UJ-ENDOMORPHISM RINGS

SERAP ŞAHİNKAYA and TULAY YILDIRIM

Abstract. In this paper, we introduce and study UJ-modules, that is modules M for which their endomorphism rings E_M are right UJ. We show, in particular, that: (1) if M is a left UJ-module over a ring R, then M is Dedekind finite; (2) M is a UJ-module iff all clean elements of E_M are J-clean; (3) M is a clean UJ-module iff $E_M/J(E_M)$ is a Boolean ring and the idempotents lift modulo $J(E_M)$ (equivalently, M is a J-clean module); and (4) M is a clean UJ-module such that $J(E_M)$ is nil iff M is a conjugate nil clean UJ-module. We also give characterizations of the trivial extension and the (trivial) Morita context, $R[x]/(x^2)$ and the tail rings which are right UJ.

MSC 2010. 30C45.

Key words. Unit, radical, clean module and ring, conjugate nil clean module and ring, UJ-module and ring.

1. INTRODUCTION

Throughout the paper all rings considered are associative and unital. For a ring R, the Jacobson radical, the group of units and the set of all nilpotent elements of R are denoted by J(R), U(R) and N(R), respectively. For a module M, $\operatorname{Rad}(M)$ and 1_M represent the radical of a module and identity morphism of M, respectively. Throughout this article the homomorphisms of the modules are written on the left of their arguments.

One always has $1 + J(R) \subseteq U(R)$. Recently, Koşan, Leroy and Matczuk [6] showed that the problem of lifting the UJ property from a ring R to the polynomial ring R[x] is equivalent to the Köthe problem for F_2 -algebras.

We recall some notations used in [11] and [12]. Let $E_M := \operatorname{End}_R(M)$. Then, by [11], we have

$$J(E_M) = \{ \alpha \in E_M : 1_M - \alpha\beta \in U(E_M), \forall\beta \in E_M \} \\ = \{ \alpha \in E_M : 1_M - \beta\alpha \in U(E_M), \forall\beta \in E_M \} \\ = \{ \alpha \in E_M : \beta\alpha \in J(E_M), \forall\beta \in E_M \} \\ = \{ \alpha \in E_M : \alpha\beta \in J(E_M), \forall\beta \in E_M \}.$$

Clearly, $J(E_R) = J(End(R)) = J(R)$. From the definition of $J(E_M)$, one always has $1_M + J(E_M) \subseteq U(E_M)$. Then it makes sense to study the equality $1_M + J(E_M) = U(E_M)$, for a left *R*-module *M*. A module *M* with this

The authors are supported by TUBITAK (117F070).

DOI: 10.24193/mathcluj.2018.2.11

property will be called a UJ module. The aim of the paper is: to obtain some (basic) properties of UJ-modules and to investigate the behavior of the UJ property under various ring extensions.

In section 2, we give basic properties and construct some examples of UJmodules. For a left *R*-module *M*, we show that M_{E_M} has no maximal submodule and that $E_M/J(E_M)$ is reduced (i.e. it has no nonzero nilpotent elements) and hence abelian (i.e. every idempotent is central).

We begin section 3 by showing that, for an abelian ring R and $e^2 = e \in R$, R is a UJ-ring iff eR and (1-e)R are UJ-rings. Here, we recall that R is a UJring iff eRe and (1-e)R(1-e) are UJ-rings and $eR(1-e), (1-e)Re \subseteq J(R)$ (see [6, Proposition 2.7]). In Theorems 3.3, 3.4 and Corollary 3.5, we show that the behavior of the UJ property is very nice with respect to the trivial extension and ring $R[x]/(x^2)$. Corollary 3.6 states, in particular, that the trivial Morita context $\begin{pmatrix} A & M \\ N & B \end{pmatrix}$ is a UJ-module if and only if A, M, N, Bare UJ-modules. In Theorem 3.7, the UJ-property of the Dorroh extension is investigated. The section ends with the tail ring extension $\mathcal{R}[D, C]$. We prove, in Theorem 3.8, that, for a subring C of a ring $D, \mathcal{R}[D, C]$ is a UJ-ring if and only if D and C are UJ-rings.

For the last section, we establish some results between UJ-modules, J-clean and (conjugate) nil clean modules. We prove in Theorem 4.4 that M is a clean UJ-module iff $E_M/J(E_M)$ is a Boolean ring and idempotents lift modulo $J(E_M)$ iff M is a J-clean UJ-module iff M is a J-clean module. It is also shown that a module M is a clean UJ-module with $J(E_M)$ nil iff $E_M/J(E_M)$ is a Boolean ring and M is a UU-module (i.e. E_M is a UU-ring) iff M is a nil clean UJ-module iff M is a conjugate nil clean UJ-module (Theorem 4.6).

2. UJ-MODULES

Let M be a right R-module and $\mathcal{C}(E_M) = \{ \alpha \in E_M : 1_M - \alpha \in U(E_M) \}$. It is easy to see that $(\mathcal{C}(E_M), \circ)$ is a group which is isomorphic to $U(E_M)$, by $\alpha \in \mathcal{C}(E_M) \mapsto 1 - \alpha \in U(E_M)$. Notice that M is a UJ-module if and only if $\mathcal{C}(E_M)$ is an ideal of E_M .

We begin with another characterization of the UJ-modules.

PROPOSITION 2.1. The following conditions are equivalent, for a left R-module M:

- (1) $U(E_M) = 1_M + J(E_M)$, i.e. M is a UJ-module;
- (2) $U(E_M/J(E_M)) = \{1_M\};$
- (3) $\mathcal{C}(E_M)$ is an ideal of E_M (then $\mathcal{C}(E_M) = J(E_M)$);
- (4) $\alpha\beta \gamma\alpha \in J(E_M)$, for any $\alpha \in J(E_M)$ and $\beta, \gamma \in \mathcal{C}(E_M)$;
- (5) $\alpha u v\alpha \in J(E_M)$, for any $u, v \in U(E_M)$ and $\alpha \in E_M$;

(6) $U(E_M) + U(E_M) \subseteq J(E_M)$ (and hence $U(E_M) + U(E_M) = J(E_M)$).

Proof. (1) \Rightarrow (2) By [6, Proposition 1.3.(5)], $E_M/J(E_M)$ is a *UJ*-ring. Then, by [6, Lemma 1.1 (2)], we get $U(E_M/J(E_M)) = 1_M$, as desired.

 $(1) \Rightarrow (3)$ Let $\alpha \in \mathcal{C}(E_M)$. Then $1_M - \alpha \in U(E_M)$ and so there exists $u \in U(E_M)$ such that $1_M - \alpha = u$, which gives $\alpha = 1_M - u \in 1_M - U(E_M)$. Therefore

$$\mathcal{C}(E_M) \subseteq 1_M - U(E_M) = 1_M - (1_M + J(E_M)) \subseteq J(E_M).$$

By the definition, $J(E_M) \subseteq \mathcal{C}(E_M)$. Hence $J(E_M) = \mathcal{C}(E_M)$.

 $(2) \Rightarrow (1)$ Clearly, $1_M + J(E_M) \subseteq U(E_M)$. For the converse, first we prove the following claim:

Claim: $U(E_M)/J(E_M) = U(E_M/J(E_M))$: Let $\alpha + J(E_M) \in U(E_M/J(E_M))$. By the hypothesis, $U(E_M/J(E_M)) = \{1_M\}$ and so $\alpha + J(E_M) = 1_M$, which gives $1_M - \alpha \in J(E_M)$. By the definition of $J(E_M)$, one obtains $\alpha \in U(E_M)$ so $\alpha + J(E_M) \in U(E_M)/J(E_M)$. The reverse is clear, since α is an element of $U(E_M)$.

Now we are ready to prove the $U(E_M) \subseteq 1_M + J(E_M)$. Let $\alpha \in U(E_M)$. Then

$$\alpha + J(E_M) \in U(E_M)/J(E_M) = U(E_M/J(E_M)) = \{1_M\}.$$

Therefore $\alpha + j = 1_M$, for all $j \in J(E_M)$, which implies $\alpha = 1_M - j \in 1_M + J(E_M)$.

(3) \Rightarrow (4) Since $\mathcal{C}(E_M)$ is an ideal of E_M , we get $\alpha\beta - \gamma\alpha \in \mathcal{C}(E_M)$, for $\beta, \gamma \in \mathcal{C}(E_M)$ and $\alpha \in J(E_M)$. By (3), $\mathcal{C}(E_M) = J(E_M)$, so $\alpha\beta - \gamma\alpha \in J(E_M)$. (4) \Rightarrow (5) If we set $\beta := 1_M + u$ and $\gamma := 1_M + v$, for $u, v \in U(E_M)$, then (5) is an immediate consequence of (4).

 $(5) \Rightarrow (6)$ If we take $\alpha = 1_M$ in (5), then we get $u - v \in J(E_M)$, for any $u, v \in U(E_M)$, which gives $U(E_M) + U(E_M) \subseteq J(E_M)$. Now, every $\alpha \in J(E_M)$ can be written as a sum of two invertible morphisms as $\alpha = 1_M + (\alpha - 1_M) \in U(E_M) + U(E_M)$, so we are done.

(6) \Rightarrow (1) Clearly, $1_M + J(E_M) \subseteq U(E_M)$. By (6), $U(E_M) - 1_M \subseteq J(E_M)$, i.e. $U(E_M) \subseteq 1_M + J(E_M)$, which completes the proof.

As an immediate application of Proposition 2.1, we obtain the following corollary.

COROLLARY 2.2 ([6, Lemma 1.1]). For a ring R, the following conditions are equivalent:

(1) U(R) = 1 + J(R), *i.e.* R is a UJ-ring;

(2) $U(R/J(R)) = \{1\};$

(3) C(R) is an ideal of R (then C(R) = J(R));

- (4) $rb cr \in J(R)$, for any $r \in R$ and $b, c \in C(R)$;
- (5) $ru vr \in J(R)$, for any $u, v \in U(R)$ and $r \in R$,
- (6) $U(R) + U(R) \subseteq J(R)$ (and hence U(R) + U(R) = J(R)).

The next two observations contain several properties of the UJ-modules and rings.

PROPOSITION 2.3. Let M be a left UJ-module over R. Then:

(1) M_{E_M} has no a maximal submodule;

- (2) if E_M is a division ring, then $E_M = \mathbb{F}_2$;
- (3) $E_M/J(E_M)$ is reduced and hence abelian;
- (4) if $\alpha, \beta \in E_M$ and if $\alpha\beta \in J(E_M)$, then $\beta\alpha \in J(E_M)$, $\alpha E_M\beta, \beta E_M\alpha \subseteq J(E_M)$;
- (5) if $I \subseteq J(E_M)$ is an ideal of E_M , then M is a UJ-module if and only if E_M/I is a UJ-ring,
- (6) *M* is Dedekind finite (i.e. E_M is a Dedekind finite ring; if $a, b \in E_M$, $ab = 1 \Rightarrow ba = 1$).
- (7) the module $\prod_{i \in I} M_i$ is UJ if and only if each M_i is a UJ-module, for all $i \in I$.

Proof. (1) By Proposition 2.1 (6), we have $U(E_M) + U(E_M) = J(E_M)$. Since M is a right E_M module and $M_{E_M}J(E_M) \subseteq Rad(M_{E_M})$, we get

$$M_{E_M}U(E_M) + M_{E_M}U(E_M) = M_{E_M}J(E_M) \subseteq Rad(M_{E_M}).$$

One gets the following, for $1_M \in U(E_M)$:

$$M_{E_M} \subseteq M_{E_M} + M_{E_M} \subseteq Rad(M_{E_M}) \subseteq M_{E_M}.$$

This gives $Rad(M_{E_M}) = M_{E_M}$, that is M_{E_M} has no maximal submodule.

(2) If E_M is a division ring, then every nonzero morphism of E_M has an inverse. By Proposition 2.1(1), $U(E_M) = 1_M + J(E_M)$. Hence $1_M + J(E_M) \in E_M/J(E_M)$ has only an element which has an inverse. By Proposition 2.1(2), $U(E_M/J(E_M)) = \{1_M\}$, as desired.

(3) Let $\alpha + J(E_M)$ be a nilpotent element in $E_M/J(E_M)$. We show that $\alpha \in J(E_M)$. Since $\alpha + J(E_M)$ is nilpotent, there exits $n \in \mathbb{N}$ such that $\alpha^n + J(E_M) = J(E_M)$. Then

$$1_M + J(E_M) = [(\alpha^n) + J(E_M)] + (1_M + J(E_M)) = (\alpha^n + 1_M) + J(E_M) = (\alpha + 1_M)((-1)^{n-1}\alpha^{n-1} + \dots + (-1)^0 1_M) + J(E_M) = [(\alpha + 1_M) + J(E_M)][(\alpha^{n-1} + \dots + 1_M) + J(E_M)].$$

So $(\alpha + 1_M) + J(E_M) \in U(E_M/J(E_M))$, which is 1_M , by Proposition 2.1(2). Then there exists $j \in J(E_M)$ such that $(\alpha + 1_M) + j = 1_M$, that is $\alpha = -j \in J(E_M)$.

By (1), M/Rad(M) = M/M = 0 so M/Rad(M) has no nonzero nilpotent elements, hence it is reduced and so it is abelian.

(4) Let $\alpha\beta \in J(E_M)$. Then $\alpha\beta + J(E_M) = J(E_M)$. Multiplying this equation by $\beta + J(E_M)$ on the left and by $\alpha + J(E_M)$ on the right, we get

$$\beta\alpha\beta\alpha + J(E_M) = (\beta\alpha)^2 + J(E_M) = J(E_M).$$

By (3), $E_M/J(E_M)$ is reduced and thus $\beta \alpha + J(E_M) = J(E_M)$. Hence $\beta \alpha \in J(E_M)$. Now, the rest follows from (3).

(5) Let $I \subseteq J(E_M)$. We show $J(E_M)/I = J(E_M/I)$. Clearly, $J(E_M)/I \subseteq J(E_M/I)$. For the converse, let $\alpha + I \in J(E_M/I)$. Then $(1_M - \alpha) + I$ is an element of $U(E_M)$, so $[(1_M - \alpha) + I](\beta + I) = [(1_M - \alpha)\beta] + I = 1_M + I$.

Then $1_M - [(1_M - \alpha)\beta] \subseteq I \subseteq J(E_M)$, which implies that $(1_M - \alpha)\beta$ is an element of $U(E_M)$, that is $\alpha \in J(E_M)$. Hence $\alpha + I \in J(E_M) + I$. By the proof of Proposition 2.1(2),

$$\frac{E_M/I}{J(E_M/I)} = \frac{E_M/I}{J(E_M)/I} = E_M/J(E_M),$$

which implies

$$U(\frac{E_M/I}{J(E_M/I)}) = U(E_M/J(E_M)).$$

(6) We note that $E_M/J(E_M)$ is Dedekind finite, since it is reduced. Let $\alpha\beta = 1_M$, for $\alpha, \beta \in E_M$. Then $\alpha\beta + J(E_M) = 1_M + J(E_M)$. Since $E_M/J(E_M)$ is Dedekind finite, we obtain $\beta\alpha + J(E_M) = 1_M + J(E_M)$, that is $\beta\alpha$ is invertible. Clearly, $\beta\alpha$ is an idempotent, so $\beta\alpha = 1_M$.

(7) Recall that

$$U(\prod_{i\in I} E_{M_i}) = \Big\{ \prod_{i\in I} \alpha_i : \prod_{i\in I} M_i \to \prod_{i\in I} M_i | \prod_{i\in I} \alpha_i \text{ is an element of } U(E_{M_i}) \Big\},$$

and

$$\prod_{i \in I} (U(E_{M_i})) = \left\{ \prod_{i \in I} \alpha_i : \prod_{i \in I} M_i \to \prod_{i \in I} M_i | \\ \forall i \in I, \ \alpha_i \quad \text{is an element of } U(E_{M_i}) \right\}$$

Now, it is easy to see that $U(\prod_{i \in I} E_{M_i}) = \prod_{i \in I} (U(E_{M_i}))$. Similarly, we have $J(\prod_{i \in I} E_{M_i}) = \prod_{i \in I} J(E_{M_i})$.

COROLLARY 2.4 ([6, Proposition 1.3]). Let R be a UJ-ring. Then:

- (1) $2 \in J(R);$
- (2) if R is a division ring, then $R = \mathbb{F}_2$;
- (3) R/J(R) is reduced and hence abelian;
- (4) if $x, y \in R$ are such that $xy \in J(R)$, then $yx \in J(R)$ and $xRy, yRx \subseteq J(R)$;
- (5) if I ⊆ J(R) is an ideal of R, then R is a UJ-ring if and only if R/I is a UJ-ring;
- (6) R is Dedekind finite;
- (7) the ring $\prod_{i \in I} R_i$ is UJ if and only each R_i is a UJ-ring, $i \in I$.

Recall that the ring R is said to be semilocal, if R/J(R) is semisimple artinian.

PROPOSITION 2.5. A semilocal ring E_M is UJ if and only if $E_M/J(E_M) \cong \mathbb{F}_2 \times \ldots \times \mathbb{F}_2$.

Proof. Since $E_M/J(E_M)$ is semisimple, by the definition, and reduced, by Proposition 2.3(3), we obtain that $E_M/J(E_M)$ is a finite direct product of a division ring. Proposition 2.3(2) completes the proof.

COROLLARY 2.6 ([6, Proposition 1.4]). A semilocal ring R is UJ if and only if $R/J(R) \cong \mathbb{F}_2 \times \ldots \times \mathbb{F}_2$.

For a left module M, let M[x] be the set of all formal polynomials in indeterminate x with coefficients from M. Then M[x] becomes a left R[x]-module under the usual addition and multiplication of polynomials, where R[x] denotes the polynomial ring in the set x of commuting indeterminates.

Let

$$N(E_M) = \{ \alpha \in E_M : \alpha^n = 0, \text{ for some } n \in \mathbb{N} \}.$$

LEMMA 2.7. If 1_M is the only element of $U(E_M)$, then $U(E_M)[x] = \{1_M\}$.

Proof. Since a unit in M[x] depends only on finitely many indeterminates, we may assume that x is a finite set.

By the assumption, $U(E_M)[x] = \{1_M\}$, so E_M does not contain nontrivial nilpotent elements, because $1_M + N(E_M) \subseteq U(E_M)$, i.e. it is a reduced ring. But $U(E_M)[x] = U(E_M)$, so we are done.

COROLLARY 2.8 ([6, Lemma 2.3]). Let R be a ring with trivial units. Then $U(R[x]) = \{1\}.$

3. SOME RING EXTENSIONS

The left Peirce decompositions. We consider the sets eR and (1-e)R, where $e^2 = e \in R$.

PROPOSITION 3.1. Let M be an abelian module and $e^2 = e \in E_M$. Then the following are equivalent.

(1) M is a UJ-module.

(2) eM and (1-e)M are UJ-modules.

Proof. Since $e^2 = e \in E_M$, we have $M = eM \oplus (1 - e)M$. So, we have,

$$E_M = \operatorname{Hom}_R(eM \oplus (1-e)M, eM \oplus (1-e)M) = \operatorname{Hom}_R(eM, eM) \oplus \operatorname{Hom}_R((1-e)M, (1-e)M) \oplus \operatorname{Hom}_R(eM, (1-e)M) \oplus \operatorname{Hom}_R((1-e)M, eM) = E_{eM} \oplus E_{(1-e)M}.$$

Hence we obtain

$$U(E_M) = U(E_{eM}) \oplus U(E_{(1-e)M})$$

and

$$J(E_M) = J(E_{eM}) \oplus J(E_{(1-e)M}).$$

COROLLARY 3.2. Let R be an abelian ring and $e^2 = e \in R$. Then the following are equivalent.

- (1) R is a UJ-ring.
- (2) eR and (1-e)R are UJ-rings.

The trivial extension and the (trivial) Morita context. Let R be a ring and M a bimodule over R. The trivial extension of R and M is

 $T(R,M) = \{(r,m) : r \in R \text{ and } m \in M\}$

with the addition defined componentwise and the multiplication defined by

$$(r,m)(s,n) = (rs, rn + ms).$$

The trivial extension T(R, M) is isomorphic to the subring $\begin{cases} \begin{pmatrix} r & m \\ 0 & r \end{pmatrix} : r \in R \text{ and } m \in M \end{cases}$ of the formal 2×2 matrix ring $\begin{pmatrix} R & M \\ 0 & R \end{pmatrix}$ and also $T(R, R) \cong R[x]/(x^2)$. We also note that the set of units of the trivial extension T(R, M) is

$$U(T(R,M)) = T(U(R),M),$$

by [1, Proposition 4.9 (2)], and

$$J(T(R,M)) = T(J(R),M),$$

by [1, Corollary 4.8 (2)].

A Morita context is a 4-tuple $\begin{pmatrix} A & M \\ N & B \end{pmatrix}$, where A and B are rings, ${}_{A}M_{B}$ and ${}_{B}N_{A}$ are bimodules and there exist context products $M \times N \to A$ and $N \times M \to B$, written multiplicatively as (w, z) = wz and (z, w) = zw, such that $\begin{pmatrix} A & M \\ N & B \end{pmatrix}$ is an associative ring with the obvious matrix operations.

A Morita context $\begin{pmatrix} A & M \\ N & B \end{pmatrix}$ is called trivial, if the context products are trivial, i.e. MN = 0 and NM = 0 (see [7, p. 1993]). We have

$$\begin{pmatrix} A & M \\ N & B \end{pmatrix} \cong T(A \times B, M \oplus N),$$

where $\begin{pmatrix} A & M \\ N & B \end{pmatrix}$ is a trivial Morita context, by [5].

THEOREM 3.3. If the trivial extension T := T(R, M) is a UJ-ring, then R is a UJ-ring and M is a UJ-module.

Proof. Let
$$r \in R$$
 and $u, v \in U(R)$. Then

$$\begin{pmatrix} r & 0 \\ 0 & r \end{pmatrix} \begin{pmatrix} u & 0 \\ 0 & u \end{pmatrix} - \begin{pmatrix} v & 0 \\ 0 & v \end{pmatrix} \begin{pmatrix} r & 0 \\ 0 & r \end{pmatrix} \in J(T),$$
where $\begin{pmatrix} r & 0 \\ 0 & r \end{pmatrix} \in T$ and $\begin{pmatrix} u & 0 \\ 0 & u \end{pmatrix}, \begin{pmatrix} v & 0 \\ 0 & v \end{pmatrix} \in U(T)$. Hence
 $\begin{pmatrix} ru & 0 \\ 0 & ru \end{pmatrix} - \begin{pmatrix} vr & 0 \\ 0 & vr \end{pmatrix} = \begin{pmatrix} ru - vr & 0 \\ 0 & ru - vr \end{pmatrix} \in J(T)$
which implies m , and c $U(R)$ for $n \in R$ and u $v \in U(R)$

which implies $ru - vr \in J(R)$, for $r \in R$ and $u, v \in U(R)$.

Let $\alpha \in U(E_M)$. Clearly, $\varphi : T \to T$ is an element of $U(E_M)$, which is defined by $\varphi\begin{pmatrix} r & m \\ 0 & r \end{pmatrix} = \begin{pmatrix} r & \alpha(m) \\ 0 & r \end{pmatrix}$. Since *T* is an element of $\mathcal{O}(D_M)$, which is defined by $\varphi\begin{pmatrix} r & m \\ 0 & r \end{pmatrix} = \begin{pmatrix} r & \alpha(m) \\ 0 & r \end{pmatrix}$. Since *T* is an *UJ*-module, we get $U(E_T) \subseteq 1_T + J(E_T)$. Then $\varphi = 1_T + \psi$, for $\psi \in J(E_T)$. One obtains $\psi\begin{pmatrix} r & m \\ 0 & r \end{pmatrix} = \begin{pmatrix} 0 & (\alpha - 1_M)(m) \\ 0 & 0 \end{pmatrix}$, by a direct calculation. If we prove $\alpha - 1_M \in J(E_M)$, then we are done. First, note that, for an endomorphism γ : $T(R, M) \to T(R, M)$, there exist $f \in E_R$ and $g \in E_M$ such that $\gamma\begin{pmatrix} r & m \\ 0 & r \end{pmatrix} =$ $\begin{pmatrix} f(r) & g(m) \\ 0 & f(r) \end{pmatrix}$. We also have that γ is an element of $U(E_M)$ if and only if f and g are elements of $U(E_M)$. By the hypothesis, we have $\varphi - 1_T = \psi \in \langle r - m \rangle$. $J(E_T)$, that is $1_T - \psi \gamma \in U(E_T)$, for every $\gamma \in E_T$, where $\gamma(\begin{pmatrix} r & m \\ 0 & r \end{pmatrix}) =$ $\begin{pmatrix} f(r) & g(m) \\ 0 & f(r) \end{pmatrix}$. By a direct calculation,

$$1_T - \psi \gamma = \begin{pmatrix} r & 1_M(m) - (\alpha - 1_M)g(m) \\ 0 & r \end{pmatrix} \in U(E_T),$$

so $1_M - (\alpha - 1_M)g \in U(E_M)$, for every $g \in E_M$, which completes the proof. THEOREM 3.4. If R is a UJ-ring, then so is the trivial extension T(R, M).

Proof. Assume that R is a UJ-ring. Then U(T(R, M)) = T(U(R), M) and $U(R) = 1_R + J(R)$. So one can write

$$U(T(R, M)) = \begin{pmatrix} U(R) & M \\ 0 & U(R) \end{pmatrix} \\ = \begin{pmatrix} 1_R + J(R) & M \\ 0 & 1_R + J(R) \end{pmatrix} \\ = \begin{pmatrix} 1_R & 0 \\ 0 & 1_R \end{pmatrix} + \begin{pmatrix} J(R) & M \\ 0 & J(R) \end{pmatrix} \\ = 1_T + J(T(R, M)),$$

as desired.

COROLLARY 3.5. R is a UJ-ring if and only if $R[x]/(x^2)$ is a UJ-ring.

COROLLARY 3.6. The trivial Morita context $\begin{pmatrix} A & M \\ N & B \end{pmatrix}$ is a UJ-module if and only if A, M, N, B are UJ-modules.

Proof. It is easy to see that

$$\begin{pmatrix} A & M \\ N & B \end{pmatrix} \cong T(A \times B, M \oplus N) \cong \begin{pmatrix} A \times B & M \oplus N \\ 0 & A \times B \end{pmatrix}.$$

Then the rest follows from Theorems 3.3, 3.4 and Proposition 2.3 (7).

193

The Dorroh extension. Given a ring R and a ring without identity I, we will say that I is an R ring without identity if it is an (R, R)-bimodule, for which the actions of R are compatible with the multiplication in I (i.e. r(ij) = (ri)j, i(rj) = (ir)j and (ij)r = i(jr), for every $r \in R$ and $i, j \in I$). If R is a ring with identity and I is a ring without identity, then one can turn the abelian group $R \oplus I$ into a ring, by defining the multiplication by

$$(r,i).(p,j) = (rp, ip + rj + ij),$$

for $r, p \in R$ and $i, j \in I$. Such a ring is called an ideal extension (it is also called the Dorroh extension), and denoted by E(R, I) - see [9].

THEOREM 3.7. Let I be a ring without identity, finitely generated as a (left) R-module by elements that commute with all elements of R. Then R is a UJ-ring, if the Dorroh extension E(R, I) is a UJ-ring.

Proof. Let $u, v \in U(R)$ and $r \in R$. Then $(u, 0), (v, 0) \in U(E(R, I))$ and $(r, 0) \in E(R, I)$. We get $(r, 0)(u, 0) - (v, 0)(r, 0) = (ru - vr, 0) \in J(E(R, I))$, by the hypothesis. But $J(E(R, I)) = J(R) \oplus J(I)$, which implies $ru - vr \in J(R)$.

The tail ring extension $\mathcal{R}[D, C]$. For a subring C of a ring D, the set

 $\mathcal{R}[D, C] := \{ (d_1, \cdots, d_n, c, c, \cdots) : d_i \in D, c \in C, n \ge 1 \},\$

with the addition and the multiplication defined componentwise, is a ring.

THEOREM 3.8. $\mathcal{R}[D, C]$ is a UJ-ring if and only if D and C are UJ-rings.

Proof. (\Rightarrow) First, we show that D is a UJ-ring. Let $u, v \in U(D)$ and $d \in D$. Then

$$\alpha = (d, 0, 0, \cdots) \in \mathcal{R}[D, C],$$

 $\beta = (u, 1, 1, \cdots), \gamma = (v, 1, 1, \cdots) \in U(\mathcal{R}[D, C]).$

Now, $\alpha\beta - \gamma\alpha \in J(\mathcal{R}[D, C])$, by the hypothesis, that is $m := (du - vd, 0, 0, \cdots) \in J(\mathcal{R}[D, C])$. Hence, for any $t := (y_1, \cdots, y_n, x, \cdots) \in \mathcal{R}[D, C]$,

$$(1, 1, 1, \cdots) - mt = (1 - (du - vd)y_1, 1, 1, \cdots)$$

$$\in U(\mathcal{R}[D, C]) = \mathcal{R}[U(D), U(C)],$$

which implies that D is a UJ ring.

We show that C is UJ. Let $u^*, v^* \in U(C)$ and $c \in C$. We prove that $cu^* - v^*c \in J(C)$. Then

$$\alpha^* = (0, \cdots, 0, c, c \cdots) \in \mathcal{R}[D, C],$$

 $\beta^* = (1, \cdots, 1, u^*, u^* \cdots), \gamma^* = (1, \cdots, 1, v^*, v^* \cdots) \in U(\mathcal{R}[D, C]).$ Now, $\alpha^*\beta^* - \gamma^*\alpha^* \in J(\mathcal{R}[D, C])$, that is $n := (0, \cdots, 0, cu^* - v^*c, cu^* - v^*c, cu^* - v^*c, \cdots) \in J(\mathcal{R}[D, C])$. Hence, for any $t = (y_1, \cdots, y_n, x, \cdots) \in \mathcal{R}[D, C]$,

$$(1, 1, 1, \dots) - nt = (1, \dots, 1, 1 - (cu^* - v^*c)x, \dots)$$

$$\in U(\mathcal{R}[D, C]) = \mathcal{R}[U(D), U(C)],$$

which implies that C is a UJ-ring.

 (\Leftarrow) Assume D and C are UJ-rings. Let

 $\beta = (u_1, \cdots, u_n, u, u, \cdots), \gamma = (v_1, \cdots, v_n, v, v, \cdots) \in U(\mathcal{R}[D, C]),$

where $u_i, v_i, u, v \in U(R)$, for $1 \leq i \leq n$ and $\alpha = (d_1, \cdots, d_n, c, c, \cdots) \in \mathcal{R}[D, C]$. Set $x := \alpha\beta - \gamma\alpha$. Since D and C are UJ-rings and $J(\mathcal{R}[D, C]) = \mathcal{R}[J(D), J(C)]$, we obtain

$$\begin{aligned} x &= (d_1, \cdots, d_n, c, c, \cdots)(u_1, \cdots, u_n, u, u, \cdots) \\ &- (v_1, \cdots, v_n, v, v, \cdots)(d_1, \cdots, d_n, c, c, \cdots) \\ &= (d_1 u_1, \cdots, d_n u_n, cu, cu, \cdots) - (v_1 d_1, \cdots, v_n d_n, vd, vd, \cdots) \\ &= (d_1 u_1 - v_1 d_1, \cdots, d_n u_n - v_n d_n, cu - vd, cu - vd, \cdots). \end{aligned}$$

Now, $d_i u_i - v_i d_i \in J(D)$ and $du - vd \in J(C)$ imply $m := \alpha\beta - \gamma\alpha \in \mathcal{R}[J(D), J(C)].$

COROLLARY 3.9. $\mathcal{R}[D, D]$ is a UJ-ring if and only if D is a UJ-ring.

4. CLEAN MODULES

Recall that an element $r \in R$ is clean (*J*-clean) provided there exist an idempotent $e \in R$ and an element $t \in U(R)$ ($t \in J(R)$) such that r = e + t. A ring R is clean (*J*-clean), if every element of R has such a clean (*J*-clean) decomposition [10] ([3]). Clearly, every *J*-clean ring is clean.

We say that a module M is J-clean, if the endomorphism ring of M is a J-clean ring.

UU-rings are defined by Călugăreanu [2] as U(R) = 1 + N(R) (i.e. rings with unipotent units). It is clear that, if R is a UJ-ring with nil Jacobson radical, then R is a UU-ring.

Recall that

$$N(E_M) = \{ \alpha \in E_M : \alpha^n = 0, \text{ for some } n \in \mathbb{N} \}.$$

We call M a UU-module, if E_M is UU-ring, that is $U(E_M) = 1_M + N(E_M)$.

COROLLARY 4.1. A module M is UJ with $J(E_M)$ nil iff M is a UU-module and $N(E_M)$ is an ideal of E_M .

Let Id(R) be the set of all idempotent elements of R.

PROPOSITION 4.2. The following are equivalent for a module M.

- (1) M is a UJ-module.
- (2) All clean elements of E_M are J-clean.

Proof. (1) \Rightarrow (2) Assume $\alpha \in E_M$ is clean. Then $\alpha = e+u$, for $e^2 = e \in E_M$ and $u \in U(E_M)$. By the hypothesis, $u = 1_M + j$, where $j \in J(E_M)$. Hence

$$\alpha = e + 1_M + j = (1_M - e) + e + e + j,$$

10

but $e + e \in J(E_M)$, by [6, Proposition 1.3 (1)]. Hence $e + e + j \in J(E_M)$ and $(1_M - e) \in Id(E_M)$, as desired.

 $(2) \Rightarrow (1)$ Clearly $1_M + J(E_M) \subseteq U(E_M)$. Let $u \in U(E_M)$. Then u is a clean element, so u = e + j, for $e^2 = \text{and } j \in J(E_M)$. Since $1_M = u^{-1}e + u^{-1}j$, we obtain $u^{-1}e = 1_M - u^{-1}j$. Hence $u^{-1}e$ is an element of $U(E_M)$, which implies e = 1.

COROLLARY 4.3 ([6, Proposition 3.1]). The following conditions are equivalent for a ring R.

- (1) R is a UJ-ring,
- (2) All clean elements of R are J-clean.

THEOREM 4.4. The following conditions are equivalent for a module M.

- (1) M is a clean UJ-module.
- (2) $E_M/J(E_M)$ is a Boolean ring and idempotents lift modulo $J(E_M)$.
- (3) M is a J-clean UJ-module.
- (4) M is a J-clean module.

Proof. (1) \Rightarrow (2) Since $E_M/J(E_M)$ is clean, every element $\alpha + J(E_M) \in E_M/J(E_M)$ is of the form

$$\alpha + J(E_M) = (e + J(E_M)) + (1_M + J(E_M)) = (e + 1) + J(E_M).$$

Hence

$$\alpha^{2} + J(E_{M}) = [(e + J(E_{M})) + (1_{M} + J(E_{M}))][(e + J(E_{M})) + (1_{M} + J(E_{M}))]]$$

= $[(e + 1)(e + 1)] + J(E_{M})$
= $(e + e + e + 1) + J(E_{M})$
= $(e + 1) + J(E_{M}) + (e + e) + J(E_{M})$
= $(e + 1) + J(E_{M}),$

so $\alpha + J(E_M)$ is an idempotent element, that is $E_M/J(E_M)$ is a Boolean ring. The rest follows from the definition of clean rings.

 $(2) \Rightarrow (3)$ Let $\alpha \in E_M$. Then $\alpha + J(E_M) \in E_M/J(E_M)$ is an idempotent. By hypothesis, there exists an idempotent $e \in E_M$ such that $\alpha - e \in J(E_M)$. Then $\alpha = e + j$, for $j \in J(E_M)$, i.e. α is a *J*-clean element. This shows that M is a *J*-clean module. If $u \in U(E_M)$, then $u + J(E_M) \in U(E_M/J(E_M))$ in a Boolean ring $E_M/J(E_M)$. Then $u - 1 \in J(E_M)$, that is $u \in 1_M + J(E_M)$. (3) \Rightarrow (4) This is clear.

 $(4) \Rightarrow (1)$ This follows from Proposition 4.2.

COROLLARY 4.5 ([6, Proposition 3.2]). The following conditions are equivalent for a ring R.

- (1) R is a clean UJ-ring.
- (2) R/J(R) is a Boolean ring and idempotents lift modulo J(R).
- (3) R is a J-clean UJ-ring.
- (4) R is a J-clean ring.

Recall that idempotents e and f are said to be conjugate in R, if there exists $u \in U(R)$ such that $e = ufu^{-1}$. Conjugate (nil) clean rings are defined as (nil) clean rings such that idempotents that appear in the decompositions are unique up to conjugation, i.e., if a = e + s = f + t are such decompositions, then the idempotents e, f are conjugate in R (see [8]). We call M a conjugate (nil) clean module, if E_M is a conjugate (nil) clean ring.

THEOREM 4.6. The following conditions are equivalent for a module M.

- (1) M is a clean UJ-module with $J(E_M)$ nil.
- (2) $E_M/J(E_M)$ is a Boolean ring and $J(E_M)$ is nil.
- (3) M is a nil clean UJ-module.
- (4) M is a conjugate nil clean UJ-module.
- (5) M is a conjugate nil clean module and $N(E_M)$ is an ideal of E_M .
- (6) $E_M/J(E_M)$ is a Boolean ring and M is a UU-module.

Proof. In view of [4, Corollary 3.17], the ring E_M is nil clean if and only if $E_M/J(E_M)$ is nil clean and $J(E_M)$ is nil. Also, if M is a UJ-module, then M is nil clean if and only if M is J-clean and $J(E_M)$ is a nil ideal of E_M . Now, (1) \Leftrightarrow (3) holds, by Theorem 4.4 and the fact that idempotents lift modulo nil ideals.

 $(4) \Rightarrow (3)$ Trivial.

 $(2) \Rightarrow (4)$ By (2), M is a UJ-module. Since Boolean rings are conjugate nil clean, the rest follows from [8, Corollary 2.16].

(4) \Leftrightarrow (5) If M is nil clean, then $J(E_M)$ is nil and hence the statement follows by Remark 4.1.

 $(2) \Leftrightarrow (6)$ This is clear.

COROLLARY 4.7 ([6, Theorem 3.3]). The following conditions are equivalent for a ring R.

- (1) R is a clean UJ-ring with nil Jacobson radical J(R).
- (2) R/J(R) is a Boolean ring and J(R) is nil.
- (3) R is a nil clean UJ-ring.
- (4) R is a conjugate nil clean UJ-ring.
- (5) R is a conjugate nil clean ring and N(R) is an ideal of R.
- (6) R/J(R) is a Boolean ring and R is a UU-ring.

REFERENCES

- D.D. Anderson, D. Bennis, B. Fahid and A. Shaiea, On n-trivial extensions of rings, Rocky Mount. J. Math., 48 (2017), 2439-2511.
- [2] G. Călugăreanu, UU rings, Carpathian J. Math., **31** (2012), 157–163.
- [3] H. Chen, Strongly J clean rings, Comm. Algebra, **38** (2010), 3790–3804.
- [4] A.J. Diesl, Nil clean rings, J. Algebra, 383 (2013), 197–211.
- [5] M.T. Koşan, The p.p. property of trivial extensions, J. Algebra Appl., 14 (2015), Article 1550124, 1–5.
- [6] M.T. Koşan, A. Leroy and J. Matczuk, UJ rings, Comm. Algebra., 46 (2018), 2297– 2303.

- [7] M. Marianne, Rings of quotients of generalized matrix rings, Comm. Algebra, 15 (1987), 1991–2015.
- [8] J. Matczuk, Conjugate (nil) clean rings and Kothe's problem, J. Algebra Appl., 16 (2017), Article 1750073.
- [9] Z. Mesyan, The ideals of an ideal extension, J. Algebra Appl., 3 (2010), 407-431.
- [10] W.K. Nicholson, Strongly clean rings and Fitting's lemma, Comm. Algebra, 27 (1999), 3583–3592.
- [11] W.K. Nicholson and Y. Zhou, Semiregular morphisms, Comm. Algebra, 34 (2006), 219– 233.
- [12] Y. Zhou, On (semi)regularity and the total of the rings and modules, J. Algebra, 322 (2009), 562–578.

Received March 26, 2018 Accepted May 23, 2018 Gebze Technical University Department of Mathematics Gebze, Turkey E-mail: srpsahinkaya@gmail.com E-mail: tyildirim@gtu.edu.tr