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ROUGH STATISTICAL CONVERGENCE
OF SEQUENCES OF FUZZY NUMBERS

SHYAMAL DEBNATH and DEBJANI RAKSHIT

Abstract. In this paper we introduce the notion of rough statistical convergence
in the fuzzy setting, which generalizes rough convergence of sequences of fuzzy
numbers. We define the set of rough statistical limit points of a sequence of
fuzzy numbers and prove some results associated with these notions.
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1. INTRODUCTION AND PRELIMINARIES

The concept of fuzzy set was introduced by L.A. Zadeh in 1965. The po-
tential of the notion of fuzzy set was realized by different scientific groups and
many researchers were interested in further investigation and its applications.
It has been studied in various branches of science, where mathematics has ap-
plications. Authors interested in sequence spaces have also applied this notion
and introduced different classes of sequences of fuzzy real numbers and stud-
ied their different properties. The concept of the convergence of a sequence
of fuzzy numbers was introduced by Matloka [14], who proved some basic
theorems. Later on, several mathematicians, such as Nanda [15], Savas [20],
Tripathy and Debnath [22] and many others have generalized the concept.

The classical analysis is often based on fine behavior, valid for all points of
some subsets, even if some distance tends to zero. Since many objects of the
material universe and many objects represented by the digital computers can-
not satisfy such requirements, the so-called rough analysis was developed as an
approach to a rough world. The idea of rough convergence was first introduced
by Phu [17], in finite dimensional normed linear spaces. In [17], Phu showed
that the set LIM rx is bounded, closed and convex. Also he investigated the
relationship between rough convergence and other types of convergence and
the dependence of LIM rx with respect to the roughness degree r. Later on,
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Aytar [3] extended this concept and introduced the rough statistical conver-
gence. Recently, in [8], we have introduced the rough convergence of fuzzy
numbers based on α-level sets. In this paper, we introduce the rough statisti-
cal convergence in fuzzy setting and the r-statistical limit set of a sequence of
fuzzy numbers. We note that our results are analogue to those of Phu’s [17]
and Aytar’s [3]. The actual origin of most of our results and proof techniques
is in those papers. We actually present those results in generalized form. This
increases the interest in finding applications of these concepts.

Throughout the paper r denotes a non-negative real number. The sequence
(xn) in a metric space (X, d) is said to be r-convergent to a point x∗ ∈ X,

denoted as xn
r−→ x∗, if, given ε > 0, there exists a natural number n0 such

that d (xn, x∗) < r + ε, ∀n ≥ n0, and the r − limit set of (xn) is defined as

LIM rxn = {x∗ ∈ X : xn
r−→ x∗}. This is the rough convergence with r as

roughness degree. For r = 0, we get the usual convergence in a metric space.
A sequence (xn) is said to be r−convergent if LIM rxn 6= ∅.

We first recall some basic notions in the theory of fuzzy numbers. We
denote by D, the set of all closed and bounded intervals on the real line R,
i.e. D = {A ⊂ R : A = [Al, Au]}. For A,B ∈ D we have A ≤ B if and only if
Al ≤ Bl, Au ≤ Bu and d = max {|Al −Bl|, |Au −Bu|}. Then (D, d) forms a
complete metric space.

Definition 1.1. A fuzzy number is a function X from R to [0, 1], which
satisfies the following conditions:

(i) X is normal.
(ii) X is fuzzy convex.
(iii) X is upper semi-continuous.
(iv) The closure of the set {x ∈ R : X(x) > 0} is compact.

Properties (i)-(iv) imply that, for each α ∈ (0, 1], the α-level set Xα =
{x ∈ R : X(x) ≥ α} = [Xα

l , X
α
u ] is a non-empty compact convex subset of R.

The 0-level set is the class of the strong 0-cut, i.e. cl {x ∈ R : X(t) > α}.
Let L(R) denote the set of all fuzzy numbers. Define a map on L(R), by
d(X,Y ) = supα∈(0,1] d(Xα, Y α). Then

(
L(R), d

)
forms a complete metric space

(see [19]).

Definition 1.2. A subset A of N is said to have density δ (A) if δ (A) =
limn→∞

1
n · |A|, where |A| denotes the number of elements in A.

Definition 1.3 ([16]). A fuzzy number sequence X = (Xn) is said to be
statistically convergent to the fuzzy number X0, if, for every ε > 0,

δ
({
n ∈ N : d̄ (Xn, X0) ≥ ε

})
= 0,

and X0 is called the statistical limit of X, written as st− lim Xn = X0.

Definition 1.4 ([2]). If
(
Xk(j)

)
is a subsequence of X = (Xn) and K =

{k(j) ∈ N : j ∈ N}, then we abbreviate
(
Xk(j)

)
by (X)K , which, in the case
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δ (K) = 0, is called a subsequence of density zero or a thin subsequence. On
the other hand, (X)K is a nonthin subsequence of X, if δ (K) 6= 0.

Definition 1.5 ([2]). The fuzzy number ν is called statistical limit point
of sequence of fuzzy number X = (Xn), provided that there is a nonthin
subsequence of X that converges to ν. Let ΛX denote the set of statistical
limit points of the sequence X.

Definition 1.6 ([2]). The fuzzy number µ is called statistical cluster point
of sequence of fuzzy number X = (Xn) if δ

({
n ∈ N : d̄ (Xn, µ) < ε

})
> 0 for

every ε > 0. Let ΓX denote the set of statistical cluster points of X.

2. MAIN RESULT

Definition 2.1. Let (Xn) be a sequence of fuzzy numbers in the metric
space

(
L(R), d̄

)
and r be a non-negative real number. (Xn) is said to be

r-statistically convergent to X∗ if, for all ε > 0,

δ
({
n ∈ N : d̄ (Xn, X∗) ≥ r + ε

})
= 0.

This is the r-statistical convergence with r as roughness degree. For r = 0
we get the statistical convergence.

Example 2.2. Let

Xn(t) =


1̄, for n = 22k+1(k ∈ N)

µ′n (t) , for n = k2(k ∈ N)

µ′′n (t) , otherwise,

where

µ′n (t) =


1 + t− 2n, if t ∈ [2n− 1, 2n]

1− t+ 2n, if t ∈ [2n, 2n+ 1]

0, otherwise,

and

µ′′n (t) =


n
3 (t− 2) + 1, if t ∈ [2n−3n , 2)

−n
3 (t− 2) + 1, if t ∈ [2, 2n+3

2 ]

0, otherwise.

It can be easily shown that (Xn) is not rough convergent, for any r ≥ 0,
but it is rough statistically convergent for r ≥ 0.5.

Theorem 2.3. If (Xn) and (Yn) are two sequences in
(
L(R), d̄

)
such that

Yn
r1st−→ X∗ and δ

({
n ∈ N : d̄(Xn, Yn) ≤ r2

})
= 1, then (Xn) is (r1 + r2)-

statistically convergent to X∗, for r1 ≥ 0 and r2 ≥ 0.

Proof. Since Yn
r1st−→ X∗, we have, for all ε > 0,

δ
({
n ∈ N : d̄ (Xn, X∗) ≥ r1 + ε

})
= 0,

i.e. δ(A) = 1, where A =
{
n ∈ N : d̄(Yn, X∗) < r1 + ε

}
.
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Let B =
{
n ∈ N : d̄(Xn, Yn) ≤ r2

}
. It is given that δ (B) = 1. Then

δ (A ∩B) = 1. So, for all such n ∈ A ∩B, we have

d̄(Xn, X∗) ≤ d̄(Xn, Yn) + d̄(Yn, X∗) < r1 + r2 + ε,

for n ≥ k. Hence the proof is complete. �

In particular, for r1 = 0 and r2 = r > 0, we get an approximate sequence
(Xn) of a statistically convergent sequence Yn → X∗ with

δ
({
n ∈ N : d̄(Xn, Yn) ≤ r

})
= 1,

which is r-statistically convergent to X∗.

Theorem 2.4. If (Xn) and (Yn) are two sequences in
(
L(R), d̄

)
such that

Xn
r1st−→ X∗ and Yn

r2st−→ Y∗, then Xn + Yn
(r1+r2)st−→ X∗ + Y∗, for r1 ≥ 0 and

r2 ≥ 0.

Proof. Let Xn
r1st−→ X∗ and Yn

r2st−→ Y∗. Then we have δ (A1) = 1 and
δ (A2) = 1, where A1 =

{
n ∈ N : d̄(Xn, X∗) < r1 + ε

2

}
and A2 = {n ∈ N :

d̄(Yn, Y∗) < r2+ ε
2}. Therefore δ (A1 ∩A2) = 1. So, for all such n ∈ A1∩A2, we

have d̄ (Xn + Yn, X∗ + Y∗) ≤ d̄(Xn, X∗) + d̄(Yn, Y∗) < (r1 + r2) + ε for n ≥ k.
Hence the proof follows. �

In view of the existing techniques, we state the following results without
proof.

Theorem 2.5. For any c ∈ R, if Xn
rst−→ X∗, then cXn

|c|rst−→ cX∗.

It is known that the limit of a statistically convergent sequence of fuzzy
numbers has an unique limit point. But this property is not maintained in
the case of rough statistical convergence with roughness degree r > 0. So,
in the case of rough statistical convergence we get an r-statistical limit set.
We discuss some basic properties of the r-statistical limit set of a sequence of
fuzzy numbers.

Definition 2.6. Let X∗ be an r- statistical limit point of (Xn), which
is not necessarily unique. Consider the r-statistical limit set of (Xn), de-

fined by st − LIM rXn =
{
X∗ ∈ L(R) : Xn

rst→ X∗

}
, i.e. st − LIM rXn =

{X∗ ∈ L(R) : [Xα
∗ ] ⊆ [st lim sup(Xα

ln)− r, st lim inf(Xα
un) + r]}, where [Xα

n ] =
[Xα

ln, X
α
un]

If st−LIM rXn = ∅, for any sequence (Xn) of fuzzy numbers, then (Xn) is
not r- statistically convergent, for any r ≥ 0.

Example 2.7. Let Xn(t) =


1 + t− 2n, if t ∈ [2n− 1, 2n]

1− t+ 2n, if t ∈ [2n, 2n+ 1]

0, otherwise.

Here (Xn) is not r-statistically convergent, since st−LIM rXn = ∅, for any
r ≥ 0.
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Proposition 2.8. The set st− LIM rXn of an arbitrary sequence of fuzzy
numbers (Xn) of

(
L (R) , d̄

)
is a closed set.

Proof. If st − LIM rXn = ∅, then the hypothesis is true. Suppose that
st− LIM rXn 6= ∅. Let (Yn) be a sequence in st− LIM rXn which converges
to Y . We show that Y ∈ LIM rXn. Since (Yn) converges to Y , we have
d̄ (Yn, Y ) < ε

2 , ∀n ≥ n0. In particular, d̄ (Yn0 , Y ) < ε
2 and, by the definition of

st−LIM rXn, we have, δ
({
n ∈ N : d̄ (Xn, Yn0) ≥ r + ε

2

})
= 0. Now, for all n ∈{

n ∈ N : d̄ (Xn, Yn0) < r + ε
2

}
, we have d̄ (Xn, Y ) ≤ d̄ (Xn, Yn0)+ d̄ (Yn0 , Y ) <

r + ε. So
{
n ∈ N : d̄ (Xn, Y ) < r + ε

}
⊇
{
n ∈ N : d̄ (Xn, Yn0) < r + ε

2

}
, i.e.

δ
{
n ∈ N : d̄ (Xn, Y ) ≥ r + ε

}
= 0, which completes the proof. �

Proposition 2.9. For any fuzzy number sequence (Xn) in
(
L (R) , d̄

)
, we

have diam (st− LIM rXn) ≤ 2r.

Proof. If possible, let diam (st− LIM rXn) > 2r. Then there exist Y,Z ∈
st− LIM rXn such that d̄ (Y,Z) = d1 > 2r. Let ε = d1−2r

2 . Since Y,Z ∈ st−
LIM rXn, we have δ (K1) = 0 and δ (K2) = 0, where K1 = {n ∈ N : d̄(Xn, Y )
≥ r+ ε}, K2 =

{
n ∈ N : d̄(Xn, Z) ≥ r + ε

}
. Hence, for all n ∈ (Kc

1 ∩Kc
2), we

have d̄ (Y,Z) ≤ d̄ (Xn, Y ) + d̄ (Xn, Z) < 2 (r + ε) = d1, ∀n ≥ n0, which is a
contradiction. Therefore diam (LIM rXn) ≤ 2r. �

Proposition 2.10. Let (Xn) be statistically convergent to X∗. Then st −
LIM rXn = B̄r (X∗).

Proof. Since Xn
st−→ X∗, we have δ

{
n ∈ N : d̄ (Xn, X∗) ≥ ε

}
= 0. Let Y ∈

B̄r (X∗) =
{
Y ∈ L(R) : d̄ (Y,X∗) ≤ r

}
. Now, for all n ∈ N with d̄ (Xn, X∗) <

ε, we have d̄ (Xn, Y ) ≤ d̄ (Xn, X∗) + d̄ (Y,X∗) < r + ε.
Since δ

({
n ∈ N : d̄ (Xn, X∗) < ε

})
= 1 and

{
n ∈ N : d̄ (Xn, Y ) < r + ε

}
⊇{

n ∈ N : d̄ (Xn, X∗) < ε
}

, we have Y ∈ st− LIM rXn. Consequently, we can

write st− LIM rXn = B̄r (X∗). �

Proposition 2.11. For all r > 0, a statistically bounded sequence (Xn) of

fuzzy numbers always contains a subsequence (Xnk
) with st−LIM (Xnk

),rXnk
6=

∅.

Proof. It is known that every statistically bounded sequence has a statisti-
cally convergent subsequence, so (Xn) contains a statistically convergent sub-
sequence (Xnk

). Let X∗ be the limit point of (Xnk
). Then st − LIM rXnk

=

B̄r (X∗) and, for r > 0, st − LIM (Xnk
),rXnk

=
{
Xnk

: d̄ (Xnk
, X∗) ≤ r

}
6=

∅. �

Proposition 2.12. If (X ′n) is a non-thin subsequence of (Xn), then st −
LIM rXn ⊆ st− LIM rX ′n.

Proof. The proof is obvious. �
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Proposition 2.13. For an arbitrary C ∈ ΓX of a sequence X = (Xn), we
have d̄ (X∗, C) ≤ r, for all X∗ ∈ st− LIM rX.

Proof. Since C ∈ ΓX , δ (A) 6= 0, where A =
{
n ∈ N : d̄(Xn, C) < ε

2

}
.

Let X∗ ∈ st − LIM rX. Then, for all ε > 0, δ (B) = 1, where B ={
n ∈ N : d̄ (Xn, X∗) < r + ε

2

}
. Therefore, for all n ∈ A∩B, we have d̄ (X∗, C)

≤ d̄ (Xn, X∗) + d̄ (Xn, C) < r + ε. Hence the proof follows. �

Proposition 2.14. (a) If C ∈ ΓX , then st− LIM rX ⊆ Br(C) .
(b) st− LIM rX = ∩

C∈ΓX

B̄r(C) =
{
Y∗ ∈ L(R) : ΓX ⊆ B̄r(Y∗)

}
.

Proof. (a) Let X∗ ∈ LIM rXn and C ∈ ΓX . Then d̄ (X∗, C) ≤ r, i.e.
st− LIM rX ⊆ Br(C).

(b) From the above theorem, we have

(1) st− LIM rX ⊆ ∩Br(C).

Let Y ∈ ∩
C∈ΓX

Br(C). Then d̄ (Y,C) ≤ r, ∀C ∈ ΓX , which is equivalent to

ΓX ⊆ B̄r(Y ), i.e.

(2) ∩
C∈ΓX

Br(C) ⊆
{
Y∗ ∈ L(R) : ΓX ⊆ B̄r(Y∗)

}
.

Now, let Y /∈ st−LIM rX. Then there exists an ε > 0 such that δ ({n ∈ N :
d̄(Xn, Y ) ≥ r + ε

})
6= 0, which implies the existence of a statistical cluster

point C of the sequence X that satisfies d̄(Y,C) > r + ε
2 , i.e. ΓX is not a

subset of B̄r(Y ) and Y /∈
{
Y∗ ∈ L(R) : ΓX ⊆ B̄r(Y∗)

}
.

Therefore,

(3)
{
Y∗ ∈ L(R) : ΓX ⊆ B̄r(Y∗)

}
⊆ st− LIM rX

The proof follows, by following (1), (2) and (3). �

Proposition 2.15. Let X = (Xn) be a statistically bounded sequence of
fuzzy numbers. If r =diam(ΓX), then ΓX ⊆ st− LIM rX.

Proof. Take C /∈ st−LIM rX. Then there exists ε > 0 such that δ ({n ∈ N :
d̄(Xn, C) ≥ r + ε

})
6= 0. Since the sequence is statistically bounded and

in view of the above inequality, there exists another statistical cluster point
C ′ such that d̄(C,C ′) > r + ε

2 . So, we get diam(ΓX) > r + ε
2 , which is a

contradiction. Hence the result follows. �
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