
MATHEMATICA, 60 (83), No 2, 2018, pp. 186–198

UJ-ENDOMORPHISM RINGS

SERAP ŞAHİNKAYA and TULAY YILDIRIM

Abstract. In this paper, we introduce and study UJ-modules, that is modules
M for which their endomorphism rings EM are right UJ . We show, in particular,
that: (1) if M is a left UJ-module over a ring R, then M is Dedekind finite;
(2) M is a UJ-module iff all clean elements of EM are J-clean; (3) M is a clean
UJ-module iff EM/J(EM ) is a Boolean ring and the idempotents lift modulo
J(EM ) (equivalently, M is a J-clean module); and (4) M is a clean UJ-module
such that J(EM ) is nil iff M is a conjugate nil clean UJ-module. We also
give characterizations of the trivial extension and the (trivial) Morita context,
R[x]/(x2) and the tail rings which are right UJ .
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1. INTRODUCTION

Throughout the paper all rings considered are associative and unital. For
a ring R, the Jacobson radical, the group of units and the set of all nilpotent
elements of R are denoted by J(R), U(R) and N(R), respectively. For a
module M , Rad(M) and 1M represent the radical of a module and identity
morphism of M , respectively. Throughout this article the homomorphisms of
the modules are written on the left of their arguments.

One always has 1 + J(R) ⊆ U(R). Recently, Koşan, Leroy and Matczuk
[6] showed that the problem of lifting the UJ property from a ring R to the
polynomial ring R[x] is equivalent to the Köthe problem for F2-algebras.

We recall some notations used in [11] and [12]. Let EM := EndR(M). Then,
by [11], we have

J(EM ) = {α ∈ EM : 1M − αβ ∈ U(EM ),∀β ∈ EM}
= {α ∈ EM : 1M − βα ∈ U(EM ),∀β ∈ EM}
= {α ∈ EM : βα ∈ J(EM ), ∀β ∈ EM}
= {α ∈ EM : αβ ∈ J(EM ), ∀β ∈ EM}.

Clearly, J(ER) = J(End(R)) = J(R). From the definition of J(EM ), one
always has 1M +J(EM ) ⊆ U(EM ). Then it makes sense to study the equality
1M + J(EM ) = U(EM ), for a left R-module M . A module M with this
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property will be called a UJ module. The aim of the paper is: to obtain some
(basic) properties of UJ-modules and to investigate the behavior of the UJ
property under various ring extensions.

In section 2, we give basic properties and construct some examples of UJ-
modules. For a left R-module M , we show that MEM

has no maximal submod-
ule and that EM/J(EM ) is reduced (i.e. it has no nonzero nilpotent elements)
and hence abelian (i.e. every idempotent is central).

We begin section 3 by showing that, for an abelian ring R and e2 = e ∈ R,
R is a UJ-ring iff eR and (1−e)R are UJ-rings. Here, we recall that R is a UJ-
ring iff eRe and (1− e)R(1− e) are UJ-rings and eR(1− e), (1− e)Re ⊆ J(R)
(see [6, Proposition 2.7]). In Theorems 3.3, 3.4 and Corollary 3.5, we show
that the behavior of the UJ property is very nice with respect to the trivial
extension and ring R[x]/(x2). Corollary 3.6 states, in particular, that the

trivial Morita context

(
A M
N B

)
is a UJ-module if and only if A,M,N,B

are UJ-modules. In Theorem 3.7, the UJ-property of the Dorroh extension
is investigated. The section ends with the tail ring extension R[D,C]. We
prove, in Theorem 3.8, that, for a subring C of a ring D, R[D,C] is a UJ-ring
if and only if D and C are UJ-rings.

For the last section, we establish some results between UJ-modules, J-clean
and (conjugate) nil clean modules. We prove in Theorem 4.4 that M is a
clean UJ-module iff EM/J(EM ) is a Boolean ring and idempotents lift modulo
J(EM ) iff M is a J-clean UJ-module iff M is a J-clean module. It is also shown
that a module M is a clean UJ-module with J(EM ) nil iff EM/J(EM ) is a
Boolean ring and M is a UU -module (i.e. EM is a UU -ring) iff M is a nil
clean UJ-module iff M is a conjugate nil clean UJ-module (Theorem 4.6).

2. UJ -UJ -UJ -MODULES

Let M be a right R-module and C(EM ) = {α ∈ EM : 1M − α ∈ U(EM )}.
It is easy to see that (C(EM ), ◦) is a group which is isomorphic to U(EM ), by
α ∈ C(EM ) 7→ 1 − α ∈ U(EM ). Notice that M is a UJ-module if and only if
C(EM ) is an ideal of EM .

We begin with another characterization of the UJ-modules.

Proposition 2.1. The following conditions are equivalent, for a left R-
module M :

(1) U(EM ) = 1M + J(EM ), i.e. M is a UJ-module;
(2) U(EM/J(EM )) = {1M};
(3) C(EM ) is an ideal of EM (then C(EM ) = J(EM ));
(4) αβ − γα ∈ J(EM ), for any α ∈ J(EM ) and β, γ ∈ C(EM );
(5) αu− vα ∈ J(EM ), for any u, v ∈ U(EM ) and α ∈ EM ;
(6) U(EM ) + U(EM ) ⊆ J(EM ) (and hence U(EM ) + U(EM ) = J(EM )).

Proof. (1) ⇒ (2) By [6, Proposition 1.3.(5)], EM/J(EM ) is a UJ-ring.
Then, by [6, Lemma 1.1 (2)], we get U(EM/J(EM )) = 1M , as desired.
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(1) ⇒ (3) Let α ∈ C(EM ). Then 1M − α ∈ U(EM ) and so there exists
u ∈ U(EM ) such that 1M − α = u, which gives α = 1M − u ∈ 1M − U(EM ).
Therefore

C(EM ) ⊆ 1M − U(EM ) = 1M − (1M + J(EM )) ⊆ J(EM ).

By the definition, J(EM ) ⊆ C(EM ). Hence J(EM ) = C(EM ).
(2)⇒ (1) Clearly, 1M + J(EM ) ⊆ U(EM ). For the converse, first we prove

the following claim:
Claim: U(EM )/J(EM ) = U(EM/J(EM )): Let α+ J(EM ) ∈ U(EM/J(EM )).
By the hypothesis, U(EM/J(EM )) = {1M} and so α + J(EM ) = 1M , which
gives 1M − α ∈ J(EM ). By the definition of J(EM ), one obtains α ∈ U(EM )
so α+J(EM ) ∈ U(EM )/J(EM ). The reverse is clear, since α is an element of
U(EM ).

Now we are ready to prove the U(EM ) ⊆ 1M + J(EM ). Let α ∈ U(EM ).
Then

α+ J(EM ) ∈ U(EM )/J(EM ) = U(EM/J(EM )) = {1M}.
Therefore α + j = 1M , for all j ∈ J(EM ), which implies α = 1M − j ∈
1M + J(EM ).

(3) ⇒ (4) Since C(EM ) is an ideal of EM , we get αβ − γα ∈ C(EM ), for
β, γ ∈ C(EM ) and α ∈ J(EM ). By (3), C(EM ) = J(EM ), so αβ−γα ∈ J(EM ).

(4) ⇒ (5) If we set β := 1M + u and γ := 1M + v, for u, v ∈ U(EM ), then
(5) is an immediate consequence of (4).

(5) ⇒ (6) If we take α = 1M in (5), then we get u − v ∈ J(EM ), for any
u, v ∈ U(EM ), which gives U(EM )+U(EM ) ⊆ J(EM ). Now, every α ∈ J(EM )
can be written as a sum of two invertible morphisms as α = 1M + (α− 1M ) ∈
U(EM ) + U(EM ), so we are done.

(6)⇒ (1) Clearly, 1M + J(EM ) ⊆ U(EM ). By (6), U(EM )− 1M ⊆ J(EM ),
i.e. U(EM ) ⊆ 1M + J(EM ), which completes the proof. �

As an immediate application of Proposition 2.1, we obtain the following
corollary.

Corollary 2.2 ([6, Lemma 1.1]). For a ring R, the following conditions
are equivalent:

(1) U(R) = 1 + J(R), i.e. R is a UJ-ring;
(2) U(R/J(R)) = {1};
(3) C(R) is an ideal of R (then C(R) = J(R));
(4) rb− cr ∈ J(R), for any r ∈ R and b, c ∈ C(R);
(5) ru− vr ∈ J(R), for any u, v ∈ U(R) and r ∈ R,
(6) U(R) + U(R) ⊆ J(R) (and hence U(R) + U(R) = J(R)).

The next two observations contain several properties of the UJ-modules
and rings.

Proposition 2.3. Let M be a left UJ-module over R. Then:

(1) MEM
has no a maximal submodule;
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(2) if EM is a division ring, then EM = F2;
(3) EM/J(EM ) is reduced and hence abelian;
(4) if α, β ∈ EM and if αβ ∈ J(EM ), then βα ∈ J(EM ), αEMβ, βEMα ⊆

J(EM );
(5) if I ⊆ J(EM ) is an ideal of EM , then M is a UJ-module if and only

if EM/I is a UJ-ring,
(6) M is Dedekind finite (i.e. EM is a Dedekind finite ring; if a, b ∈ EM ,

ab = 1⇒ ba = 1).
(7) the module

∏
i∈I Mi is UJ if and only if each Mi is a UJ-module, for

all i ∈ I.

Proof. (1) By Proposition 2.1 (6), we have U(EM ) + U(EM ) = J(EM ).
Since M is a right EM module and MEM

J(EM ) ⊆ Rad(MEM
), we get

MEM
U(EM ) +MEM

U(EM ) = MEM
J(EM ) ⊆ Rad(MEM

).

One gets the following, for 1M ∈ U(EM ):

MEM
⊆MEM

+MEM
⊆ Rad(MEM

) ⊆MEM
.

This gives Rad(MEM
) = MEM

, that is MEM
has no maximal submodule.

(2) If EM is a division ring, then every nonzero morphism of EM has an
inverse. By Proposition 2.1(1), U(EM ) = 1M +J(EM ). Hence 1M +J(EM ) ∈
EM/J(EM ) has only an element which has an inverse. By Proposition 2.1(2),
U(EM/J(EM )) = {1M}, as desired.

(3) Let α + J(EM ) be a nilpotent element in EM/J(EM ). We show that
α ∈ J(EM ). Since α + J(EM ) is nilpotent, there exits n ∈ N such that
αn + J(EM ) = J(EM ). Then

1M + J(EM ) = [(αn) + J(EM )] + (1M + J(EM ))
= (αn + 1M ) + J(EM )
= (α+ 1M )((−1)n−1αn−1 + · · ·+ (−1)01M ) + J(EM )
= [(α+ 1M ) + J(EM )][(αn−1 + · · ·+ 1M ) + J(EM )].

So (α+ 1M ) + J(EM ) ∈ U(EM/J(EM )), which is 1M , by Proposition 2.1(2).
Then there exists j ∈ J(EM ) such that (α+ 1M ) + j = 1M , that is α = −j ∈
J(EM ).

By (1), M/Rad(M) = M/M = 0 so M/Rad(M) has no nonzero nilpotent
elements, hence it is reduced and so it is abelian.

(4) Let αβ ∈ J(EM ). Then αβ + J(EM ) = J(EM ). Multiplying this
equation by β + J(EM ) on the left and by α+ J(EM ) on the right, we get

βαβα+ J(EM ) = (βα)2 + J(EM ) = J(EM ).

By (3), EM/J(EM ) is reduced and thus βα + J(EM ) = J(EM ). Hence βα ∈
J(EM ). Now, the rest follows from (3).

(5) Let I ⊆ J(EM ). We show J(EM )/I = J(EM/I). Clearly, J(EM )/I ⊆
J(EM/I). For the converse, let α + I ∈ J(EM/I). Then (1M − α) + I is an
element of U(EM ), so [(1M − α) + I](β + I) = [(1M − α)β] + I = 1M + I .
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Then 1M − [(1M − α)β] ⊆ I ⊆ J(EM ), which implies that (1M − α)β is an
element of U(EM ), that is α ∈ J(EM ). Hence α + I ∈ J(EM ) + I. By the
proof of Proposition 2.1(2),

EM/I

J(EM/I)
=

EM/I

J(EM )/I
= EM/J(EM ),

which implies

U(
EM/I

J(EM/I)
) = U(EM/J(EM )).

(6) We note that EM/J(EM ) is Dedekind finite, since it is reduced. Let
αβ = 1M , for α, β ∈ EM . Then αβ+J(EM ) = 1M +J(EM ). Since EM/J(EM )
is Dedekind finite, we obtain βα + J(EM ) = 1M + J(EM ), that is βα is
invertible. Clearly, βα is an idempotent, so βα = 1M .

(7) Recall that

U(
∏
i∈I

EMi) =
{∏

i∈I
αi :

∏
i∈I

Mi →
∏
i∈I

Mi|
∏
i∈I

αi is an element of U(EMi)
}
,

and∏
i∈I

(U(EMi)) =
{∏

i∈I
αi :

∏
i∈I

Mi →
∏
i∈I

Mi|

∀i ∈ I, αi is an element of U(EMi)
}
.

Now, it is easy to see that U(
∏

i∈I EMi) =
∏

i∈I(U(EMi)). Similarly, we have
J(
∏

i∈I EMi) =
∏

i∈I J(EMi). �

Corollary 2.4 ([6, Proposition 1.3]). Let R be a UJ-ring. Then:

(1) 2 ∈ J(R);
(2) if R is a division ring, then R = F2;
(3) R/J(R) is reduced and hence abelian;
(4) if x, y ∈ R are such that xy ∈ J(R), then yx ∈ J(R) and xRy, yRx ⊆

J(R);
(5) if I ⊆ J(R) is an ideal of R, then R is a UJ-ring if and only if R/I

is a UJ-ring;
(6) R is Dedekind finite;
(7) the ring

∏
i∈I Ri is UJ if and only each Ri is a UJ-ring, i ∈ I.

Recall that the ring R is said to be semilocal, if R/J(R) is semisimple
artinian.

Proposition 2.5. A semilocal ring EM is UJ if and only if EM/J(EM ) ∼=
F2 × . . .× F2.

Proof. Since EM/J(EM ) is semisimple, by the definition, and reduced, by
Proposition 2.3(3), we obtain that EM/J(EM ) is a finite direct product of a
division ring. Proposition 2.3(2) completes the proof. �
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Corollary 2.6 ([6, Proposition 1.4]). A semilocal ring R is UJ if and only
if R/J(R) ∼= F2 × . . .× F2.

For a left module M , let M [x] be the set of all formal polynomials in inde-
terminate x with coefficients from M . Then M [x] becomes a left R[x]-module
under the usual addition and multiplication of polynomials, where R[x] de-
notes the polynomial ring in the set x of commuting indeterminates.

Let

N(EM ) = {α ∈ EM : αn = 0, for some n ∈ N}.

Lemma 2.7. If 1M is the only element of U(EM ), then U(EM )[x] = {1M}.

Proof. Since a unit in M [x] depends only on finitely many indeterminates,
we may assume that x is a finite set.

By the assumption, U(EM )[x] = {1M}, so EM does not contain nontrivial
nilpotent elements, because 1M +N(EM ) ⊆ U(EM ), i.e. it is a reduced ring.
But U(EM )[x] = U(EM ), so we are done. �

Corollary 2.8 ([6, Lemma 2.3]). Let R be a ring with trivial units. Then
U(R[x]) = {1}.

3. SOME RING EXTENSIONS

The left Peirce decompositions. We consider the sets eR and (1− e)R,
where e2 = e ∈ R.

Proposition 3.1. Let M be an abelian module and e2 = e ∈ EM . Then
the following are equivalent.

(1) M is a UJ-module.
(2) eM and (1− e)M are UJ-modules.

Proof. Since e2 = e ∈ EM , we have M = eM ⊕ (1− e)M . So, we have,

EM = HomR(eM ⊕ (1− e)M, eM ⊕ (1− e)M)
= HomR(eM, eM)⊕HomR((1− e)M, (1− e)M)
⊕HomR(eM, (1− e)M)⊕HomR((1− e)M, eM)
= EeM ⊕ E(1−e)M .

Hence we obtain

U(EM ) = U(EeM )⊕ U(E(1−e)M )

and

J(EM ) = J(EeM )⊕ J(E(1−e)M ).

�

Corollary 3.2. Let R be an abelian ring and e2 = e ∈ R. Then the
following are equivalent.

(1) R is a UJ-ring.
(2) eR and (1− e)R are UJ-rings.
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The trivial extension and the (trivial) Morita context. Let R be a
ring and M a bimodule over R. The trivial extension of R and M is

T (R,M) = {(r,m) : r ∈ R and m ∈M}
with the addition defined componentwise and the multiplication defined by

(r,m)(s, n) = (rs, rn+ms).

The trivial extension T (R,M) is isomorphic to the subring
{(

r m
0 r

)
: r ∈

R and m ∈M
}

of the formal 2× 2 matrix ring

(
R M
0 R

)
and also T (R,R) ∼=

R[x]/(x2). We also note that the set of units of the trivial extension T (R,M)
is

U(T (R,M)) = T (U(R),M),

by [1, Proposition 4.9 (2)], and

J(T (R,M)) = T (J(R),M),

by [1, Corollary 4.8 (2)].

A Morita context is a 4-tuple

(
A M
N B

)
, where A and B are rings, AMB

and BNA are bimodules and there exist context products M × N → A and
N ×M → B, written multiplicatively as (w, z) = wz and (z, w) = zw, such

that

(
A M
N B

)
is an associative ring with the obvious matrix operations.

A Morita context

(
A M
N B

)
is called trivial, if the context products are

trivial, i.e. MN = 0 and NM = 0 (see [7, p. 1993]). We have(
A M
N B

)
∼= T (A×B,M ⊕N),

where

(
A M
N B

)
is a trivial Morita context, by [5].

Theorem 3.3. If the trivial extension T := T (R,M) is a UJ-ring, then R
is a UJ-ring and M is a UJ-module.

Proof. Let r ∈ R and u, v ∈ U(R). Then(
r 0
0 r

)(
u 0
0 u

)
−
(
v 0
0 v

)(
r 0
0 r

)
∈ J(T ),

where

(
r 0
0 r

)
∈ T and

(
u 0
0 u

)
,

(
v 0
0 v

)
∈ U(T ). Hence(

ru 0
0 ru

)
−
(
vr 0
0 vr

)
=

(
ru− vr 0

0 ru− vr

)
∈ J(T )

which implies ru− vr ∈ J(R), for r ∈ R and u, v ∈ U(R).
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Let α ∈ U(EM ). Clearly, ϕ : T → T is an element of U(EM ), which

is defined by ϕ(

(
r m
0 r

)
) =

(
r α(m)
0 r

)
. Since T is an UJ-module, we get

U(ET ) ⊆ 1T + J(ET ). Then ϕ = 1T + ψ, for ψ ∈ J(ET ). One obtains

ψ(

(
r m
0 r

)
) =

(
0 (α− 1M )(m)
0 0

)
, by a direct calculation. If we prove α −

1M ∈ J(EM ), then we are done. First, note that, for an endomorphism γ :

T (R,M)→ T (R,M), there exist f ∈ ER and g ∈ EM such that γ(

(
r m
0 r

)
) =(

f(r) g(m)
0 f(r)

)
. We also have that γ is an element of U(EM ) if and only if

f and g are elements of U(EM ). By the hypothesis, we have ϕ − 1T = ψ ∈

J(ET ), that is 1T − ψγ ∈ U(ET ), for every γ ∈ ET , where γ(

(
r m
0 r

)
) =(

f(r) g(m)
0 f(r)

)
. By a direct calculation,

1T − ψγ =

(
r 1M (m)− (α− 1M )g(m)
0 r

)
∈ U(ET ),

so 1M−(α−1M )g ∈ U(EM ), for every g ∈ EM , which completes the proof. �

Theorem 3.4. If R is a UJ-ring, then so is the trivial extension T (R,M).

Proof. Assume that R is a UJ-ring. Then U(T (R,M)) = T (U(R),M) and
U(R) = 1R + J(R). So one can write

U(T (R,M)) =

(
U(R) M

0 U(R)

)
=

(
1R + J(R) M

0 1R + J(R)

)
=

(
1R 0
0 1R

)
+

(
J(R) M

0 J(R)

)
= 1T + J(T (R,M)),

as desired. �

Corollary 3.5. R is a UJ-ring if and only if R[x]/(x2) is a UJ-ring.

Corollary 3.6. The trivial Morita context

(
A M
N B

)
is a UJ-module if

and only if A,M,N,B are UJ-modules.

Proof. It is easy to see that(
A M
N B

)
∼= T (A×B,M ⊕N) ∼=

(
A×B M ⊕N

0 A×B

)
.

Then the rest follows from Theorems 3.3, 3.4 and Proposition 2.3 (7). �
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The Dorroh extension. Given a ring R and a ring without identity I,
we will say that I is an R ring without identity if it is an (R,R)-bimodule,
for which the actions of R are compatible with the multiplication in I (i.e.
r(ij) = (ri)j, i(rj) = (ir)j and (ij)r = i(jr), for every r ∈ R and i, j ∈ I). If
R is a ring with identity and I is a ring without identity, then one can turn
the abelian group R⊕ I into a ring, by defining the multiplication by

(r, i).(p, j) = (rp, ip+ rj + ij),

for r, p ∈ R and i, j ∈ I. Such a ring is called an ideal extension (it is also
called the Dorroh extension), and denoted by E(R, I) - see [9] .

Theorem 3.7. Let I be a ring without identity, finitely generated as a (left)
R-module by elements that commute with all elements of R. Then R is a
UJ-ring, if the Dorroh extension E(R, I) is a UJ-ring.

Proof. Let u, v ∈ U(R) and r ∈ R. Then (u, 0), (v, 0) ∈ U(E(R, I)) and
(r, 0) ∈ E(R, I). We get (r, 0)(u, 0) − (v, 0)(r, 0) = (ru − vr, 0) ∈ J(E(R, I)),
by the hypothesis. But J(E(R, I)) = J(R) ⊕ J(I), which implies ru − vr ∈
J(R). �

The tail ring extension R[D,C]R[D,C]R[D,C]. For a subring C of a ring D, the set

R[D,C] := {(d1, · · · , dn, c, c, · · · ) : di ∈ D, c ∈ C, n ≥ 1},
with the addition and the multiplication defined componentwise, is a ring.

Theorem 3.8. R[D,C] is a UJ-ring if and only if D and C are UJ-rings.

Proof. (⇒) First, we show that D is a UJ-ring. Let u, v ∈ U(D) and d ∈ D.
Then

α = (d, 0, 0, · · · ) ∈ R[D,C],

β = (u, 1, 1, · · · ), γ = (v, 1, 1, · · · ) ∈ U(R[D,C]).

Now, αβ−γα ∈ J(R[D,C]), by the hypothesis, that is m := (du−vd, 0, 0, · · · )
∈ J(R[D,C]). Hence, for any t := (y1, · · · , yn, x, · · · ) ∈ R[D,C],

(1, 1, 1, · · · )−mt = (1− (du− vd)y1, 1, 1, · · · )
∈ U(R[D,C]) = R[U(D), U(C)],

which implies that D is a UJ ring.
We show that C is UJ . Let u∗, v∗ ∈ U(C) and c ∈ C. We prove that

cu∗ − v∗c ∈ J(C). Then

α∗ = (0, · · · , 0, c, c · · · ) ∈ R[D,C],

β∗ = (1, · · · , 1, u∗, u∗ · · · ), γ∗ = (1, · · · , 1, v∗, v∗ · · · ) ∈ U(R[D,C]).

Now, α∗β∗ − γ∗α∗ ∈ J(R[D,C], that is n := (0, · · · , 0, cu∗ −v∗c, cu∗ −
v∗c, · · · ) ∈ J(R[D,C]). Hence, for any t = (y1, · · · , yn, x, · · · ) ∈ R[D,C],

(1, 1, 1, · · · )− nt = (1, · · · , 1, 1− (cu∗ − v∗c)x, · · · )
∈ U(R[D,C]) = R[U(D), U(C)],
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which implies that C is a UJ-ring.
(⇐) Assume D and C are UJ-rings. Let

β = (u1, · · · , un, u, u, · · · ), γ = (v1, · · · , vn, v, v, · · · ) ∈ U(R[D,C]),

where ui, vi, u, v ∈ U(R), for 1 ≤ i ≤ n and α = (d1, · · · , dn, c, c, · · · ) ∈
R[D,C]. Set x := αβ − γα. Since D and C are UJ-rings and J(R[D,C]) =
R[J(D), J(C)], we obtain

x = (d1, · · · , dn, c, c, · · · )(u1, · · · , un, u, u, · · · )
− (v1, · · · , vn, v, v, · · · )(d1, · · · , dn, c, c, · · · )
= (d1u1, · · · , dnun, cu, cu, · · · )− (v1d1, · · · , vndn, vd, vd, · · · )
= (d1u1 − v1d1, · · · , dnun − vndn, cu− vd, cu− vd, · · · ).

Now, diui − vidi ∈ J(D) and du − vd ∈ J(C) imply m := αβ − γα ∈
R[J(D), J(C)]. �

Corollary 3.9. R[D,D] is a UJ-ring if and only if D is a UJ-ring.

4. CLEAN MODULES

Recall that an element r ∈ R is clean (J-clean) provided there exist an
idempotent e ∈ R and an element t ∈ U(R) (t ∈ J(R)) such that r = e + t.
A ring R is clean (J-clean), if every element of R has such a clean (J-clean)
decomposition [10] ([3]). Clearly, every J-clean ring is clean.

We say that a module M is J-clean, if the endomorphism ring of M is a
J-clean ring.
UU -rings are defined by Cǎlugǎreanu [2] as U(R) = 1 + N(R) (i.e. rings

with unipotent units). It is clear that, if R is a UJ-ring with nil Jacobson
radical, then R is a UU -ring.

Recall that

N(EM ) = {α ∈ EM : αn = 0, for some n ∈ N}.

We call M a UU -module, if EM is UU -ring, that is U(EM ) = 1M +N(EM ).

Corollary 4.1. A module M is UJ with J(EM ) nil iff M is a UU -module
and N(EM ) is an ideal of EM .

Let Id(R) be the set of all idempotent elements of R.

Proposition 4.2. The following are equivalent for a module M .

(1) M is a UJ-module.
(2) All clean elements of EM are J-clean.

Proof. (1)⇒ (2) Assume α ∈ EM is clean. Then α = e+u, for e2 = e ∈ EM

and u ∈ U(EM ). By the hypothesis, u = 1M + j, where j ∈ J(EM ). Hence

α = e+ 1M + j = (1M − e) + e+ e+ j,
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but e+ e ∈ J(EM ), by [6, Proposition 1.3 (1)]. Hence e+ e+ j ∈ J(EM ) and
(1M − e) ∈ Id(EM ), as desired.

(2) ⇒ (1) Clearly 1M + J(EM ) ⊆ U(EM ). Let u ∈ U(EM ). Then u is a
clean element, so u = e+j, for e2 = and j ∈ J(EM ). Since 1M = u−1e+u−1j,
we obtain u−1e = 1M − u−1j. Hence u−1e is an element of U(EM ), which
implies e = 1. �

Corollary 4.3 ([6, Proposition 3.1]). The following conditions are equiv-
alent for a ring R.

(1) R is a UJ-ring,
(2) All clean elements of R are J-clean.

Theorem 4.4. The following conditions are equivalent for a module M .

(1) M is a clean UJ-module.
(2) EM/J(EM ) is a Boolean ring and idempotents lift modulo J(EM ).
(3) M is a J-clean UJ-module.
(4) M is a J-clean module.

Proof. (1) ⇒ (2) Since EM/J(EM ) is clean, every element α + J(EM ) ∈
EM/J(EM ) is of the form

α+ J(EM ) = (e+ J(EM )) + (1M + J(EM )) = (e+ 1) + J(EM ).

Hence

α2 + J(EM ) = [(e+ J(EM )) + (1M + J(EM ))][(e+ J(EM )) + (1M + J(EM ))]
= [(e+ 1)(e+ 1)] + J(EM )
= (e+ e+ e+ 1) + J(EM )
= (e+ 1) + J(EM ) + (e+ e) + J(EM )
= (e+ 1) + J(EM ),

so α+J(EM ) is an idempotent element, that is EM/J(EM ) is a Boolean ring.
The rest follows from the definition of clean rings.

(2) ⇒ (3) Let α ∈ EM . Then α + J(EM ) ∈ EM/J(EM ) is an idempotent.
By hypothesis, there exists an idempotent e ∈ EM such that α− e ∈ J(EM ).
Then α = e + j, for j ∈ J(EM ), i.e. α is a J-clean element. This shows that
M is a J-clean module. If u ∈ U(EM ), then u + J(EM ) ∈ U(EM/J(EM )) in
a Boolean ring EM/J(EM ). Then u− 1 ∈ J(EM ), that is u ∈ 1M + J(EM ).

(3)⇒ (4) This is clear.
(4)⇒ (1) This follows from Proposition 4.2. �

Corollary 4.5 ([6, Proposition 3.2]). The following conditions are equiv-
alent for a ring R.

(1) R is a clean UJ-ring.
(2) R/J(R) is a Boolean ring and idempotents lift modulo J(R).
(3) R is a J-clean UJ-ring.
(4) R is a J-clean ring.
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Recall that idempotents e and f are said to be conjugate in R, if there exists
u ∈ U(R) such that e = ufu−1. Conjugate (nil) clean rings are defined as
(nil) clean rings such that idempotents that appear in the decompositions are
unique up to conjugation, i.e., if a = e + s = f + t are such decompositions,
then the idempotents e, f are conjugate in R (see [8]). We call M a conjugate
(nil) clean module, if EM is a conjugate (nil) clean ring.

Theorem 4.6. The following conditions are equivalent for a module M .

(1) M is a clean UJ-module with J(EM ) nil.
(2) EM/J(EM ) is a Boolean ring and J(EM ) is nil.
(3) M is a nil clean UJ-module.
(4) M is a conjugate nil clean UJ-module.
(5) M is a conjugate nil clean module and N(EM ) is an ideal of EM .
(6) EM/J(EM ) is a Boolean ring and M is a UU -module.

Proof. In view of [4, Corollary 3.17], the ring EM is nil clean if and only if
EM/J(EM ) is nil clean and J(EM ) is nil. Also, if M is a UJ-module, then M
is nil clean if and only if M is J-clean and J(EM ) is a nil ideal of EM . Now,
(1) ⇔ (3) holds, by Theorem 4.4 and the fact that idempotents lift modulo
nil ideals.

(4)⇒ (3) Trivial.
(2)⇒ (4) By (2), M is a UJ-module. Since Boolean rings are conjugate nil

clean, the rest follows from [8, Corollary 2.16].
(4) ⇔ (5) If M is nil clean, then J(EM ) is nil and hence the statement

follows by Remark 4.1.
(2)⇔ (6) This is clear. �

Corollary 4.7 ([6, Theorem 3.3]). The following conditions are equivalent
for a ring R.

(1) R is a clean UJ-ring with nil Jacobson radical J(R).
(2) R/J(R) is a Boolean ring and J(R) is nil.
(3) R is a nil clean UJ-ring.
(4) R is a conjugate nil clean UJ-ring.
(5) R is a conjugate nil clean ring and N(R) is an ideal of R.
(6) R/J(R) is a Boolean ring and R is a UU -ring.
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