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PERIOD OF BALANCING NUMBERS MODULO PRODUCT OF
CONSECUTIVE LUCAS-BALANCING NUMBERS
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Abstract. The period of the balancing numbers modulo m, denoted by π(m),
is the least positive integer l such that {Bl, Bl+1} ≡ {0, 1} (mod m), where Bl

denotes the l-th balancing number. In the present study, we examine the peri-
ods of the balancing numbers modulo a product of consecutive Lucas-balancing
numbers.
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1. INTRODUCTION

As usual, the balancing sequence {Bn}n≥0 satisfies the linear recurrence
Bn+1 = 6Bn − Bn−1 with B0 = 0, B1 = 1 - see [1]. The existence of the
Lucas-balancing sequence {Cn}n≥0 is given by the sequence {Bn}n≥0, where

Cn =
√

8B2
n + 1 - see [5]. Lucas-balancing numbers satisfy the same recurrence

pattern as that of the balancing numbers with different initials, that is Cn+1 =
6Cn − Cn−1 with C0 = 1, C1 = 3. The identities resembling trigonometric
identities sin(x ± y) = sinx cos y ± cosx sin y are Bm±n = BmCn ± CmBn,
while those for the de Moivre identities (cos θ± i sin θ)n = cosnθ± i sinnθ are
(Cm ±

√
8Bm)n = Cmn ±

√
8Bmn - see [5].

In [3, 4], Marques established some identities concerning the order of ap-
pearance of the Fibonacci numbers modulo a product of consecutive Fibonacci
and Lucas numbers. In a subsequent paper, Khaochim et al. [2] have extended
Marques’s ideas and examined the period of the Fibonacci sequence modulo
a product of consecutive Fibonacci numbers. In [6], Panda et al. studied
the period of balancing sequence modulo certain primes and also examined
its periodicity modulo the terms of some sequences. According to them, the
period modulo m, denoted by π(m), is defined as the smallest positive integer
l for which {Bl, Bl+1} ≡ {0, 1} (mod m). The rank of balancing sequence
α(n) of a positive integer n is the smallest positive integer k such that n di-
vides Bk, whereas its order o(m) is the order of the least residue of Bα(m)+1

- see [7]. Some relations between the period, rank and order of the balancing
sequence modulo m are also established in [7]. Among others, an important
relation is that the period of the balancing sequence equals the product of its
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rank and order. Subsequently, the moduli for which all the residues appear
with equal frequency with a single period in the balancing sequence have been
investigated by Ray et al. [9].

In the present study, we examine the period of the balancing sequence mod-
ulo a product of consecutive Lucas-balancing numbers. For instance,

π(CnCn+1Cn+2Cn+3) =
6n(n+ 1)(n+ 2)(n+ 3), if n ≡ {1, 2, 7, 8, 13, 14} (mod 18)

2n(n+ 1)(n+ 2)(n+ 3), if n ≡ {3, 4, 5, 6, 9, 10, 11, 12, 16, 17} (mod 18)
2
3n(n+ 1)(n+ 2)(n+ 3), if n ≡ {0, 15} (mod 18).

2. PRELIMINARIES

Certain divisibility properties of balancing numbers were extensively studied
in [5, 10]. In this section, we present some identities that are used subsequently.
Throughout, for any two positive integers a, and b, (a, b) and [a, b] denote their
greatest common divisor and least common multiple, respectively.

The following results relating π(m) are found in [6].

Lemma 2.1. If m divides n, then π(m) divides π(n).

Lemma 2.2. For any natural number n, π(Bn) = 2n.

The following result is found in [7].

Lemma 2.3. For any positive integers m, and n, π([m,n]) = [π(m), π(n)].

The following results are found in [10].

Lemma 2.4. If m,n are any integers with m ≥ 1, then Cm divides Bn if
and only if m divides n and n

m is an even integer.

Lemma 2.5. If m,n are any integers with m ≥ 1, then Cm divides Cn if
and only if m divides n and n

m is an odd integer.

Lemma 2.6. For any n ∈ N and m, k ∈ Z, B2mn+k ≡ (−1)nBk (mod Cm).

3. MAIN RESULTS

In this section, we will examine the period of balancing sequence modulo
a product of consecutive Lucas-balancing numbers. Before proving the main
results, we will establish some identities that are used subsequently.

Lemma 3.1. For any natural number n, π(Cn) = 4n.

Proof. Since B2n = 2BnCn, Cn divides B2n. It follows from Lemma 2.1
that π(Cn) divides π(B2n) and hence π(Cn) divides 4n, in view of Lemma 2.2.
On the other hand, B2n ≡ 0 (mod Cn) and B2n+1 = B2nC1 +B1C2n ≡ C2n =
C2
n + 8B2

n ≡ 8B2
n = C2

n − 1 6≡ 1 (mod Cn). Consequently, π(Cn) > 2n and we
have 2n < π(Cn) ≤ 4n. The result follows, since 4n has no positive divisor
between 2n and 4n. �
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Lemma 3.2. For any natural number n,

π(C1Cn) =

{
4n, if n ≡ 0 (mod 2)
12n, if n ≡ 1 (mod 2).

Proof. Let n ≡ 0 (mod 2). Then (C1, Cn) = 1. By Lemmas 2.3 and 3.1,
we obtain π(C1Cn) = π([3, Cn]) = [π(3), π(Cn)] = [4, 4n] = 4n. On the
other hand, let n ≡ 1 (mod 2). As C1Cn divides B6n, B12n ≡ 0 (mod C1Cn).
Furthermore, B12n+1 ≡ C12n = C2

6n + 8B2
6n = 1 + 16B2

6n ≡ 1 (mod C1Cn).
Therefore, π(C1Cn) divides 12n. In order to complete the proof, we shall show
that π(C1Cn) does not divide 6n, as well as 4n. Since B6n ≡ 0 (mod C1Cn)
and by Lemma 2.6, B6n+1 6≡ 1 (mod C1Cn), which implies that π(C1Cn) does
not divide 6n. Further, as n ≡ 1 (mod 2), (3, Bn) = (3, C2n) = 1. It follows

that B4n
3Cn

= 2B2nC2n
3Cn

= 4BnC2n
3 6∈ Z. Consequently, B4n 6≡ 0 (mod C1Cn) and

hence π(C1Cn) does not divide 4n. This completes the proof. �

Lemma 3.3. For any natural number n,

π(CnCn+2) =

{
2n(n+ 2), if n ≡ 0 (mod 2)
12n(n+ 2), if n ≡ 1 (mod 2).

Proof. Let n ≡ 0 (mod 2). Then (n, n+2) = 2. Consequently, (Cn, Cn+2) =
1. Using Lemmas 2.3 and 3.1 again, we get

π(CnCn+2) = π([Cn, Cn+2]) = [π(Cn), π(Cn+2)]

= [4n, 4(n+ 2)] =
4n× (n+ 2)

(n, n+ 2)
= 2n(n+ 2).

Further, when n ≡ 1 (mod 2), n and n + 2 are relatively prime. Since
π(CnCn+2) = π([Cn, Cn+2](Cn, Cn+2)) and (Cn, Cn+2) = 3, we have

π([Cn, Cn+2](Cn, Cn+2)) = π(3[Cn, Cn+2]).

Using Lemma 2.3, the right-hand side is equal to π([3Cn, 3Cn+2]). By virtue
of Lemma 3.2,

[π(3Cn), π(3Cn+2)] = [12n, 12(n+ 2)] =
12n(n+ 2)

(n, n+ 2)
.

Since (n, n+ 2) = 1, the result follows. �

Now we are in the position to derive our main results. The first result shows
that the period of balancing numbers modulo a product of two consecutive
Lucas-balancing numbers equals four times the product of those consecutive
natural numbers.

Theorem 3.4. For any natural number n, π(CnCn+1) = 4n(n+ 1).

Proof. By Lemma 2.4, Cn divides B2n(n+1) and Cn+1 divides B2n(n+1).
Since (Cn, Cn+1) = 1, CnCn+1 divides B2n(n+1) and hence π(CnCn+1) divides
π(B2n(n+1)) = 4n(n + 1). On the other hand, for α ∈ {0, 1}, Cn+α divides
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CnCn+1. It follows from Lemma 3.1 that 4(n + α) divides π(CnCn+1). But,
for n even or odd, we have either (4n, n+1) = 1 or (n, 4(n+1)) = 1. It follows
that 4n(n+ 1) divides π(CnCn+1), which ends the proof. �

In the next two results, we study the period of balancing numbers modulo
a product of three and four consecutive Lucas-balancing numbers.

Theorem 3.5. For any natural number n,

π(CnCn+1Cn+2) =


2n(n+ 1)(n+ 2), if n ≡ 0 (mod 2)

12n(n+ 1)(n+ 2), if n ≡ {1, 3} (mod 6)

4n(n+ 1)(n+ 2), if n ≡ 5 (mod 6).

Proof. Let n ≡ 0 (mod 2). Then (4(n + 1), 2n(n + 2)) = 4. By Lemmas
3.1, 3.3 and (Cn+1, CnCn+2) = 1, we have

π(CnCn+1Cn+2) = π([Cn+1, CnCn+2]) = [π(Cn+1), π(CnCn+2)]

= [4(n+ 1), 2n(n+ 2)] =
4(n+ 1)× 2n(n+ 2)

(4(n+ 1), 2n(n+ 2))

= 2n(n+ 1)(n+ 2).

Further, if n ≡ {1, 3} (mod 6), then we have (4(n + 1), 12n(n + 2)) = 4.
Since π(CnCn+2) = 12n(n+2), when n ≡ {1, 3} (mod 6), proceeding as above,
we get the desired result.

Finally, for n ≡ 5 (mod 6), we observe that (4(n + 1), 12n(n + 2)) = 12.
Proceeding similarly as above, we get π(CnCn+1Cn+2) = 4n(n + 1)(n + 2),
which ends the proof. �

Theorem 3.6. For any natural number n,

π(CnCn+1Cn+2Cn+3)

=


6n(n+ 1)(n+ 2)(n+ 3), if n ≡ {1, 2, 7, 8, 13, 14} (mod 18)

2n(n+ 1)(n+ 2)(n+ 3), if n ≡ {3, 4, 5, 6, 9, 10, 11, 12, 16, 17} (mod 18)
2n(n+1)(n+2)(n+3)

3 , if n ≡ {0, 15} (mod 18).

Proof. For any natural number n, (CnCn+2, Cn+1Cn+3) = 1. Let n ≡
{1, 7, 13} (mod 18). Then (12n(n + 2), 2(n + 1)(n + 3)) = 4. By Lemmas
2.3 and 3.3,

π(CnCn+1Cn+2Cn+3) = π([CnCn+2, Cn+1Cn+3])

= [π(CnCn+2), π(Cn+1Cn+3)]

= [12n(n+ 2), 2(n+ 1)(n+ 3)]

=
12n(n+ 2)× 2(n+ 1)(n+ 3)

(12n(n+ 2), 2(n+ 1)(n+ 3))

= 6n(n+ 1)(n+ 2)(n+ 3).
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Let n ≡ {2, 8, 14} (mod 18). Then (2n(n + 2), 12(n + 1)(n + 3)) = 4.
Proceeding as above, we get the desired result.

Let n ≡ {4, 6, 10, 12, 16} (mod 18) and n ≡ {3, 5, 9, 11, 17} (mod 18). In
these two cases, (2n(n+2), 12(n+1)(n+3)) and (12n(n+2), 2(n+1)(n+3)) are
equal to 12. A similar simplification as above, yields π(CnCn+1Cn+2Cn+3) =
2n(n+ 1)(n+ 2)(n+ 3).

On the other hand, let n ≡ 0 (mod 18) and n ≡ 15 (mod 18). For both
these cases, (2n(n+2), 12(n+1)(n+3)) and (12n(n+2), 2(n+1)(n+3)) are 36.

Further simplifications show that π(CnCn+1Cn+2Cn+3) = 2n(n+1)(n+2)(n+3)
3 .

This completes the proof. �
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