ is nonincreasing on [t1,∞) and thus either w′(t) < 0 or
w′(t) > 0 for t ≥ t2, where t2 ≥ t1. If w′(t) < 0, then there exists ε > 0
such that r(t)w′(t) ≤ − ε for t ≥ t2, which yields, upon integration over
[t2, t) ⊂ [t2,∞), after dividing through by r, that

(4) w(t) ≤ w(t2)− ε
∫ t

t2

1

r(η)
dη for t ≥ t2.

In view of (C1), letting t → ∞ in (4) yields w(t) → −∞, which is a contra-
diction. Therefore, w′(t) > 0 for t ≥ t2. This completes the proof. �

Remark 2.2. It follows from Lemma 2.1 that limt→∞w(t) > 0, i.e., there
exists ε > 0 such that w(t) ≥ ε for all large t.

Lemma 2.3. Assume that (C1), (A1) and (A2) hold. Let x be an eventually
positive solution of (1). If w defined by (1) is bounded, then w satisfies (2)
for all large t.

Proof. The proof can be obtained from the proof of Lemma 2.1. �

Theorem 2.4. Let 0 ≤ p(t) ≤ p <∞ for t ∈ R+, where p is a constant. As-
sume that (C1) and (A1)− (A6) hold. Furthermore, assume that the following
conditions

(A7)
∫∞
t0

∑m
i=1Q(η)H (F+(η − σi)) dη =∞

and

(A8)
∫∞
t0

∑m
i=1Q(η)H (F−(η − σi)) dη =∞

hold, where Qi(t) = min{qi(t), qi(t − τ)}, t ≥ τ . Then every solution of (1)
oscillates.

Proof. Suppose the contrary holds, i.e., x is a nonoscillatory solution of
(1). Then, there exists t1 ≥ t0 such that either x(t) > 0 or x(t) < 0 for
t ≥ t1. Assume that x(t) > 0, x(t − τ) > 0 and x(t − σi) > 0 for t ≥ t1
and i = 1, 2, ..,m. Proceeding as in the proof of Lemma 2.1, we see that rw′

is nonincreasing and w is monotonic on [t2,∞), where t2 ≥ t1. We have the
following two possible cases.

Case 1. Let w(t) < 0 for t ≥ t2. So, 0 < z(t) < F (t) for t ≥ t2, which is a
contradiction.

Case 2. Let w(t) > 0 for t ≥ t2. By Lemma 2.1, (2) holds for t ≥ t3, where
t3 ≥ t2. Note that limt→∞(rw′)(t) exists for t ≥ t3. Ultimately, z(t) > F (t)
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and hence z(t) > max{0, F (t)} = F+(t) for t ≥ t4, where t4 ≥ t3. Therefore,
(3) becomes

0 =
(
rw′
)′

(t) +H(p)
(
rw′)′(t− τ)+

m∑
i=1

[
qi(t)H

(
x(t− σi)

)
+H(p)qi(t− τ)H

(
x(t− τ − σi)

)]
for t ≥ t4 and because of (A5), (A6) and z(t) ≤ x(t) + px(t− τ) we find that

0 ≥
(
rw′
)′

(t) +H(p)
(
rw′
)′

(t− τ)+
m∑
i=1

Qi(t)
[
H
(
x(t− σi)

)
+H

(
px(t− τ − σi)

)]
≥
(
rw′
)′

(t) +H(p)
(
rw′
)′

(t− τ) + λ
m∑
i=1

Qi(t)H
(
z(t− σi)

)
≥
(
rw′
)′

(t) +H(p)
(
rw′
)′

(t− τ)

+ λ

m∑
i=1

Qi(t)H
(
F+(t− σi)

)
for t ≥ t4.

(5)

Integrating (5) over the interval [t4, t) ⊂ [t4,∞), we get

λ

[∫ t

t4

m∑
i=1

Qi(η)H
(
F+(η − σi)

)
dη

]
≤ [(rw′)(t4) +H(p)

(
(rw′)(t4 − τ)

)
]

for all t ≥ t4. This contradicts (A7). Thus, x(t) > 0 for t ≥ t1 cannot hold.
If x(t) < 0 for t ≥ t1, then we set y(t) := −x(t) for t ≥ t1 in (1). Using

(A2), we find

d

dt

[
r(t)

d

dt

[
y(t) + p(t)y(t− τ)

]]
+

m∑
i=1

qi(t)G
(
y(t− σi)

)
= f̃(t)(6)

for t ≥ t1, where f̃(t) = −f(t) and G(u) := −H(−u) for u ∈ R. Clearly, G

also satisfies (A2). Let F̃ (t) = −F (t). Then

−∞ < lim inf
t→∞

F̃ (t) < 0 < lim sup
t→∞

F̃ (t) <∞

and
(
rF̃ ′
)′

(t) = −f(t) = f̃(t) hold. Further, F̃+(t) = F−(t) and F̃−(t) =
F+(t). Proceeding as above, we find a contradiction to (A8). This completes
the proof. �

Theorem 2.5. Let −1 ≤ − p ≤ p(t) ≤ 0 for t ∈ R+, where p > 0 is a
constant. Assume that (C1) and (A1)–(A4) hold. Furthermore, assume that
the following conditions

(A9)
∫∞
t0

∑m
i=1 qi(η)H

(
F−(η + τ − σi)

)
dη =∞,

(A10)
∫∞
t0

∑m
i=1 qi(η)H

(
F+(η − σi)

)
dη =∞,
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(A11)
∫∞
t0

∑m
i=1 qi(η)H

(
F+(η + τ − σi)

)
dη =∞

and

(A12)
∫∞
t0

∑m
i=1 qi(η)H

(
F−(η − σi)

)
dη =∞

hold. Then the conclusion of Theorem 2.4 is true.

Proof. We proceed as in the proof of the Theorem 2.4 to conclude that
w and rw′ have constant sign on [t2,∞), where t2 ≥ t1. We have following
possible cases.

Case 1. Let w(t) < 0 for t ≥ t2. Note that in this case, we have z(t) ≥
p(t)y(t− τ) and z(t) ≤ x(t) for t ≥ t2.

(a) Let w′(t) < 0 for t ≥ t2. By Lemma 2.1, w(t) < 0 and limt→∞w(t) =
−∞ for t ≥ t3, where t3 ≥ t2. On the other hand, we claim that x(t) is
bounded. If not, there exists {ξn} such that ξn → ∞ as n → ∞, x(ξn) → ∞
as n→∞ and

x(ξn) = max{x(η) : t3 ≤ η ≤ ζn}.

Therefore,

w(ξn) = x(ξn) + p(ξn)x(ξn − τ)− F (ξn)

≥ (1− p)x(ξn − τ)− F (ξn)

→ +∞, as n→∞,

which is in contradiction with the fact that w(t) < 0. So, our claim holds.
Consequently, limt→∞w(t) exists, which is again in contradiction with the fact
that limt→∞w(t) = −∞.

(b) Let w′(t) > 0 for t ≥ t2. So, limt→∞(rw′)(t) exists for t ≥ t2. −x(t −
τ) ≤ p(t)x(t − τ) ≤ z(t) < F (t) imply x(t) > − F (t + τ) for t ≥ t3, where
t3 ≥ t2. Clearly, x(t) ≥ F−(t+ τ) for t ≥ t3. Therefore, (3) becomes(

rw′
)′

(t) +

m∑
i=1

qi(t)H
(
F−(t+ τ − σi)

)
≤ 0 for t ≥ t3.

Integrating the last inequality over the interval [t3, t) ⊂ [t3,∞), we obtain∫ t

t3

m∑
i=1

qi(η)H
(
F−(η + τ − σi)

)
dη < (rw′)(t3) for all t ≥ t3.

This contradicts (A9).
Case 2. Let w(t) > 0 for t ≥ t2. By Lemma 2.1, (2) holds for t ≥ t3,

where t3 ≥ t2. So, limt→∞(rw′)(t) exists for t ≥ t3. Note that in this case,
we have z(t) ≤ x(t) for t ≥ t3. Consequently, F (t) < z(t) ≤ x(t) and hence
x(t) > F+(t) for t ≥ t4, where t4 ≥ t3. Therefore, (3) can be viewed as(

rw′
)′

(t) +
∞∑
i=1

qi(t)H
(
F+(t− σi)

)
≤ 0 for t ≥ t4.
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Integrating the preceding inequality over the interval [t4, t) ⊂ [t4,∞), we get∫ t

t4

∞∑
i=1

qi(η)H
(
F+(η − σi)

)
dη < (rw′)(t4) for all t ≥ t4.

This contradicts (A10). Thus, x(t) > 0 for t ≥ t1 cannot hold.
The case when x is an eventually negative solution is very similar and we

omit it. Thus the theorem is proved. �

Theorem 2.6. Let −∞ < −p ≤ p(t) ≤ − 1 for t ∈ R+, where p > 0 is a
constant. Assume that (C1), (A1)–(A4), (A10) and (A12) hold. Furthermore,
assume that the following conditions

(A13)
∫∞
t0

∑m
i=1 qi(η)H

(
1
pF
−(η + τ − σi)

)
dη =∞

and

(A14)
∫∞
t0

∑m
i=1 qi(η)H

(
1
pF

+(η + τ − σi)
)

dη =∞

hold. Then every bounded solution of (1) oscillates.

Proof. The proof of the theorem can be carried out as in the proof of The-
orem 2.5. Hence the details are omitted. �

2.2. Oscillation under the condition (C2)

Remark 2.7. If we set

(7) R(t) :=

∫ ∞
t

1

r(η)
dη for t ≥ t0,

then (C2) implies that R(t)→ 0 as t→∞.

Lemma 2.8. Assume that (C2), (A1) and (A2) hold. Let x be an eventu-
ally positive solution of (1). If w defined by (1) is eventually decreasing and
positive, then there exists ε > 0 such that w satisfies

(8) εR(t) ≤ w(t) for all large t,

where R is defined in (7).

Proof. Suppose that x(t), w(t) > 0 and w′(t) < 0 for t ≥ t1, where t1 ≥ t0.
So, we may assume without loss of generality that x(t − σi) > 0 for t ≥ t1
and i = 1, 2, ..,m. From (1) and (A2), we get (3). Consequently, rw′ is
nonincreasing on [t1,∞). Therefore, r(s)w′(s) ≤ r(t)w′(t) for s ≥ t ≥ t1,
which implies

w′(s) ≤ r(t)w′(t)

r(s)
for s ≥ t ≥ t1.

Consequently,

w(s) ≤ w(t) + r(t)w′(t)

∫ s

t

1

r(η)
dη for s ≥ t ≥ t1.
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As rw′ is nonincreasing, we can find a constant ε > 0 such that r(t)w′(t) ≤ −ε
for t ≥ t1. As a result w(s) ≤ w(t) − ε

∫ s
t

1
r(η)dη for s ≥ t ≥ t1. By letting

s→∞, we get 0 ≤ w(t)− εR(t) for t ≥ t1, which proves (8). �

Theorem 2.9. Let 0 ≤ p(t) ≤ p <∞ for t ∈ R+, where p is a constant. As-
sume that (C2) and (A1)− (A8) hold. Furthermore, assume that the following
conditions

(A15)
∫∞
t0

1
r(η)

[∫ η
t0

∑m
i=1Qi(ζ)H

(
F+(ζ − σi)

)
dζ

]
dη =∞

and

(A16)
∫∞
t0

1
r(η)

[∫ η
t0

∑m
i=1Qi(ζ)H

(
F−(ζ − σi)

)
dζ

]
dη =∞

hold, where Qi(t) is defined in Theorem 2.4. Then the conclusion of Theorem
2.4 is true.

Proof. Let x(t) be a nonoscillatory solution of (1). Proceeding as in The-
orem 2.4, we get that rw′ and w are monotonic functions on [t2,∞), where
t2 ≥ t1. We have the following possible cases.

Case 1. Let w(t) < 0 for t ≥ t2. Proceeding as in Case 1 in the proof of
Theorem 2.4, we get a contradiction.

Case 2. Let w(t) > 0 for t ≥ t2.
(a) Let w′(t) > 0 for t ≥ t2. Then, we proceed as in Case 2 in the proof of

Theorem 2.4 to get a contradiction to (A7).
(b) Let w′(t) < 0 for t ≥ t2. By Lemma 2.8, we get (8) for t ≥ t3 where ε > 0

and t3 ≥ t2. Therefore, z(t) ≥ F (t) + CR(t) imply z(t) − CR(t) ≥ F (t) for
t ≥ t3. If z(t)−CR(t) < 0 for t ≥ t3, then F (t) < 0, which is a contradiction.
Hence, z(t)−CR(t) > 0 for t ≥ t3 and clearly, z(t)−CR(t) ≥ F+(t), that is,
z(t) ≥ CR(t) + F+(t) ≥ F+(t) for t ≥ t4, where t4 ≥ t3. Consequently, (5)
reduce to

(rw′)′(t) +H(p)(rw′)′(t− τ) + λ
m∑
i=1

Qi(t)H
(
F+(t− σi)

)
≤ 0 for t ≥ t4.

Integrating the above inequality over the interval [t4, t) ⊂ [t4,∞), we obtain

λ

[∫ t

t4

m∑
i=1

Qi(η)H
(
F+(η − σi)

)
dη

]
≤ −[(rw′)(t) +H(p)(rw′)(t− τ)]

≤ −
(
1 +H(p)

)
r(t)w′(t),

which implies

λ

1 +H(p)

1

r(t)

[∫ t

t4

m∑
i=1

Qi(η)H
(
F+(η − σ)

)
dη

]
≤ −w′(t) for t ≥ t4.
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Again, integrating the last inequality over the interval [t4, t) ⊂ [t4,∞), we get

λ

1 +H(p)

∫ t

t4

1

r(η)

[∫ η

t4

m∑
i=1

Qi(ζ)H
(
F+(ζ − σi)

)
dζ

]
dη ≤ w(t4).

This contradicts (A15). Thus, x(t) > 0 for t ≥ t1 cannot hold.
The case where x is eventually negative can be dealt similarly, and we omit

the details here. Thus, the proof of the theorem is complete. �

Theorem 2.10. Let −1 − p ≤ ≤ p(t) ≤ 0 for t ∈ R+, where p > 0 is a
constant. Assume that (C2), (A1)–(A4) and (A9)–(A12) hold. Furthermore,
assume that the following conditions

(A17)
∫∞
t0

1
r(η)

[∫ η
t0

∑m
i=1 qi(ζ)H (F−(ζ + τ − σi)) dζ

]
dη =∞,

(A18)
∫∞
t0

1
r(η)

[∫ η
t0

∑m
i=1 qi(ζ)H (F+(ζ + τ − σi)) dζ

]
dη =∞,

(A19)
∫∞
t0

1
r(η)

[∫ η
t0

∑m
i=1 qi(ζ)H (F+(ζ − σi)) dζ

]
dη =∞

and

(A20)
∫∞
t0

1
r(η)

[∫ η
t0

∑m
i=1 qi(ζ)H (F−(ζ − σi)) dζ

]
dη =∞

hold. Then the conclusion of Theorem 2.4 is true.

Proof. Let x(t) be a nonoscillatory solution of (1). Then proceeding as
in Theorem 2.5 we obtain that w and rw′ are of one sign on [t2,∞), where
t2 ≥ t1. We have the following possible cases.

Case 1. Let w(t) < 0 for t ≥ t2. Note that in this case, we have z(t) ≥
p(t)y(t− τ) for t ≥ t2.

(a) Let w′(t) < 0 for t ≥ t2. We claim that x(t) is bounded for t ≥ t3, where
t3 ≥ t2. If not, there exists {ξn} such that ξn →∞ as n→∞, x(ξn)→∞ as
n→∞ and

x(ξn) = max{x(η) : t3 ≤ η ≤ ζn}.

Therefore,

w(ξn) = x(ξn) + p(ξn)x(ξn − τ)− F (ξn)

≥ (1− p)x(ξn − τ)− F (ξn)

→ +∞, as n→∞,

which is in contradiction with the fact that w(t) < 0. So, our claim holds.
Consequently, limt→∞w(t) exists for t ≥ t3. −x(t− τ) ≤ p(t)x(t− τ) ≤ z(t) <
F (t) imply x(t) > −F (t+τ) for t ≥ t4, where t4 ≥ t3. Clearly, x(t) ≥ F−(t+τ)
for t ≥ t5, where t5 ≥ t4. Therefore, (3) becomes(

rw′
)′

(t) +
m∑
i=1

qi(t)H
(
F−(t+ τ − σi)

)
≤ 0 for t ≥ t5.
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Integrating the last inequality over the interval [t5, t) ⊂ [t5,∞), we obtain∫ t

t5

m∑
i=1

qi(η)H
(
F−(η + τ − σi)

)
dη < − (rw′)(t),

which implies

1

r(t)

[∫ t

t5

m∑
i=1

qi(η)H
(
F−(η + τ − σi)

)
dη

]
< − w′(t).

Again, integration on the last inequality over the interval [t5, t) ⊂ [t5,∞) yields∫ t

t5

1

r(η)

[∫ η

t5

m∑
i=1

qi(ζ)H
(
F−(ζ + τ − σi)

)
dζ

]
dη < − w(t) for t ≥ t5.

This contradicts (A17).
(b) Let w′(t) > 0 for t ≥ t2. Proceeding as in Case 1 in the proof of

Theorem 2.5, we get a contradiction to (A9).
Case 2. Let w(t) > 0 for t ≥ t2. Note that in this case, we have z(t) ≤ x(t)

for t ≥ t2.
(a) Let w′(t) > 0 for t ≥ t2. Then, we proceed as in Case 2 in the proof of

Theorem 2.5 to get a contradiction to (A10).
(b) Let w′(t) < 0 for t ≥ t2. Proceeding as in Case 2 in the proof of Theorem

2.9, we get z(t) ≥ CR(t) + F+(t) ≥ F+(t). Consequently, x(t) ≥ F+(t). For
the rest of proof, we can proceed as in Case 2 in the proof of Theorem 2.9 to
get a contradiction to (A19). Hence, the details are omitted.

The case when x is an eventually negative solution is very similar and we
omit it. This completes the proof of the theorem. �

Theorem 2.11. Let −∞ < − p ≤ p(t) ≤ − 1 for t ∈ R+, where p > 0 is a
constant. Assume that (C2), (A1)–(A4), (A9)–(A12), (A19) and (A20) hold.
Furthermore, assume that the following conditions

(A21)
∫∞
t0

1
r(η)

[∫ η
t0

∑m
i=1 qi(ζ)H

(
1
pF

+(ζ + τ − σi)
)

dζ
]

dη =∞
and

(A22)
∫∞
t0

1
r(η)

[∫ η
t0

∑m
i=1 q(ζ)H

(
1
pF
−(ζ + τ − σi)

)
dζ
]

dη =∞
hold. Then the conclusion of Theorem 2.6 is true.

Proof. The proof of the theorem can be carried out as the proof of the
Theorem 2.10. Hence the details are omitted. �

3. EXISTENCE OF POSITIVE SOLUTION

In this section, sufficient conditions are obtained to show that equation (1)
admits a positive bounded solution for various ranges of the bounded neutral
coefficient p.

Theorem 3.1. Let p ∈ C
(
R+, [−1, 0]

)
and assume that (A1)–(A3) hold. If
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(A23)
∫∞
0

1
r(η)

[∫∞
η

∑m
i=1 qi(ζ)dζ

]
dη <∞,

then (1) admits a positive bounded solution.

Proof. Let (i) −1 < − p ≤ p(t) ≤ 0 for t ∈ R+, where p > 0 is a constant.
Due to (A23), it is possible to find a T > ρ such that∫ t

T

1

r(η)

[∫ ∞
η

m∑
i=1

qi(ζ)dζ

]
dη <

1− p
10H(1)

.

We consider the set

M =

{
x : x ∈ C

(
[T − ρ,+∞),R

)
, x(t) = 0 for t ∈ [T − ρ, T ] and

1− p
20
≤ x(t) ≤ 1

}
and define Φ : M → C

(
[T − ρ,+∞),R

)
by the formula

(Φx)(t) =


0, t ∈ [T − ρ, T )

−p(t)x(t− τ) +
∫ t
T

1
r(η)

[∫∞
η

∑m
i=1 qi(ζ)H

(
x(ζ − σi)

)
dζ

]
dη+

F (t) + 1−p
10 , t ≥ T,

where F (t) is such that |F (t)| ≤ 1−p
20 . For every x ∈M ,

(Φx)(t) ≤ −p(t)x(t− τ) +H(1)

∫ t

T

1

r(η)

[∫ ∞
η

m∑
i=1

qi(ζ)dζ

]
dη +

1− p
20

+
1− p

10

≤ p+
1− p

10
+

1− p
20

+
1− p

10

≤ 1 + 3p

4
< 1,

and

(Φx)(t) ≥ F (t) +
1− p

10

≥ −1− p
20

+
1− p

10
=

1− p
20

implies that (Φx)(t) ∈ M . Define un : [T − ρ,+∞) → R by the recursive
formula

un(t) = (Φun−1)(t), n ≥ 1

with the initial condition

u0(t) =

{
0, t ∈ [T − ρ, T )
1−p
20 , t ≥ T.
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Inductively it is easy to verify that

1− p
20

≤ un−1(t) ≤ un(t) ≤ 1

for t ≥ T . Therefore for t ≥ T − ρ, lim
n→∞

un(t) exists. Let lim
n→∞

un(t) = u(t)

for t ≥ T − ρ. By the Lebesgue’s dominated convergence theorem u ∈M and
(Φu)(t) = u(t), where u(t) is a solution of (1) on [T−ρ,∞) such that u(t) > 0.

(ii) If p(t) ≡ −1 for t ∈ R+, we choose −1 < p2 < 0 such that p2 6= −1
2 . In

this case, we can apply the above method. Here, we note that∫ t

T

1

r(η)

[∫ ∞
η

m∑
i=1

qi(ζ)dζ

]
dη <

1 + 2p2
10H(−p2)

,

−1+2p2
40 ≤ F (t) ≤ 1+2p2

20 and the set

M =

{
x : x ∈ C

(
[T − ρ,+∞),R

)
, x(t) = 0 for t ∈ [T − ρ, T ] and

7 + 2p2
40

≤ x(t) ≤ − p2
}
.

Also, we define Φ : M → C
(
[T − ρ,+∞),R

)
by

(Φx)(t) =


x(T ), t ∈ [T − ρ, T )

x(t− τ) +
∫ t
T

1
r(η)

[∫∞
η

∑m
i=1 qi(ζ)H

(
x(ζ − σi)

)
dζ

]
dη + F (t)+

2+p2
10 , t ≥ T.

This completes the proof of the theorem. �

Theorem 3.2. Let p ∈ C[R+, [0, 1)]. Let H be Lipchitzian on the interval
[a, b], 0 < a < b <∞. If (A1)–(A3) and (A23) hold, then (1) admits a positive
bounded solution.

Proof. Let 0 ≤ p(t) ≤ p3 < 1. It is possible to find t1 > 0 such that∫ ∞
t1

1

r(η)

[∫ ∞
η

m∑
i=1

qi(ζ)dζ

]
dη <

1− p3
5L

,

where L = max{L1, H(1)}, L1 is the Lipschitz constant of H on
[
3
5(1− p3), 1

]
.

Let F (t) be such that |F (t)| < 1−p3
10 for t ≥ t2. For t3 > max{t1, t2}, we set

Y = BC([T,∞),R), the space of real valued continuous functions on [t3,∞].
Clearly, Y is a Banach space with respect to the sup-norm defined by

‖y‖ = sup{|y(t)| : t ≥ t3}.

Let

S = {u ∈ Y :
3

5
(1− p3) ≤ u(t) ≤ 1, t ≥ t3}.
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We notice that S is a closed and convex subspace of X. Let Φ : S → S be
such that

(Φx)(t) =


(Φx)(t3 + ρ), t ∈ [t3, t3 + ρ]

−p(t)x(t− τ) + 9+p3
10 + F (t)−∫∞

t
1
r(η)

[∫∞
η

∑m
i=1 qi(ζ)H

(
x(ζ − σi)

)
dζ

]
dη, t ≥ t3 + ρ.

For every x ∈ Y , (Φx)(t) ≤ F (t) + 9+p3
10 ≤ 1 and

(Φx)(t) ≥ −p(t)x(t− τ)−H(1)

∫ ∞
t

1

r(η)

[∫ ∞
η

m∑
i=1

qi(ζ)dζ

]
dη

+ F (t) +
9 + p3

10

≥ −p3 −
1− p3

5
− 1− p3

10
+

9 + p3
10

=
3

5
(1− p3)

imply that (Φx) ∈ S. Now, for x1 and x2 ∈ S, we have

|(Φx1)(t)− (Φx2)(t)| ≤ p3|x1(t− τ)− x2(t− τ)|

+

∫ ∞
t

1

r(η)

[∫ ∞
η

m∑
i=1

qi(ζ)|H
(
x1(ζ − σi)

)
−H

(
x2(ζ − σi))|dζ

]
dη,

that is,

|(Φx1)(t)− (Φx2)(t)| ≤ p3‖x1 − x2‖

+ ‖x1 − x2‖L1

∫ ∞
t

1

r(η)

[∫ ∞
η

m∑
i=1

qi(ζ)dζ

]
dη

≤
(
p3 +

1− p3
5

)
‖x1 − x2‖

=
4p3 + 1

5
‖x1 − x2‖.

Therefore, ‖Φx1 − Φx2‖ ≤ 4p3+1
5 ‖x1 − x2‖ implies that Φ is a contraction.

By using Banach’s fixed point theorem, it follows that Φ has a unique fixed
point x(t) in

[
3
5(1− p3), 1

]
. Hence, Φx = x and the proof of the theorem is

complete. �

Remark 3.3. We can not apply Lebesgue’s dominated convergence theorem
for other ranges of p(t), except −1 ≤ p(t) ≤ 0, due to the technical difficulties
arising in the method. However, we can apply Banach’s fixed point theorem
to other ranges of p(t) similar to those in Theorem 3.2.

4. FINAL COMMENTS AND EXAMPLES

In this section, we will be giving two remark and one example to close the
paper.
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Remark 4.1. In Theorems 2.4–2.11, H is allowed to be linear, sublinear or
superlinear.

Remark 4.2. A prototype of the function H satisfying (A2), (A5), (A6) is

(1 + α|u|β)|u|γsgn(u) for u ∈ R,

where α ≥ 1 or α = 0 and β, γ > 0 are reals. For verifying (A5), we may take
help of the well-known inequality (see [4, p. 292]):

up + vp ≥ h(p)(u+ v)p, for u, v > 0, where h(p) :=

{
1, 0 ≤ p ≤ 1,
1

2p−1
, p ≥ 1.

Example 4.3. Consider the differential equation(
(x(t) + x(t− π))

)′′
+ x

(
t− π

2

)
+ x

(
t− 5π

2

)
= 2 cos(t),(9)

where p(t) = q1(t) = q2(t) = 1, τ = π, m = 2, σ1 = π
2 , σ2 = 5π

2 , H(x) = x and
f(t) = 2 cos(t). Indeed, if we choose F (t) = −2 cos(t), then (F ′)′(t) = f(t).
We have

F+(t) =

{
−2 cos(t), 2nπ + π

2 ≤ t ≤ 2nπ + 3π
2

0, otherwise,

and

F−(t) =

{
2 cos t, 2nπ + 3π

2 ≤ t ≤ 2nπ + 5π
2

0, otherwise.

Therefore

F+
(
t− π

2

)
=

{
−2 sin(t), (2n+ 1)π ≤ t ≤ 2(n+ 1)π

0, otherwise,

and

F−
(
t− π

2

)
=

{
2 sin(t), 2(n+ 1)π ≤ t ≤ (2n+ 3)π

0, otherwise.

Also

F+

(
t− 5π

2

)
=

{
−2 sin(t), (2n+ 3)π ≤ t ≤ 2(n+ 2)π

0, otherwise,

and

F−
(
t− 5π

2

)
=

{
2 sin(t), 2(n+ 2)π ≤ t ≤ (2n+ 5)π

0, otherwise.

Now ∫ ∞
5π
2

[
Q1(η)F+

(
η − π

2

)
+Q2(η)F+

(
η − 5π

2

)]
dη = I1 + I2,



15 Second order forced oscillations 77

where for n = 0, 1, 2..., thus we get

I1 =

∫ ∞
5π
2

F+
(
η − π

2

)
dη =

∞∑
n=0

∫ 2(n+1)π

(2n+1)π
[−2 sin(η)]dη

= 2
∞∑
n=0

[cos(t)]
2(n+1)π
(2n+1)π = +∞,

I2 =

∫ ∞
5π
2

F+

(
η − 5π

2

)
dη =

∞∑
n=0

∫ 2(n+2)π

(2n+3)π
[−2 sin(t)]dη

= 2
∞∑
n=0

[cos(t)]
2(n+2)π
(2n+3)π = +∞.

Clearly, conditions (C1) and (A1)–(A8) are satisfied. Hence, by Theorem 2.4,
every solution of (9) is oscillatory. Thus, in particular, x(t) = sin(t) is an
oscillatory solution of equation (9).
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