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UJ-ENDOMORPHISM RINGS

SERAP SAHINKAYA and TULAY YILDIRIM

Abstract. In this paper, we introduce and study U J-modules, that is modules
M for which their endomorphism rings Es are right UJ. We show, in particular,
that: (1) if M is a left UJ-module over a ring R, then M is Dedekind finite;
(2) M is a UJ-module iff all clean elements of Eys are J-clean; (3) M is a clean
UJ-module iff Ey/J(En) is a Boolean ring and the idempotents lift modulo
J(En) (equivalently, M is a J-clean module); and (4) M is a clean UJ-module
such that J(Ea) is nil iff M is a conjugate nil clean UJ-module. We also
give characterizations of the trivial extension and the (trivial) Morita context,
R[z]/(x*) and the tail rings which are right U.J.
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1. INTRODUCTION

Throughout the paper all rings considered are associative and unital. For
a ring R, the Jacobson radical, the group of units and the set of all nilpotent
elements of R are denoted by J(R), U(R) and N(R), respectively. For a
module M, Rad(M) and 1, represent the radical of a module and identity
morphism of M, respectively. Throughout this article the homomorphisms of
the modules are written on the left of their arguments.

One always has 1 + J(R) C U(R). Recently, Kosan, Leroy and Matczuk
[6] showed that the problem of lifting the UJ property from a ring R to the
polynomial ring R[x] is equivalent to the Kéthe problem for Fy-algebras.

We recall some notations used in [11] and [12]. Let Eps := Endg(M). Then,
by [11], we have

J(EM) = {Oé eEby: 1y —afe U(EM),Vﬂ € EM}
= {a eFby 1y —pBace U(EM),Vﬂ S EM}
= {a € By fa e J(EM),VB S EM}
= {a eFby:afe J(EM),VB € EM}
Clearly, J(ERr) = J(End(R)) = J(R). From the definition of J(Fys), one
always has 1y + J(Ey) € U(E)s). Then it makes sense to study the equality
1y + J(Ey) = U(Ey), for a left R-module M. A module M with this
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property will be called a UJ module. The aim of the paper is: to obtain some
(basic) properties of UJ-modules and to investigate the behavior of the UJ
property under various ring extensions.

In section 2, we give basic properties and construct some examples of U J-
modules. For a left R-module M, we show that Mpg,, has no maximal submod-
ule and that Eys/J(Ej) is reduced (i.e. it has no nonzero nilpotent elements)
and hence abelian (i.e. every idempotent is central).

We begin section 3 by showing that, for an abelian ring R and e = ¢ € R,
Ris a UJ-ring iff eR and (1—e) R are UJ-rings. Here, we recall that R is a UJ-
ring iff eRe and (1 —e)R(1 —e) are UJ-rings and eR(1 —e), (1 —e)Re C J(R)
(see [6, Proposition 2.7]). In Theorems 3.3, 3.4 and Corollary 3.5, we show
that the behavior of the UJ property is very nice with respect to the trivial
extension and ring R[x]/(x?). Corollary 3.6 states, in particular, that the
trivial Morita context <]<17 AB4 is a UJ-module if and only if A,M,N,B
are UJ-modules. In Theorem 3.7, the UJ-property of the Dorroh extension
is investigated. The section ends with the tail ring extension R[D,C]. We
prove, in Theorem 3.8, that, for a subring C of a ring D, R[D, C] is a UJ-ring
if and only if D and C' are U J-rings.

For the last section, we establish some results between U J-modules, J-clean
and (conjugate) nil clean modules. We prove in Theorem 4.4 that M is a
clean UJ-module iff Eyr/J(E)s) is a Boolean ring and idempotents lift modulo
J(Ey) iff M is a J-clean UJ-module iff M is a J-clean module. It is also shown
that a module M is a clean UJ-module with J(Ej) nil iff Ey/J(Ep) is a
Boolean ring and M is a UU-module (i.e. Ejps is a UU-ring) iff M is a nil
clean UJ-module iff M is a conjugate nil clean UJ-module (Theorem 4.6).

2. UJ-MODULES

Let M be a right R-module and C(Ey) = {a € Ey : 1y —a € U(EM)}-
It is easy to see that (C(FEjs),0) is a group which is isomorphic to U(E), by
a € C(Ey)—1—a € U(E)y). Notice that M is a UJ-module if and only if
C(E)y) is an ideal of Eyy.

We begin with another characterization of the UJ-modules.

ProprosITION 2.1. The following conditions are equivalent, for a left R-
module M :
(1) U(Eyn) =1y + J(Ey), ice. M is a UJ-module;
(2) U(Eni/J(Far) = {Lnr};
(3) C(Eyy) is an ideal of Epnp (then C(Eyn) = J(En));
(4) af —ya € J(Eym), for any o € J(En) and B,y € C(En);
(5) au—va € J(Ey), for any u,v € U(Ey) and o € Eyy;
(6) U(Ey) +U(EyM) € J(Ey) (and hence U(Ey) + U(En) = J(Ewr)).-
Proof. (1) = (2) By [6, Proposition 1.3.(5)], En/J(Ewm) is a UJ-ring.
Then, by [6, Lemma 1.1 (2)], we get U(Ex/J(En)) = 1a, as desired.
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(1) = (3) Let @ € C(Ep). Then 1y — o € U(E)) and so there exists
u € U(F)) such that 1 — a = u, which gives « = 1y —u € 1y — U(Ep).
Therefore

C(Em) Cly —U(EM) =1m — (Im + J(Enm)) C J(En)-

By the definition, J(Ey) C C(Enr). Hence J(En) = C(En).

(2) = (1) Clearly, 15 + J(En) € U(En). For the converse, first we prove

the following claim:
Claim: U(Ey)/J(Em) = U(Em/J(Ewr)): Let o+ J(En) € U(En/J(Enr)).
By the hypothesis, U(Ex/J(En)) = {1m} and so o + J(Epr) = 1p, which
gives 1py — o € J(E)). By the definition of J(E)s), one obtains a € U(E}y)
so a+ J(Ey) € U(En)/J(Ey). The reverse is clear, since « is an element of
U(Ew).

Now we are ready to prove the U(Ey) C 1y + J(En). Let a € U(Ewy).

Then

a+ J(Ey) € U(EM)/J(Ex) = U(Erm/J(Ey)) = {1ar}-
Therefore o« + j = 1y, for all j € J(Ep), which implies @ = 13 — j €
Iy + J(En).

(3) = (4) Since C(E)y) is an ideal of Ejs, we get aff — ya € C(Eyy), for
B,v € C(En) and o € J(Ep). By (3), C(En) = J(En), so af—ya € J(Ey).

(4) = (5) If we set §:= 1p +uw and v := 1y + v, for u,v € U(E)y), then
(5) is an immediate consequence of (4).

(5) = (6) If we take o = 17 in (5), then we get u — v € J(E)yr), for any
u,v € U(Eyr), which gives U(Ey )+U(Ey) € J(En). Now, every o € J(Eyy)
can be written as a sum of two invertible morphisms as a = 17 + (a — 1) €
U(Ey) + U(Ey), so we are done.

(6) = (1) Clearly, 1a + J(En) € U(En). By (6), U(Em) —1m € J(Enm),
i.e. U(Ey) C 1p + J(E), which completes the proof. O

As an immediate application of Proposition 2.1, we obtain the following
corollary.

COROLLARY 2.2 ([6, Lemma 1.1]). For a ring R, the following conditions

are equivalent:
(1) U(R) =1+ J(R), i.e. R is a UJ-ring;
2) U(R/J(R)) = {1};

3) C(R) is an ideal of R (then C(R) = J(R));
4) rb—cr € J(R), for anyr € R and b,c € C(R);
5)
6

/‘\/‘\/‘\/‘\

ru—or € J(R), for any u,v € U(R) and r € R,
(6) U(R)+U(R) C J(R) (and hence U(R) + U(R) = J(R)).

The next two observations contain several properties of the U.J-modules
and rings.

PROPOSITION 2.3. Let M be a left UJ-module over R. Then:

(1) Mg,, has no a mazimal submodule;



4 U J-endomorphism rings 189

(2) if Ep is a division ring, then Ey = Fy;

(3) En/J(En) is reduced and hence abelian;

(4) if o, B € Epp and if aff € J(Eyy), then fa € J(En), aEy S, BEya C

(5) if I C J(Ep) is an ideal of Eyy, then M is a UJ-module if and only
if Eaxr/1 is a UJ-ring,

(6) M is Dedekind finite (i.e. Ezr is a Dedekind finite ring; if a,b € Ejpy,
ab=1=ba =1).

(7) the module [];c; M; is UJ if and only if each M; is a UJ-module, for
allv € 1.

Proof. (1) By Proposition 2.1 (6), we have U(Ey) + U(Eym) = J(Eun).
Since M is a right Ejr module and Mg, J(Eyn) € Rad(ME,,), we get

Mg, U(Em) + Mg, U(Ey) = Mg, J(Eyn) € Rad(ME,, ).
One gets the following, for 15, € U(E)y):
MEM - MEM + MEM C Rad(MEM) - MEM'

This gives Rad(Mg,,) = Mg,,, that is Mg,, has no maximal submodule.

(2) If Ej is a division ring, then every nonzero morphism of Fj; has an
inverse. By Proposition 2.1(1), U(Ey) = 1y + J(En). Hence 13+ J(Eyy) €
Eyr/J(E) has only an element which has an inverse. By Proposition 2.1(2),
U(Ex/J(Ewm)) = {1}, as desired.

(3) Let o + J(Ejr) be a nilpotent element in Eys/J(Eys). We show that
a € J(Ep). Since a + J(Ey) is nilpotent, there exits n € N such that
o™+ J(En) = J(En). Then

v+ J(Epm) = ;M‘FJ(EM))

[
(

= (a+1y)((-1)" a4 oo+ (=1)%10) + J(Em)
[

So (a+ 1p7) + J(Enr) € U(En/J(Enr)), which is 1,7, by Proposition 2.1(2).
Then there exists j € J(E)ys) such that (a4 1p7) + 5 = 1, that isa = —j €
J(Eny).

By (1), M/Rad(M) = M/M = 0 so M/Rad(M) has no nonzero nilpotent
elements, hence it is reduced and so it is abelian.

(4) Let af € J(En). Then af + J(Ey) = J(Ep). Multiplying this
equation by 8+ J(Ejs) on the left and by a4+ J(E}s) on the right, we get

BaBa+ J(Eu) = (Ba)® + J(Eum) = J(Eum).

By (3), Ean/J(Eny) is reduced and thus Sa+ J(Ey) = J(Ey). Hence fa €
J(En). Now, the rest follows from (3).

(5) Let I C J(Ep). We show J(En)/I = J(Ewm/I). Clearly, J(En)/I C
J(En/I). For the converse, let « + 1 € J(Ep/I). Then (1 — o) + 1 is an
element of U(Ep), so [(Iyy — ) + [(B+1) = [y — )]+ 1 =1y + 1 .



190 S. Sahinkaya and T. Yildirim 5

Then 1y — [(1a — «@)B] € I C J(E)), which implies that (1p — )8 is an
element of U(E)y), that is o € J(Ep). Hence o+ 1 € J(Ey) + I. By the
proof of Proposition 2.1(2),
Ey/I  Eyn/I
J(Em/T)  J(Em)/T

Eu/T
T (Bar /U) U(Em/J(En))-

(6) We note that Ejr/J(E)) is Dedekind finite, since it is reduced. Let
af = 1y, for a, 8 € Ep. Then Oéﬁ—i-J(EM) = 1M—|-J(EM). Since EM/J(EM)
is Dedekind finite, we obtain Sa + J(Ey) = 1m + J(Eu), that is fa is
invertible. Clearly, S« is an idempotent, so Sa = 1yy.

(7) Recall that

U(HEMi) = {Hai : HMl — HM’L‘ Hai is an element of U(EMZ.)},

= En/J(Enm),

which implies

U5

el i€l el i€l i€l
and
[T Ewm) = { [T : T Mi — [T
i€l i€l i€l i€l

Vi€ I, a; 1is an element of U(EMZ.)}.

Now, it is easy to see that U([[;c; Ea;) = [Lic;(U(Eny,)). Similarly, we have
J(Hie] En,) = Hie[ J(En,)- O
COROLLARY 2.4 ([6, Proposition 1.3]). Let R be a UJ-ring. Then:

(1) 2 € J(R);

(2) if R is a division ring, then R = Fy;

(3) R/J(R) is reduced and hence abelian;

(4) if z,y € R are such that xy € J(R), then yr € J(R) and vRy,yRz C
J(R);

(5) if I C J(R) is an ideal of R, then R is a UJ-ring if and only if R/I
s a UJ-ring;

(6) R is Dedekind finite;

(7) the ring [[,c; Ri is UJ if and only each R; is a UJ-ring, i € I.

Recall that the ring R is said to be semilocal, if R/J(R) is semisimple

artinian.

PROPOSITION 2.5. A semilocal ring Epy is UJ if and only if Epnr/J(Ep) =
FQ X ... X FQ.

Proof. Since Eyr/J(E)s) is semisimple, by the definition, and reduced, by
Proposition 2.3(3), we obtain that Eys/J(Ejr) is a finite direct product of a
division ring. Proposition 2.3(2) completes the proof. O
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COROLLARY 2.6 ([6, Proposition 1.4]). A semilocal ring R is UJ if and only
ZfR/J(R) = ]FQ X ... X ]FQ.

For a left module M, let M[x] be the set of all formal polynomials in inde-
terminate x with coefficients from M. Then M|z] becomes a left R[x]-module
under the usual addition and multiplication of polynomials, where R[z] de-
notes the polynomial ring in the set  of commuting indeterminates.

Let

N(Ey)={a € Ey:a" =0, for some n € N}.

LEMMA 2.7. If 1ps is the only element of U(En), then U(En)[z] = {1}

Proof. Since a unit in M[x] depends only on finitely many indeterminates,
we may assume that z is a finite set.

By the assumption, U(Eys)[z] = {1ap}, so Epr does not contain nontrivial
nilpotent elements, because 1y + N(Ey) C U(E)y), i.e. it is a reduced ring.
But U(Ey)[z] = U(En), so we are done. O

COROLLARY 2.8 ([6, Lemma 2.3]). Let R be a ring with trivial units. Then
U(R[z]) = {1}.

3. SOME RING EXTENSIONS

The left Peirce decompositions. We consider the sets eR and (1 —e)R,
where 2 = e € R.

PROPOSITION 3.1. Let M be an abelian module and €*> = e € Ey;. Then
the following are equivalent.

(1) M is a UJ-module.
(2) eM and (1 —e)M are UJ-modules.

Proof. Since e = e € Eyy, we have M = eM @ (1 — e)M. So, we have,
Ey =Hompg(eM @ (1 —e)M,eM @ (1 —e)M)
= Hompg(eM,eM) @ Homp((1 — e)M, (1 —e)M)
@®Homp(eM, (1 —e)M) ® Homp((1 — e)M,eM)
= FEert © E(1—e) M-
Hence we obtain
U(Ey) =U(Eem) ® U(E(q—e)nmr)
and
J(Ey) = J(Eenr) © J(E(—eym)-
]

COROLLARY 3.2. Let R be an abelian ring and > = e € R. Then the
following are equivalent.
(1) R is a UJ-ring.
(2) eR and (1 — e)R are UJ-rings.



192 S. Sahinkaya and T. Yildirim 7

The trivial extension and the (trivial) Morita context. Let R be a
ring and M a bimodule over R. The trivial extension of R and M is

T(R,M)={(r,m):r€ Rand m € M}
with the addition defined componentwise and the multiplication defined by

(r,m)(s,n) = (rs,rn + ms).
The trivial extension T'(R, M) is isomorphic to the subring { <6 T) S

R and m € M} of the formal 2 x 2 matrix ring <§ Aé) and also T'(R, R) =
R[z]/(z?). We also note that the set of units of the trivial extension T(R, M)
is

U(T(R,M)) =T(U(R), M),
by [1, Proposition 4.9 (2)], and

J(T(R,M)) =T(J(R), M),
by [1, Corollary 4.8 (2)].

A Morita context is a 4-tuple , where A and B are rings, 4Mp

M
N B)
and pN4 are bimodules and there exist context products M x N — A and
N x M — B, written multiplicatively as (w,z) = wz and (z,w) = zw, such

that ( N B) is an associative ring with the obvious matrix operations.

A Morita context A M> is called trivial, if the context products are

N B
trivial, i.e. MN =0 and NM = 0 (see [7, p. 1993]). We have
A M\
<N B> >~ T(A x B, M & N),

where (]/\17 ]\B/j> is a trivial Morita context, by [5].

THEOREM 3.3. If the trivial extension T :=T(R, M) is a UJ-ring, then R
is a UJ-ring and M s a UJ-module.

Proof. Let r € R and u,v € U(R). Then
r 0 u 0 v 0 r 0
(0 'r> <0 u> N <0 ’U) <0 r> € J(T),
r 0 u 0 v 0
where (0 r) € T and (O u) , (0 v> € U(T). Hence

ru 0 vr 0 ru — ur 0
(O Tu>_<0 vr):< 0 ru—vr)eJ(T)

which implies ru — vr € J(R), for r € R and u,v € U(R).
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Let a € U(E)p). Clearly, ¢ : T — T is an element of U(E)s), which
is defined by ¢( ( ) ( ) . Since T is an UJ-module, we get
n
(m

Er) C 1p + J(E p = 1T + 4, for ¢p € J(Er). One obtains
)

he
N
1y € J (Ea), then we are done First, note that, for an endomorphism -~ :

T(R,M) — T(R, M), there exist f € Er and g € E)s such that ~( (7’ m

0 r )=
(f E)T) gf(g:b))) We also have that 7 is an element of U(F),) if and only if

f and g are elements of U(FE)s). By the hypothesis, we have ¢ — 1p = ¢ €
J(Er), that is 1p — ¢y € U(Er), for every v € Er, where ( (T m )

0 r
(f(?“) g(m)
0 f(r)

) by a direct calculation. If we prove o —

). By a direct calculation,

Ly — g = (6 Lar(m) — (0;— 1M)9(m)> € U(Ey),
so lyr—(a—1p7)g € U(Ey), for every g € Eyy, which completes the proof. [
THEOREM 3.4. If R is a UJ-ring, then so is the trivial extension T(R, M).

Proof. Assume that R is a UJ-ring. Then U(T(R,M)) = T(U(R), M) and
U(R) =1r+ J(R). So one can write

vrra) = (Y J(‘é)
1p + J( ) M
= 1R + J(R)
1 0
BOEMYIED)
= 1T + J (T'(R,
as desired. O

COROLLARY 3.5. R is a UJ-ring if and only if R[z]/(z?) is a UJ-ring.

COROLLARY 3.6. The trivial Morita context (]ilf ]B\{> is a UJ-module if
and only if A, M, N, B are UJ-modules.

Proof. Tt is easy to see that

A M AxB M®N
(4 ) srianmar = (457 490,

Then the rest follows from Theorems 3.3, 3.4 and Proposition 2.3 (7). O
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The Dorroh extension. Given a ring R and a ring without identity I,
we will say that I is an R ring without identity if it is an (R, R)-bimodule,
for which the actions of R are compatible with the multiplication in I (i.e.
r(ij) = (ri)j, i(rj) = (ir)j and (ij)r = i(jr), for every r € R and i,j € I). If
R is a ring with identity and I is a ring without identity, then one can turn
the abelian group R & I into a ring, by defining the multiplication by

(r,1).(p,J) = (rp,ip +7j + ij),
for r,p € R and 7,5 € I. Such a ring is called an ideal extension (it is also
called the Dorroh extension), and denoted by E(R,I) - see [9] .

THEOREM 3.7. Let I be a ring without identity, finitely generated as a (left)
R-module by elements that commute with all elements of R. Then R is a
UJ-ring, if the Dorroh extension E(R,I) is a UJ-ring.

Proof. Let u,v € U(R) and r € R. Then (u,0),(v,0) € U(E(R,I)) and
(r,0) € E(R,I). We get (r,0)(u,0) — (v,0)(r,0) = (ru — vr,0) € J(E(R,I)),
by the hypothesis. But J(E(R,I)) = J(R) @ J(I), which implies ru — vr €
J(R). O

The tail ring extension R[D,C]. For a subring C of a ring D, the set

R[D,C] :={(d1, - ,dp,c,c,--+):d; € D,c € C,n > 1},
with the addition and the multiplication defined componentwise, is a ring.
THEOREM 3.8. R[D,C] is a UJ-ring if and only if D and C are U J-rings.

Proof. (=) First, we show that D is a UJ-ring. Let u,v € U(D) and d € D.
Then
a=(d,0,0,---) € R[D,C],
g=(u1,1,--+),y=(v,1,1,---) € UR[D,C]).
Now, af—~a € J(R[D, C]), by the hypothesis, that is m := (du—wvd, 0,0, - -)
€ J(R[D,C]). Hence, for any t := (y1,- -+ ,yn, 2, -+ ) € R[D,C],
(1,1,1,--+) =mt = (1 — (du — vd)y1,1,1,---)
€ U(R[D,C)) = R[U(D),U(C)],
which implies that D is a UJ ring.
We show that C' is UJ. Let u*,v* € U(C) and ¢ € C. We prove that
cu* —v*c € J(C). Then
at = (07 7070)0"') GR[D70]7
=1, Lu"u ),y =1, -, L, 0% 0% ) € UR[D, C).
Now, a*f* — v*a* € J(R[D,C], that is n := (0,---,0,cu* —v*c,cu* —
v*c,---) € J(R[D,C)). Hence, for any t = (y1,- - ,yn, 2, -+ ) € R[D,C],
(L,1,1,--)=nt=(1,---,1,1 — (cu™ —v™ )z, )
€ UR[D, C]) = R[U(D),U(C)],
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which implies that C' is a UJ-ring.
(<) Assume D and C are UJ-rings. Let
p= (ulv"' 7unauaua"')77 = (Ulv"' ,’Un,’U,U,"') € U(R[DaCD,

where u;,vi,u,v € U(R), for 1 < i < n and a = (dy, -+ ,dn,c,c, )
RID,C]. Set x := aff — ya. Since D and C are UJ-rings and J(R[D, C])
R[J(D), J(C)], we obtain

[l m

T = (dla"' dn,C 07...)(ul’... ,un,u,u,'--)
— (v s Un, U, U, - )(d1,~-,dn,c,c,---)
(d1u1,~- dptiy, cu,cu, -+ ) — (vidy, - -+, vpdy, vd,vd, - )
= (dyuy — v1dy, - -+ ,dnun—vndmcu—vd,cu—vd,--').

Now, dju; — vid; € J(D) and du —vd € J(C) imply m = aff — ya €
RI[J(D), J(C)]. O

COROLLARY 3.9. R[D, D] is a UJ-ring if and only if D is a UJ-ring.

4. CLEAN MODULES

Recall that an element r € R is clean (J-clean) provided there exist an
idempotent e € R and an element ¢ € U(R) (t € J(R)) such that r = e + t.
A ring R is clean (J-clean), if every element of R has such a clean (J-clean)
decomposition [10] ([3]). Clearly, every J-clean ring is clean.

We say that a module M is J-clean, if the endomorphism ring of M is a
J-clean ring.

UU-rings are defined by Calugareanu [2] as U(R) = 1+ N(R) (i.e. rings
with unipotent units). It is clear that, if R is a UJ-ring with nil Jacobson
radical, then R is a UU-ring.

Recall that

N(Epy) ={a€ Ey:a" =0, for some n € N}.
We call M a UU-module, if Ej is UU-ring, that is U(Ey) = 1y + N (Ew).

COROLLARY 4.1. A module M is UJ with J(Enr) nil iff M is a UU -module
and N(Eyr) is an ideal of Ep.

Let Id(R) be the set of all idempotent elements of R.

PRrROPOSITION 4.2. The following are equivalent for a module M.

(1) M is a UJ-module.
(2) All clean elements of Ey are J-clean.

Proof. (1) = (2) Assume a € E)y is clean. Then o = e+u, for e? = e € E)y
and u € U(FE)). By the hypothesis, u = 137 + j, where j € J(E);). Hence

a:€+1M+j:(1M—6)+€+€+j,
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but e +e € J(Er), by [6, Proposition 1.3 (1)]. Hence e + e+ j € J(E)) and
(1pr —e) € Id(Eyy), as desired.

(2) = (1) Clearly 1ps + J(En) € U(En). Let uw € U(Ep). Then uw is a
clean element, so u = e+ j, for e = and j € J(Ey;). Since 1y = ute+u~'y,
we obtain u~te = 1p; — u~!j. Hence u~le is an element of U(FE);), which
implies e = 1. O

COROLLARY 4.3 ([6, Proposition 3.1]). The following conditions are equiv-
alent for a ring R.
(1) R is a UJ-ring,

(2) All clean elements of R are J-clean.

THEOREM 4.4. The following conditions are equivalent for a module M.

(1) M is a clean UJ-module.

(2) En/J(En) is a Boolean ring and idempotents lift modulo J(Eyy).
(3) M is a J-clean UJ-module.

(4) M is a J-clean module.

Proof. (1) = (2) Since Ep/J(E)) is clean, every element o + J(Ey) €
En/J(Enr) is of the form

a+ J(Ey) = (e+J(Em)) + (In + J(Bx)) = (e + 1) + J(En).

Hence

o+ J(Ey) =[(e+J(Enm))+ (ar + J(Ex))l(e + J(Er)) + (Iar + J(Enr))]
[(e+1)(e+ 1)+ J( M)

=(ete+e+ 1)+ J(Ey)

=(e+1)+J(Eym)+ (e+e)+ J(En)

=(e+1)+ J(En),

so a+ J(E)r) is an idempotent element, that is Eyr/J(FEpr) is a Boolean ring.
The rest follows from the definition of clean rings.

(2) = (3) Let « € Epy. Then o+ J(Ey) € Ep/J(E)y) is an idempotent.
By hypothesis, there exists an idempotent e € E)y; such that a — e € J(Eyy).
Then oo = e + j, for j € J(Ep), i.e. «is a J-clean element. This shows that
M is a J-clean module. If u € U(E};), then u+ J(Ey) € U(Ey/J(Epr)) in
a Boolean ring Eyr/J(En). Then u — 1 € J(Epy), that is w € 1y + J(Ey).

(3) = (4) This is clear.

(4) = (1) This follows from Proposition 4.2. O

COROLLARY 4.5 ([6, Proposition 3.2]). The following conditions are equiv-
alent for a ring R.
(1) R is a clean UJ-ring.
(2) R/J(R) is a Boolean ring and idempotents lift modulo J(R).
(3) R is a J-clean U J-ring.
(4)

R is a J-clean ring.



12 U J-endomorphism rings 197

Recall that idempotents e and f are said to be conjugate in R, if there exists
u € U(R) such that e = ufu~!. Conjugate (nil) clean rings are defined as
(nil) clean rings such that idempotents that appear in the decompositions are
unique up to conjugation, i.e., if a = e + s = f + t are such decompositions,
then the idempotents e, f are conjugate in R (see [8]). We call M a conjugate
(nil) clean module, if Eys is a conjugate (nil) clean ring.

THEOREM 4.6. The following conditions are equivalent for a module M.

(1) M is a clean UJ-module with J(Eyr) nil.

(2) En/J(En) is a Boolean ring and J(Epy) is nil.

(3) M is a nil clean UJ-module.

(4) M is a conjugate nil clean UJ-module.

(5) M is a conjugate nil clean module and N(Eyr) is an ideal of Epy.
(6) En/J(En) is a Boolean ring and M is a UU-module.

Proof. In view of [4, Corollary 3.17], the ring E) is nil clean if and only if
Ey/J(Eyy) is nil clean and J(E)y) is nil. Also, if M is a UJ-module, then M
is nil clean if and only if M is J-clean and J(E)s) is a nil ideal of Ej;. Now,
(1) < (3) holds, by Theorem 4.4 and the fact that idempotents lift modulo
nil ideals.

(4) = (3) Trivial.

(2) = (4) By (2), M is a UJ-module. Since Boolean rings are conjugate nil
clean, the rest follows from [8, Corollary 2.16].

(4) < (5) If M is nil clean, then J(E)s) is nil and hence the statement
follows by Remark 4.1.

(2) < (6) This is clear. O

COROLLARY 4.7 ([6, Theorem 3.3]). The following conditions are equivalent

for a ring R.

(1) R is a clean UJ-ring with nil Jacobson radical J(R).

(2) R/J(R) is a Boolean ring and J(R) is nil.

(3) R is a nil clean UJ-ring.

(4) R is a conjugate nil clean UJ-ring.

(5) R is a conjugate nil clean ring and N(R) is an ideal of R.

(6) R/J(R) is a Boolean ring and R is a UU-ring.
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