UJ-ENDOMORPHISM RINGS

SERAP ŞAHINKAYA and TULAY YILDIRIM

Abstract

In this paper, we introduce and study $U J$-modules, that is modules M for which their endomorphism rings E_{M} are right $U J$. We show, in particular, that: (1) if M is a left $U J$-module over a ring R, then M is Dedekind finite; (2) M is a $U J$-module iff all clean elements of E_{M} are J-clean; (3) M is a clean $U J$-module iff $E_{M} / J\left(E_{M}\right)$ is a Boolean ring and the idempotents lift modulo $J\left(E_{M}\right)$ (equivalently, M is a J-clean module); and (4) M is a clean $U J$-module such that $J\left(E_{M}\right)$ is nil iff M is a conjugate nil clean $U J$-module. We also give characterizations of the trivial extension and the (trivial) Morita context, $R[x] /\left(x^{2}\right)$ and the tail rings which are right $U J$.

MSC 2010. 30C45.
Key words. Unit, radical, clean module and ring, conjugate nil clean module and ring, $U J$-module and ring.

1. INTRODUCTION

Throughout the paper all rings considered are associative and unital. For a ring R, the Jacobson radical, the group of units and the set of all nilpotent elements of R are denoted by $J(R), U(R)$ and $N(R)$, respectively. For a module $M, \operatorname{Rad}(M)$ and 1_{M} represent the radical of a module and identity morphism of M, respectively. Throughout this article the homomorphisms of the modules are written on the left of their arguments.

One always has $1+J(R) \subseteq U(R)$. Recently, Koşan, Leroy and Matczuk [6] showed that the problem of lifting the $U J$ property from a ring R to the polynomial ring $R[x]$ is equivalent to the Köthe problem for F_{2}-algebras.

We recall some notations used in [11] and [12]. Let $E_{M}:=\operatorname{End}_{R}(M)$. Then, by [11], we have

$$
\begin{aligned}
J\left(E_{M}\right) & =\left\{\alpha \in E_{M}: 1_{M}-\alpha \beta \in U\left(E_{M}\right), \forall \beta \in E_{M}\right\} \\
& =\left\{\alpha \in E_{M}: 1_{M}-\beta \alpha \in U\left(E_{M}\right), \forall \beta \in E_{M}\right\} \\
& =\left\{\alpha \in E_{M}: \beta \alpha \in J\left(E_{M}\right), \forall \beta \in E_{M}\right\} \\
& =\left\{\alpha \in E_{M}: \alpha \beta \in J\left(E_{M}\right), \forall \beta \in E_{M}\right\} .
\end{aligned}
$$

Clearly, $J\left(E_{R}\right)=J(\operatorname{End}(R))=J(R)$. From the definition of $J\left(E_{M}\right)$, one always has $1_{M}+J\left(E_{M}\right) \subseteq U\left(E_{M}\right)$. Then it makes sense to study the equality $1_{M}+J\left(E_{M}\right)=U\left(E_{M}\right)$, for a left R-module M. A module M with this

The authors are supported by TUBITAK (117F070).
property will be called a $U J$ module. The aim of the paper is: to obtain some (basic) properties of $U J$-modules and to investigate the behavior of the $U J$ property under various ring extensions.

In section 2, we give basic properties and construct some examples of $U J$ modules. For a left R-module M, we show that $M_{E_{M}}$ has no maximal submodule and that $E_{M} / J\left(E_{M}\right)$ is reduced (i.e. it has no nonzero nilpotent elements) and hence abelian (i.e. every idempotent is central).

We begin section 3 by showing that, for an abelian ring R and $e^{2}=e \in R$, R is a UJ-ring iff $e R$ and $(1-e) R$ are $U J$-rings. Here, we recall that R is a $U J$ ring iff $e R e$ and $(1-e) R(1-e)$ are $U J$-rings and $e R(1-e),(1-e) R e \subseteq J(R)$ (see [6, Proposition 2.7]). In Theorems 3.3, 3.4 and Corollary 3.5, we show that the behavior of the $U J$ property is very nice with respect to the trivial extension and ring $R[x] /\left(x^{2}\right)$. Corollary 3.6 states, in particular, that the trivial Morita context $\left(\begin{array}{cc}A & M \\ N & B\end{array}\right)$ is a $U J$-module if and only if A, M, N, B are $U J$-modules. In Theorem 3.7, the $U J$-property of the Dorroh extension is investigated. The section ends with the tail ring extension $\mathcal{R}[D, C]$. We prove, in Theorem 3.8, that, for a subring C of a ring $D, \mathcal{R}[D, C]$ is a $U J$-ring if and only if D and C are $U J$-rings.

For the last section, we establish some results between $U J$-modules, J-clean and (conjugate) nil clean modules. We prove in Theorem 4.4 that M is a clean $U J$-module iff $E_{M} / J\left(E_{M}\right)$ is a Boolean ring and idempotents lift modulo $J\left(E_{M}\right)$ iff M is a J-clean $U J$-module iff M is a J-clean module. It is also shown that a module M is a clean $U J$-module with $J\left(E_{M}\right)$ nil iff $E_{M} / J\left(E_{M}\right)$ is a Boolean ring and M is a $U U$-module (i.e. E_{M} is a $U U$-ring) iff M is a nil clean $U J$-module iff M is a conjugate nil clean $U J$-module (Theorem 4.6).

2. $U J$-MODULES

Let M be a right R-module and $\mathcal{C}\left(E_{M}\right)=\left\{\alpha \in E_{M}: 1_{M}-\alpha \in U\left(E_{M}\right)\right\}$. It is easy to see that $\left(\mathcal{C}\left(E_{M}\right), \circ\right.$) is a group which is isomorphic to $U\left(E_{M}\right)$, by $\alpha \in \mathcal{C}\left(E_{M}\right) \mapsto 1-\alpha \in U\left(E_{M}\right)$. Notice that M is a $U J$-module if and only if $\mathcal{C}\left(E_{M}\right)$ is an ideal of E_{M}.

We begin with another characterization of the $U J$-modules.
Proposition 2.1. The following conditions are equivalent, for a left R module M :
(1) $U\left(E_{M}\right)=1_{M}+J\left(E_{M}\right)$, i.e. M is a $U J$-module;
(2) $U\left(E_{M} / J\left(E_{M}\right)\right)=\left\{1_{M}\right\}$;
(3) $\mathcal{C}\left(E_{M}\right)$ is an ideal of $E_{M}\left(\right.$ then $\left.\mathcal{C}\left(E_{M}\right)=J\left(E_{M}\right)\right)$;
(4) $\alpha \beta-\gamma \alpha \in J\left(E_{M}\right)$, for any $\alpha \in J\left(E_{M}\right)$ and $\beta, \gamma \in \mathcal{C}\left(E_{M}\right)$;
(5) $\alpha u-v \alpha \in J\left(E_{M}\right)$, for any $u, v \in U\left(E_{M}\right)$ and $\alpha \in E_{M}$;
(6) $U\left(E_{M}\right)+U\left(E_{M}\right) \subseteq J\left(E_{M}\right)$ (and hence $U\left(E_{M}\right)+U\left(E_{M}\right)=J\left(E_{M}\right)$).

Proof. (1) \Rightarrow (2) By [6, Proposition 1.3.(5)], $E_{M} / J\left(E_{M}\right)$ is a $U J$-ring. Then, by [6, Lemma 1.1 (2)], we get $U\left(E_{M} / J\left(E_{M}\right)\right)=1_{M}$, as desired.
(1) \Rightarrow (3) Let $\alpha \in \mathcal{C}\left(E_{M}\right)$. Then $1_{M}-\alpha \in U\left(E_{M}\right)$ and so there exists $u \in U\left(E_{M}\right)$ such that $1_{M}-\alpha=u$, which gives $\alpha=1_{M}-u \in 1_{M}-U\left(E_{M}\right)$. Therefore

$$
\mathcal{C}\left(E_{M}\right) \subseteq 1_{M}-U\left(E_{M}\right)=1_{M}-\left(1_{M}+J\left(E_{M}\right)\right) \subseteq J\left(E_{M}\right) .
$$

By the definition, $J\left(E_{M}\right) \subseteq \mathcal{C}\left(E_{M}\right)$. Hence $J\left(E_{M}\right)=\mathcal{C}\left(E_{M}\right)$.
$(2) \Rightarrow(1)$ Clearly, $1_{M}+J\left(E_{M}\right) \subseteq U\left(E_{M}\right)$. For the converse, first we prove the following claim:
Claim: $U\left(E_{M}\right) / J\left(E_{M}\right)=U\left(E_{M} / J\left(E_{M}\right)\right)$: Let $\alpha+J\left(E_{M}\right) \in U\left(E_{M} / J\left(E_{M}\right)\right)$. By the hypothesis, $U\left(E_{M} / J\left(E_{M}\right)\right)=\left\{1_{M}\right\}$ and so $\alpha+J\left(E_{M}\right)=1_{M}$, which gives $1_{M}-\alpha \in J\left(E_{M}\right)$. By the definition of $J\left(E_{M}\right)$, one obtains $\alpha \in U\left(E_{M}\right)$ so $\alpha+J\left(E_{M}\right) \in U\left(E_{M}\right) / J\left(E_{M}\right)$. The reverse is clear, since α is an element of $U\left(E_{M}\right)$.

Now we are ready to prove the $U\left(E_{M}\right) \subseteq 1_{M}+J\left(E_{M}\right)$. Let $\alpha \in U\left(E_{M}\right)$. Then

$$
\alpha+J\left(E_{M}\right) \in U\left(E_{M}\right) / J\left(E_{M}\right)=U\left(E_{M} / J\left(E_{M}\right)\right)=\left\{1_{M}\right\} .
$$

Therefore $\alpha+j=1_{M}$, for all $j \in J\left(E_{M}\right)$, which implies $\alpha=1_{M}-j \in$ $1_{M}+J\left(E_{M}\right)$.
$(3) \Rightarrow(4)$ Since $\mathcal{C}\left(E_{M}\right)$ is an ideal of E_{M}, we get $\alpha \beta-\gamma \alpha \in \mathcal{C}\left(E_{M}\right)$, for $\beta, \gamma \in \mathcal{C}\left(E_{M}\right)$ and $\alpha \in J\left(E_{M}\right)$. By (3), $\mathcal{C}\left(E_{M}\right)=J\left(E_{M}\right)$, so $\alpha \beta-\gamma \alpha \in J\left(E_{M}\right)$.
(4) \Rightarrow (5) If we set $\beta:=1_{M}+u$ and $\gamma:=1_{M}+v$, for $u, v \in U\left(E_{M}\right)$, then (5) is an immediate consequence of (4).
(5) \Rightarrow (6) If we take $\alpha=1_{M}$ in (5), then we get $u-v \in J\left(E_{M}\right)$, for any $u, v \in U\left(E_{M}\right)$, which gives $U\left(E_{M}\right)+U\left(E_{M}\right) \subseteq J\left(E_{M}\right)$. Now, every $\alpha \in J\left(E_{M}\right)$ can be written as a sum of two invertible morphisms as $\alpha=1_{M}+\left(\alpha-1_{M}\right) \in$ $U\left(E_{M}\right)+U\left(E_{M}\right)$, so we are done.
$(6) \Rightarrow$ (1) Clearly, $1_{M}+J\left(E_{M}\right) \subseteq U\left(E_{M}\right)$. By $(6), U\left(E_{M}\right)-1_{M} \subseteq J\left(E_{M}\right)$, i.e. $U\left(E_{M}\right) \subseteq 1_{M}+J\left(E_{M}\right)$, which completes the proof.

As an immediate application of Proposition 2.1, we obtain the following corollary.

Corollary 2.2 ([6, Lemma 1.1]). For a ring R, the following conditions are equivalent:
(1) $U(R)=1+J(R)$, i.e. R is a $U J$-ring;
(2) $U(R / J(R))=\{1\}$;
(3) $\mathcal{C}(R)$ is an ideal of $R($ then $\mathcal{C}(R)=J(R))$;
(4) $r b-c r \in J(R)$, for any $r \in R$ and $b, c \in \mathcal{C}(R)$;
(5) $r u-v r \in J(R)$, for any $u, v \in U(R)$ and $r \in R$,
(6) $U(R)+U(R) \subseteq J(R)$ (and hence $U(R)+U(R)=J(R)$).

The next two observations contain several properties of the $U J$-modules and rings.

Proposition 2.3. Let M be a left $U J$-module over R. Then:
(1) $M_{E_{M}}$ has no a maximal submodule;
(2) if E_{M} is a division ring, then $E_{M}=\mathbb{F}_{2}$;
(3) $E_{M} / J\left(E_{M}\right)$ is reduced and hence abelian;
(4) if $\alpha, \beta \in E_{M}$ and if $\alpha \beta \in J\left(E_{M}\right)$, then $\beta \alpha \in J\left(E_{M}\right), \alpha E_{M} \beta, \beta E_{M} \alpha \subseteq$ $J\left(E_{M}\right)$;
(5) if $I \subseteq J\left(E_{M}\right)$ is an ideal of E_{M}, then M is a $U J$-module if and only if E_{M} / I is a UJ-ring,
(6) M is Dedekind finite (i.e. E_{M} is a Dedekind finite ring; if $a, b \in E_{M}$, $a b=1 \Rightarrow b a=1)$.
(7) the module $\prod_{i \in I} M_{i}$ is $U J$ if and only if each M_{i} is a $U J$-module, for all $i \in I$.

Proof. (1) By Proposition 2.1 (6), we have $U\left(E_{M}\right)+U\left(E_{M}\right)=J\left(E_{M}\right)$. Since M is a right E_{M} module and $M_{E_{M}} J\left(E_{M}\right) \subseteq \operatorname{Rad}\left(M_{E_{M}}\right)$, we get

$$
M_{E_{M}} U\left(E_{M}\right)+M_{E_{M}} U\left(E_{M}\right)=M_{E_{M}} J\left(E_{M}\right) \subseteq \operatorname{Rad}\left(M_{E_{M}}\right) .
$$

One gets the following, for $1_{M} \in U\left(E_{M}\right)$:

$$
M_{E_{M}} \subseteq M_{E_{M}}+M_{E_{M}} \subseteq \operatorname{Rad}\left(M_{E_{M}}\right) \subseteq M_{E_{M}}
$$

This gives $\operatorname{Rad}\left(M_{E_{M}}\right)=M_{E_{M}}$, that is $M_{E_{M}}$ has no maximal submodule.
(2) If E_{M} is a division ring, then every nonzero morphism of E_{M} has an inverse. By Proposition 2.1(1), $U\left(E_{M}\right)=1_{M}+J\left(E_{M}\right)$. Hence $1_{M}+J\left(E_{M}\right) \in$ $E_{M} / J\left(E_{M}\right)$ has only an element which has an inverse. By Proposition 2.1(2), $U\left(E_{M} / J\left(E_{M}\right)\right)=\left\{1_{M}\right\}$, as desired.
(3) Let $\alpha+J\left(E_{M}\right)$ be a nilpotent element in $E_{M} / J\left(E_{M}\right)$. We show that $\alpha \in J\left(E_{M}\right)$. Since $\alpha+J\left(E_{M}\right)$ is nilpotent, there exits $n \in \mathbb{N}$ such that $\alpha^{n}+J\left(E_{M}\right)=J\left(E_{M}\right)$. Then

$$
\begin{aligned}
1_{M}+J\left(E_{M}\right) & =\left[\left(\alpha^{n}\right)+J\left(E_{M}\right)\right]+\left(1_{M}+J\left(E_{M}\right)\right) \\
& =\left(\alpha^{n}+1_{M}\right)+J\left(E_{M}\right) \\
& =\left(\alpha+1_{M}\right)\left((-1)^{n-1} \alpha^{n-1}+\cdots+(-1)^{0} 1_{M}\right)+J\left(E_{M}\right) \\
& =\left[\left(\alpha+1_{M}\right)+J\left(E_{M}\right)\right]\left[\left(\alpha^{n-1}+\cdots+1_{M}\right)+J\left(E_{M}\right)\right] .
\end{aligned}
$$

So $\left(\alpha+1_{M}\right)+J\left(E_{M}\right) \in U\left(E_{M} / J\left(E_{M}\right)\right)$, which is 1_{M}, by Proposition 2.1(2). Then there exists $j \in J\left(E_{M}\right)$ such that $\left(\alpha+1_{M}\right)+j=1_{M}$, that is $\alpha=-j \in$ $J\left(E_{M}\right)$.

By $(1), M / \operatorname{Rad}(M)=M / M=0$ so $M / \operatorname{Rad}(M)$ has no nonzero nilpotent elements, hence it is reduced and so it is abelian.
(4) Let $\alpha \beta \in J\left(E_{M}\right)$. Then $\alpha \beta+J\left(E_{M}\right)=J\left(E_{M}\right)$. Multiplying this equation by $\beta+J\left(E_{M}\right)$ on the left and by $\alpha+J\left(E_{M}\right)$ on the right, we get

$$
\beta \alpha \beta \alpha+J\left(E_{M}\right)=(\beta \alpha)^{2}+J\left(E_{M}\right)=J\left(E_{M}\right)
$$

By (3), $E_{M} / J\left(E_{M}\right)$ is reduced and thus $\beta \alpha+J\left(E_{M}\right)=J\left(E_{M}\right)$. Hence $\beta \alpha \in$ $J\left(E_{M}\right)$. Now, the rest follows from (3).
(5) Let $I \subseteq J\left(E_{M}\right)$. We show $J\left(E_{M}\right) / I=J\left(E_{M} / I\right)$. Clearly, $J\left(E_{M}\right) / I \subseteq$ $J\left(E_{M} / I\right)$. For the converse, let $\alpha+I \in J\left(E_{M} / I\right)$. Then $\left(1_{M}-\alpha\right)+I$ is an element of $U\left(E_{M}\right)$, so $\left[\left(1_{M}-\alpha\right)+I\right](\beta+I)=\left[\left(1_{M}-\alpha\right) \beta\right]+I=1_{M}+I$.

Then $1_{M}-\left[\left(1_{M}-\alpha\right) \beta\right] \subseteq I \subseteq J\left(E_{M}\right)$, which implies that $\left(1_{M}-\alpha\right) \beta$ is an element of $U\left(E_{M}\right)$, that is $\alpha \in J\left(E_{M}\right)$. Hence $\alpha+I \in J\left(E_{M}\right)+I$. By the proof of Proposition 2.1(2),

$$
\frac{E_{M} / I}{J\left(E_{M} / I\right)}=\frac{E_{M} / I}{J\left(E_{M}\right) / I}=E_{M} / J\left(E_{M}\right)
$$

which implies

$$
U\left(\frac{E_{M} / I}{J\left(E_{M} / I\right)}\right)=U\left(E_{M} / J\left(E_{M}\right)\right)
$$

(6) We note that $E_{M} / J\left(E_{M}\right)$ is Dedekind finite, since it is reduced. Let $\alpha \beta=1_{M}$, for $\alpha, \beta \in E_{M}$. Then $\alpha \beta+J\left(E_{M}\right)=1_{M}+J\left(E_{M}\right)$. Since $E_{M} / J\left(E_{M}\right)$ is Dedekind finite, we obtain $\beta \alpha+J\left(E_{M}\right)=1_{M}+J\left(E_{M}\right)$, that is $\beta \alpha$ is invertible. Clearly, $\beta \alpha$ is an idempotent, so $\beta \alpha=1_{M}$.
(7) Recall that

$$
U\left(\prod_{i \in I} E_{M_{i}}\right)=\left\{\prod_{i \in I} \alpha_{i}: \prod_{i \in I} M_{i} \rightarrow \prod_{i \in I} M_{i} \mid \prod_{i \in I} \alpha_{i} \quad \text { is an element of } U\left(E_{M_{i}}\right)\right\}
$$

and

$$
\begin{aligned}
\prod_{i \in I}\left(U\left(E_{M_{i}}\right)\right)=\left\{\prod_{i \in I} \alpha_{i}: \prod_{i \in I} M_{i}\right. & \rightarrow \prod_{i \in I} M_{i} \mid \\
& \left.\forall i \in I, \alpha_{i} \quad \text { is an element of } U\left(E_{M_{i}}\right)\right\}
\end{aligned}
$$

Now, it is easy to see that $U\left(\prod_{i \in I} E_{M_{i}}\right)=\prod_{i \in I}\left(U\left(E_{M_{i}}\right)\right)$. Similarly, we have $J\left(\prod_{i \in I} E_{M_{i}}\right)=\prod_{i \in I} J\left(E_{M_{i}}\right)$.

Corollary 2.4 ([6, Proposition 1.3]). Let R be a UJ-ring. Then:
(1) $2 \in J(R)$;
(2) if R is a division ring, then $R=\mathbb{F}_{2}$;
(3) $R / J(R)$ is reduced and hence abelian;
(4) if $x, y \in R$ are such that $x y \in J(R)$, then $y x \in J(R)$ and $x R y, y R x \subseteq$ $J(R)$;
(5) if $I \subseteq J(R)$ is an ideal of R, then R is a UJ-ring if and only if R / I is a UJ-ring;
(6) R is Dedekind finite;
(7) the ring $\prod_{i \in I} R_{i}$ is $U J$ if and only each R_{i} is a $U J$-ring, $i \in I$.

Recall that the ring R is said to be semilocal, if $R / J(R)$ is semisimple artinian.

Proposition 2.5. A semilocal ring E_{M} is $U J$ if and only if $E_{M} / J\left(E_{M}\right) \cong$ $\mathbb{F}_{2} \times \ldots \times \mathbb{F}_{2}$.

Proof. Since $E_{M} / J\left(E_{M}\right)$ is semisimple, by the definition, and reduced, by Proposition $2.3(3)$, we obtain that $E_{M} / J\left(E_{M}\right)$ is a finite direct product of a division ring. Proposition $2.3(2)$ completes the proof.

Corollary 2.6 ([6, Proposition 1.4]). A semilocal ring R is $U J$ if and only if $R / J(R) \cong \mathbb{F}_{2} \times \ldots \times \mathbb{F}_{2}$.

For a left module M, let $M[x]$ be the set of all formal polynomials in indeterminate x with coefficients from M. Then $M[x]$ becomes a left $R[x]$-module under the usual addition and multiplication of polynomials, where $R[x]$ denotes the polynomial ring in the set x of commuting indeterminates.

Let

$$
N\left(E_{M}\right)=\left\{\alpha \in E_{M}: \alpha^{n}=0, \text { for some } n \in \mathbb{N}\right\} .
$$

Lemma 2.7. If 1_{M} is the only element of $U\left(E_{M}\right)$, then $U\left(E_{M}\right)[x]=\left\{1_{M}\right\}$.
Proof. Since a unit in $M[x]$ depends only on finitely many indeterminates, we may assume that x is a finite set.

By the assumption, $U\left(E_{M}\right)[x]=\left\{1_{M}\right\}$, so E_{M} does not contain nontrivial nilpotent elements, because $1_{M}+N\left(E_{M}\right) \subseteq U\left(E_{M}\right)$, i.e. it is a reduced ring. But $U\left(E_{M}\right)[x]=U\left(E_{M}\right)$, so we are done.

Corollary 2.8 ([6, Lemma 2.3]). Let R be a ring with trivial units. Then $U(R[x])=\{1\}$.

3. SOME RING EXTENSIONS

The left Peirce decompositions. We consider the sets $e R$ and $(1-e) R$, where $e^{2}=e \in R$.

Proposition 3.1. Let M be an abelian module and $e^{2}=e \in E_{M}$. Then the following are equivalent.
(1) M is a UJ-module.
(2) $e M$ and $(1-e) M$ are UJ-modules.

Proof. Since $e^{2}=e \in E_{M}$, we have $M=e M \oplus(1-e) M$. So, we have,

$$
\begin{aligned}
E_{M} & =\operatorname{Hom}_{R}(e M \oplus(1-e) M, e M \oplus(1-e) M) \\
& =\operatorname{Hom}_{R}(e M, e M) \oplus \operatorname{Hom}_{R}((1-e) M,(1-e) M) \\
& \oplus \operatorname{Hom}_{R}(e M,(1-e) M) \oplus \operatorname{Hom}_{R}((1-e) M, e M) \\
& =E_{e M} \oplus E_{(1-e) M} .
\end{aligned}
$$

Hence we obtain

$$
U\left(E_{M}\right)=U\left(E_{e M}\right) \oplus U\left(E_{(1-e) M}\right)
$$

and

$$
J\left(E_{M}\right)=J\left(E_{e M}\right) \oplus J\left(E_{(1-e) M}\right) .
$$

Corollary 3.2. Let R be an abelian ring and $e^{2}=e \in R$. Then the following are equivalent.
(1) R is a UJ-ring.
(2) $e R$ and $(1-e) R$ are UJ-rings.

The trivial extension and the (trivial) Morita context. Let R be a ring and M a bimodule over R. The trivial extension of R and M is

$$
T(R, M)=\{(r, m): r \in R \text { and } m \in M\}
$$

with the addition defined componentwise and the multiplication defined by

$$
(r, m)(s, n)=(r s, r n+m s) .
$$

The trivial extension $T(R, M)$ is isomorphic to the subring $\left\{\begin{array}{cc}r & m \\ 0 & r\end{array}\right): r \in$ R and $m \in M\}$ of the formal 2×2 matrix ring $\left(\begin{array}{cc}R & M \\ 0 & R\end{array}\right)$ and also $T(R, R) \cong$ $R[x] /\left(x^{2}\right)$. We also note that the set of units of the trivial extension $T(R, M)$ is

$$
U(T(R, M))=T(U(R), M),
$$

by [1, Proposition 4.9 (2)], and

$$
J(T(R, M))=T(J(R), M),
$$

by [1, Corollary 4.8 (2)].
A Morita context is a 4-tuple $\left(\begin{array}{cc}A & M \\ N & B\end{array}\right)$, where A and B are rings, ${ }_{A} M_{B}$ and ${ }_{B} N_{A}$ are bimodules and there exist context products $M \times N \rightarrow A$ and $N \times M \rightarrow B$, written multiplicatively as $(w, z)=w z$ and $(z, w)=z w$, such that $\left(\begin{array}{cc}A & M \\ N & B\end{array}\right)$ is an associative ring with the obvious matrix operations.

A Morita context $\left(\begin{array}{cc}A & M \\ N & B\end{array}\right)$ is called trivial, if the context products are trivial, i.e. $M N=0$ and $N M=0$ (see [7, p. 1993]). We have

$$
\left(\begin{array}{cc}
A & M \\
N & B
\end{array}\right) \cong T(A \times B, M \oplus N),
$$

where $\left(\begin{array}{cc}A & M \\ N & B\end{array}\right)$ is a trivial Morita context, by [5].
Theorem 3.3. If the trivial extension $T:=T(R, M)$ is a $U J$-ring, then R is a $U J$-ring and M is a $U J$-module.

Proof. Let $r \in R$ and $u, v \in U(R)$. Then

$$
\left(\begin{array}{ll}
r & 0 \\
0 & r
\end{array}\right)\left(\begin{array}{ll}
u & 0 \\
0 & u
\end{array}\right)-\left(\begin{array}{ll}
v & 0 \\
0 & v
\end{array}\right)\left(\begin{array}{ll}
r & 0 \\
0 & r
\end{array}\right) \in J(T),
$$

where $\left(\begin{array}{ll}r & 0 \\ 0 & r\end{array}\right) \in T$ and $\left(\begin{array}{ll}u & 0 \\ 0 & u\end{array}\right),\left(\begin{array}{ll}v & 0 \\ 0 & v\end{array}\right) \in U(T)$. Hence

$$
\left(\begin{array}{cc}
r u & 0 \\
0 & r u
\end{array}\right)-\left(\begin{array}{cc}
v r & 0 \\
0 & v r
\end{array}\right)=\left(\begin{array}{cc}
r u-v r & 0 \\
0 & r u-v r
\end{array}\right) \in J(T)
$$

which implies $r u-v r \in J(R)$, for $r \in R$ and $u, v \in U(R)$.

Let $\alpha \in U\left(E_{M}\right)$. Clearly, $\varphi: T \rightarrow T$ is an element of $U\left(E_{M}\right)$, which is defined by $\varphi\left(\left(\begin{array}{cc}r & m \\ 0 & r\end{array}\right)\right)=\left(\begin{array}{cc}r & \alpha(m) \\ 0 & r\end{array}\right)$. Since T is an $U J$-module, we get $U\left(E_{T}\right) \subseteq 1_{T}+J\left(E_{T}\right)$. Then $\varphi=1_{T}+\psi$, for $\psi \in J\left(E_{T}\right)$. One obtains $\psi\left(\left(\begin{array}{cc}r & m \\ 0 & r\end{array}\right)\right)=\left(\begin{array}{cc}0 & \left(\alpha-1_{M}\right)(m) \\ 0 & 0\end{array}\right)$, by a direct calculation. If we prove $\alpha-$ $1_{M} \in J\left(E_{M}\right)$, then we are done. First, note that, for an endomorphism γ : $T(R, M) \rightarrow T(R, M)$, there exist $f \in E_{R}$ and $g \in E_{M}$ such that $\gamma\left(\left(\begin{array}{cc}r & m \\ 0 & r\end{array}\right)\right)=$ $\left(\begin{array}{cc}f(r) & g(m) \\ 0 & f(r)\end{array}\right)$. We also have that γ is an element of $U\left(E_{M}\right)$ if and only if f and g are elements of $U\left(E_{M}\right)$. By the hypothesis, we have $\varphi-1_{T}=\psi \in$ $J\left(E_{T}\right)$, that is $1_{T}-\psi \gamma \in U\left(E_{T}\right)$, for every $\gamma \in E_{T}$, where $\gamma\left(\left(\begin{array}{cc}r & m \\ 0 & r\end{array}\right)\right)=$ $\left(\begin{array}{cc}f(r) & g(m) \\ 0 & f(r)\end{array}\right)$. By a direct calculation,

$$
1_{T}-\psi \gamma=\left(\begin{array}{cc}
r & 1_{M}(m)-\left(\alpha-1_{M}\right) g(m) \\
0 & r
\end{array}\right) \in U\left(E_{T}\right)
$$

so $1_{M}-\left(\alpha-1_{M}\right) g \in U\left(E_{M}\right)$, for every $g \in E_{M}$, which completes the proof.
Theorem 3.4. If R is a $U J$-ring, then so is the trivial extension $T(R, M)$.
Proof. Assume that R is a $U J$-ring. Then $U(T(R, M))=T(U(R), M)$ and $U(R)=1_{R}+J(R)$. So one can write

$$
\begin{aligned}
U(T(R, M)) & =\left(\begin{array}{cc}
U(R) & M \\
0 & U(R)
\end{array}\right) \\
& =\left(\begin{array}{cc}
1_{R}+J(R) & M \\
0 & 1_{R}+J(R)
\end{array}\right) \\
& =\left(\begin{array}{cc}
1_{R} & 0 \\
0 & 1_{R}
\end{array}\right)+\left(\begin{array}{cc}
J(R) & M \\
0 & J(R)
\end{array}\right) \\
& =1_{T}+J(T(R, M)),
\end{aligned}
$$

as desired.
Corollary 3.5. R is a $U J$-ring if and only if $R[x] /\left(x^{2}\right)$ is a $U J$-ring.
Corollary 3.6. The trivial Morita context $\left(\begin{array}{cc}A & M \\ N & B\end{array}\right)$ is a UJ-module if and only if A, M, N, B are $U J$-modules.

Proof. It is easy to see that

$$
\left(\begin{array}{ll}
A & M \\
N & B
\end{array}\right) \cong T(A \times B, M \oplus N) \cong\left(\begin{array}{cc}
A \times B & M \oplus N \\
0 & A \times B
\end{array}\right) .
$$

Then the rest follows from Theorems 3.3, 3.4 and Proposition 2.3 (7).

The Dorroh extension. Given a ring R and a ring without identity I, we will say that I is an R ring without identity if it is an (R, R)-bimodule, for which the actions of R are compatible with the multiplication in I (i.e. $r(i j)=(r i) j, i(r j)=(i r) j$ and $(i j) r=i(j r)$, for every $r \in R$ and $i, j \in I)$. If R is a ring with identity and I is a ring without identity, then one can turn the abelian group $R \oplus I$ into a ring, by defining the multiplication by

$$
(r, i) \cdot(p, j)=(r p, i p+r j+i j)
$$

for $r, p \in R$ and $i, j \in I$. Such a ring is called an ideal extension (it is also called the Dorroh extension), and denoted by $E(R, I)$ - see [9].

ThEOREM 3.7. Let I be a ring without identity, finitely generated as a (left) R-module by elements that commute with all elements of R. Then R is a $U J$-ring, if the Dorroh extension $E(R, I)$ is a $U J$-ring.

Proof. Let $u, v \in U(R)$ and $r \in R$. Then $(u, 0),(v, 0) \in U(E(R, I))$ and $(r, 0) \in E(R, I)$. We get $(r, 0)(u, 0)-(v, 0)(r, 0)=(r u-v r, 0) \in J(E(R, I))$, by the hypothesis. But $J(E(R, I))=J(R) \oplus J(I)$, which implies $r u-v r \in$ $J(R)$.

The tail ring extension $\mathcal{R}[D, C]$. For a subring C of a ring D, the set

$$
\mathcal{R}[D, C]:=\left\{\left(d_{1}, \cdots, d_{n}, c, c, \cdots\right): d_{i} \in D, c \in C, n \geq 1\right\}
$$

with the addition and the multiplication defined componentwise, is a ring.
Theorem 3.8. $\mathcal{R}[D, C]$ is a $U J$-ring if and only if D and C are $U J$-rings.
Proof. (\Rightarrow) First, we show that D is a $U J$-ring. Let $u, v \in U(D)$ and $d \in D$. Then

$$
\begin{gathered}
\alpha=(d, 0,0, \cdots) \in \mathcal{R}[D, C] \\
\beta=(u, 1,1, \cdots), \gamma=(v, 1,1, \cdots) \in U(\mathcal{R}[D, C])
\end{gathered}
$$

Now, $\alpha \beta-\gamma \alpha \in J(\mathcal{R}[D, C])$, by the hypothesis, that is $m:=(d u-v d, 0,0, \cdots)$ $\in J(\mathcal{R}[D, C])$. Hence, for any $t:=\left(y_{1}, \cdots, y_{n}, x, \cdots\right) \in \mathcal{R}[D, C]$,

$$
\begin{aligned}
& (1,1,1, \cdots)-m t=\left(1-(d u-v d) y_{1}, 1,1, \cdots\right) \\
& \quad \in U(\mathcal{R}[D, C])=\mathcal{R}[U(D), U(C)]
\end{aligned}
$$

which implies that D is a $U J$ ring.
We show that C is $U J$. Let $u^{*}, v^{*} \in U(C)$ and $c \in C$. We prove that $c u^{*}-v^{*} c \in J(C)$. Then

$$
\begin{gathered}
\alpha^{*}=(0, \cdots, 0, c, c \cdots) \in \mathcal{R}[D, C] \\
\beta^{*}=\left(1, \cdots, 1, u^{*}, u^{*} \cdots\right), \gamma^{*}=\left(1, \cdots, 1, v^{*}, v^{*} \cdots\right) \in U(\mathcal{R}[D, C])
\end{gathered}
$$

Now, $\alpha^{*} \beta^{*}-\gamma^{*} \alpha^{*} \in J\left(\mathcal{R}[D, C]\right.$, that is $n:=\left(0, \cdots, 0, c u^{*}-v^{*} c, c u^{*}-\right.$ $\left.v^{*} c, \cdots\right) \in J(\mathcal{R}[D, C])$. Hence, for any $t=\left(y_{1}, \cdots, y_{n}, x, \cdots\right) \in \mathcal{R}[D, C]$,

$$
\begin{aligned}
&(1,1,1, \cdots)-n t=\left(1, \cdots, 1,1-\left(c u^{*}-v^{*} c\right) x, \cdots\right) \\
& \in U(\mathcal{R}[D, C])=\mathcal{R}[U(D), U(C)]
\end{aligned}
$$

which implies that C is a $U J$-ring.
(\Leftarrow) Assume D and C are $U J$-rings. Let

$$
\beta=\left(u_{1}, \cdots, u_{n}, u, u, \cdots\right), \gamma=\left(v_{1}, \cdots, v_{n}, v, v, \cdots\right) \in U(\mathcal{R}[D, C])
$$

where $u_{i}, v_{i}, u, v \in U(R)$, for $1 \leq i \leq n$ and $\alpha=\left(d_{1}, \cdots, d_{n}, c, c, \cdots\right) \in$ $\mathcal{R}[D, C]$. Set $x:=\alpha \beta-\gamma \alpha$. Since D and C are $U J$-rings and $J(\mathcal{R}[D, C])=$ $\mathcal{R}[J(D), J(C)]$, we obtain

$$
\begin{aligned}
x & =\left(d_{1}, \cdots, d_{n}, c, c, \cdots\right)\left(u_{1}, \cdots, u_{n}, u, u, \cdots\right) \\
& -\left(v_{1}, \cdots, v_{n}, v, v, \cdots\right)\left(d_{1}, \cdots, d_{n}, c, c, \cdots\right) \\
& =\left(d_{1} u_{1}, \cdots, d_{n} u_{n}, c u, c u, \cdots\right)-\left(v_{1} d_{1}, \cdots, v_{n} d_{n}, v d, v d, \cdots\right) \\
& =\left(d_{1} u_{1}-v_{1} d_{1}, \cdots, d_{n} u_{n}-v_{n} d_{n}, c u-v d, c u-v d, \cdots\right)
\end{aligned}
$$

Now, $d_{i} u_{i}-v_{i} d_{i} \in J(D)$ and $d u-v d \in J(C)$ imply $m:=\alpha \beta-\gamma \alpha \in$ $\mathcal{R}[J(D), J(C)]$.

Corollary 3.9. $\mathcal{R}[D, D]$ is a UJ-ring if and only if D is a $U J$-ring.

4. CLEAN MODULES

Recall that an element $r \in R$ is clean (J-clean) provided there exist an idempotent $e \in R$ and an element $t \in U(R)(t \in J(R))$ such that $r=e+t$. A ring R is clean (J-clean), if every element of R has such a clean (J-clean) decomposition [10] ([3]). Clearly, every J-clean ring is clean.

We say that a module M is J-clean, if the endomorphism ring of M is a J-clean ring.
$U U$-rings are defined by Cǎlugǎreanu [2] as $U(R)=1+N(R)$ (i.e. rings with unipotent units). It is clear that, if R is a $U J$-ring with nil Jacobson radical, then R is a $U U$-ring.

Recall that

$$
N\left(E_{M}\right)=\left\{\alpha \in E_{M}: \alpha^{n}=0, \text { for some } n \in \mathbb{N}\right\}
$$

We call M a $U U$-module, if E_{M} is $U U$-ring, that is $U\left(E_{M}\right)=1_{M}+N\left(E_{M}\right)$.
Corollary 4.1. A module M is $U J$ with $J\left(E_{M}\right)$ nil iff M is a UU-module and $N\left(E_{M}\right)$ is an ideal of E_{M}.

Let $I d(R)$ be the set of all idempotent elements of R.
Proposition 4.2. The following are equivalent for a module M.
(1) M is a UJ-module.
(2) All clean elements of E_{M} are J-clean.

Proof. (1) $\Rightarrow(2)$ Assume $\alpha \in E_{M}$ is clean. Then $\alpha=e+u$, for $e^{2}=e \in E_{M}$ and $u \in U\left(E_{M}\right)$. By the hypothesis, $u=1_{M}+j$, where $j \in J\left(E_{M}\right)$. Hence

$$
\alpha=e+1_{M}+j=\left(1_{M}-e\right)+e+e+j
$$

but $e+e \in J\left(E_{M}\right)$, by [6, Proposition 1.3 (1)]. Hence $e+e+j \in J\left(E_{M}\right)$ and $\left(1_{M}-e\right) \in I d\left(E_{M}\right)$, as desired.
(2) \Rightarrow (1) Clearly $1_{M}+J\left(E_{M}\right) \subseteq U\left(E_{M}\right)$. Let $u \in U\left(E_{M}\right)$. Then u is a clean element, so $u=e+j$, for $e^{2}=$ and $j \in J\left(E_{M}\right)$. Since $1_{M}=u^{-1} e+u^{-1} j$, we obtain $u^{-1} e=1_{M}-u^{-1} j$. Hence $u^{-1} e$ is an element of $U\left(E_{M}\right)$, which implies $e=1$.

Corollary 4.3 ([6, Proposition 3.1]). The following conditions are equivalent for a ring R.
(1) R is a UJ-ring,
(2) All clean elements of R are J-clean.

Theorem 4.4. The following conditions are equivalent for a module M.
(1) M is a clean $U J$-module.
(2) $E_{M} / J\left(E_{M}\right)$ is a Boolean ring and idempotents lift modulo $J\left(E_{M}\right)$.
(3) M is a J-clean UJ-module.
(4) M is a J-clean module.

Proof. (1) \Rightarrow (2) Since $E_{M} / J\left(E_{M}\right)$ is clean, every element $\alpha+J\left(E_{M}\right) \in$ $E_{M} / J\left(E_{M}\right)$ is of the form

$$
\alpha+J\left(E_{M}\right)=\left(e+J\left(E_{M}\right)\right)+\left(1_{M}+J\left(E_{M}\right)\right)=(e+1)+J\left(E_{M}\right) .
$$

Hence

$$
\begin{aligned}
\alpha^{2}+J\left(E_{M}\right) & =\left[\left(e+J\left(E_{M}\right)\right)+\left(1_{M}+J\left(E_{M}\right)\right)\right]\left[\left(e+J\left(E_{M}\right)\right)+\left(1_{M}+J\left(E_{M}\right)\right)\right] \\
& =[(e+1)(e+1)]+J\left(E_{M}\right) \\
& =(e+e+e+1)+J\left(E_{M}\right) \\
& =(e+1)+J\left(E_{M}\right)+(e+e)+J\left(E_{M}\right) \\
& =(e+1)+J\left(E_{M}\right),
\end{aligned}
$$

so $\alpha+J\left(E_{M}\right)$ is an idempotent element, that is $E_{M} / J\left(E_{M}\right)$ is a Boolean ring. The rest follows from the definition of clean rings.
$(2) \Rightarrow(3)$ Let $\alpha \in E_{M}$. Then $\alpha+J\left(E_{M}\right) \in E_{M} / J\left(E_{M}\right)$ is an idempotent. By hypothesis, there exists an idempotent $e \in E_{M}$ such that $\alpha-e \in J\left(E_{M}\right)$. Then $\alpha=e+j$, for $j \in J\left(E_{M}\right)$, i.e. α is a J-clean element. This shows that M is a J-clean module. If $u \in U\left(E_{M}\right)$, then $u+J\left(E_{M}\right) \in U\left(E_{M} / J\left(E_{M}\right)\right)$ in a Boolean ring $E_{M} / J\left(E_{M}\right)$. Then $u-1 \in J\left(E_{M}\right)$, that is $u \in 1_{M}+J\left(E_{M}\right)$.
$(3) \Rightarrow(4)$ This is clear.
$(4) \Rightarrow(1)$ This follows from Proposition 4.2.
Corollary 4.5 ([6, Proposition 3.2]). The following conditions are equivalent for a ring R.
(1) R is a clean UJ-ring.
(2) $R / J(R)$ is a Boolean ring and idempotents lift modulo $J(R)$.
(3) R is a J-clean UJ-ring.
(4) R is a J-clean ring.

Recall that idempotents e and f are said to be conjugate in R, if there exists $u \in U(R)$ such that $e=u f u^{-1}$. Conjugate (nil) clean rings are defined as (nil) clean rings such that idempotents that appear in the decompositions are unique up to conjugation, i.e., if $a=e+s=f+t$ are such decompositions, then the idempotents e, f are conjugate in R (see [8]). We call M a conjugate (nil) clean module, if E_{M} is a conjugate (nil) clean ring.

Theorem 4.6. The following conditions are equivalent for a module M.
(1) M is a clean $U J$-module with $J\left(E_{M}\right)$ nil.
(2) $E_{M} / J\left(E_{M}\right)$ is a Boolean ring and $J\left(E_{M}\right)$ is nil.
(3) M is a nil clean $U J$-module.
(4) M is a conjugate nil clean $U J$-module.
(5) M is a conjugate nil clean module and $N\left(E_{M}\right)$ is an ideal of E_{M}.
(6) $E_{M} / J\left(E_{M}\right)$ is a Boolean ring and M is a $U U$-module.

Proof. In view of [4, Corollary 3.17], the ring E_{M} is nil clean if and only if $E_{M} / J\left(E_{M}\right)$ is nil clean and $J\left(E_{M}\right)$ is nil. Also, if M is a $U J$-module, then M is nil clean if and only if M is J-clean and $J\left(E_{M}\right)$ is a nil ideal of E_{M}. Now, $(1) \Leftrightarrow(3)$ holds, by Theorem 4.4 and the fact that idempotents lift modulo nil ideals.
$(4) \Rightarrow(3)$ Trivial.
$(2) \Rightarrow(4) B y(2), M$ is a $U J$-module. Since Boolean rings are conjugate nil clean, the rest follows from [8, Corollary 2.16].
(4) \Leftrightarrow (5) If M is nil clean, then $J\left(E_{M}\right)$ is nil and hence the statement follows by Remark 4.1.
$(2) \Leftrightarrow(6)$ This is clear.
Corollary 4.7 ([6, Theorem 3.3]). The following conditions are equivalent for a ring R.
(1) R is a clean $U J$-ring with nil Jacobson radical $J(R)$.
(2) $R / J(R)$ is a Boolean ring and $J(R)$ is nil.
(3) R is a nil clean $U J$-ring.
(4) R is a conjugate nil clean UJ-ring.
(5) R is a conjugate nil clean ring and $N(R)$ is an ideal of R.
(6) $R / J(R)$ is a Boolean ring and R is a $U U$-ring.

REFERENCES

[1] D.D. Anderson, D. Bennis, B. Fahid and A. Shaiea, On n-trivial extensions of rings, Rocky Mount. J. Math., 48 (2017), 2439-2511.
[2] G. Cǎlugǎreanu, UU rings, Carpathian J. Math., 31 (2012), 157-163.
[3] H. Chen, Strongly J clean rings, Comm. Algebra, 38 (2010), 3790-3804.
[4] A.J. Diesl, Nil clean rings, J. Algebra, 383 (2013), 197-211.
[5] M.T. Koşan, The p.p. property of trivial extensions, J. Algebra Appl., 14 (2015), Article 1550124, 1-5.
[6] M.T. Koşan, A. Leroy and J. Matczuk, UJ rings, Comm. Algebra., 46 (2018), 22972303.
[7] M. Marianne, Rings of quotients of generalized matrix rings, Comm. Algebra, 15 (1987), 1991-2015.
[8] J. Matczuk, Conjugate (nil) clean rings and Kothe's problem, J. Algebra Appl., 16 (2017), Article 1750073.
[9] Z. Mesyan, The ideals of an ideal extension, J. Algebra Appl., 3 (2010), 407-431.
[10] W.K. Nicholson, Strongly clean rings and Fitting's lemma, Comm. Algebra, 27 (1999), 3583-3592.
[11] W.K. Nicholson and Y. Zhou, Semiregular morphisms, Comm. Algebra, 34 (2006), 219233.
[12] Y. Zhou, On (semi)regularity and the total of the rings and modules, J. Algebra, 322 (2009), 562-578.

Received March 26, 2018
Accepted May 23, 2018

Gebze Technical University
Department of Mathematics Gebze, Turkey
E-mail: srpsahinkaya@gmail.com
E-mail: tyildirim@gtu.edu.tr

