A NOTE ON NUMERICAL RADIUS AND THE KREǏN-LIN INEQUALITY

SILVESTRU SEVER DRAGOMIR

Abstract

In this note we show that the Kreĭn-Lin triangle inequality can be naturally applied to obtain an elegant reverse for a classical numerical radius power inequality for bounded linear operators on complex Hilbert spaces, due to C. Pearcy.

MSC 2010. 47A63. Key words. Triangle inequality, operator norm, numerical radius.

1. INTRODUCTION

Let $(H,\langle\cdot, \cdot\rangle)$ be a complex inner product space and $x, y \in H$ two nonzero vectors. One can define the angle between the vectors x, y either by the standard formula $\cos \Phi_{x, y}=\frac{\operatorname{Re}\langle x, y\rangle}{\|x\|\|y\|}$ or by $\cos \Psi_{x, y}=\frac{|\langle x, y\rangle|}{\|x\|\|y\|}$. The function $\Psi_{x, y}$ is a natural metric on the complex projective space [6].

In 1969 M. K. Krĕn [5] obtained the following inequality for angles between two vectors

$$
\begin{equation*}
\Phi_{x, y} \leq \Phi_{x, z}+\Phi_{z, y} \tag{1}
\end{equation*}
$$

for any $x, y, z \in H \backslash\{0\}$.
By using the representation

$$
\begin{equation*}
\Psi_{x, y}=\inf _{\alpha, \beta \in \mathbb{C} \backslash\{0\}} \Phi_{\alpha x, \beta y}=\inf _{\alpha \in \mathbb{C} \backslash\{0\}} \Phi_{\alpha x, y}=\inf _{\beta \in \mathbb{C} \backslash\{0\}} \Phi_{x, \beta y} \tag{2}
\end{equation*}
$$

and Krĕ̌n's inequality (1), M. Lin [6] has shown recently that the following triangle inequality is also valid

$$
\begin{equation*}
\Psi_{x, y} \leq \Psi_{x, z}+\Psi_{z, y}, \tag{3}
\end{equation*}
$$

for any $x, y, z \in H \backslash\{0\}$.
In this note we show that the Krĕn-Lin triangle inequality (3) can be naturally applied to obtain an elegant reverse for a classical numerical radius power inequality for bounded linear operators on a complex Hilbert space, due to C. Pearcy [7].

The author thanks the referee for his helpful comments and suggestions.

2. A REVERSE INEQUALITY

Let $(H ;\langle\cdot, \cdot\rangle)$ be a complex Hilbert space. The numerical range of an operator T is the subset of the complex numbers \mathbb{C} given by $[3, \mathrm{p} .1]$:

$$
W(T)=\{\langle T x, x\rangle, x \in H,\|x\|=1\}
$$

The numerical radius $w(T)$ of an operator T on H is given by [3, p. 8]:

$$
\begin{equation*}
w(T)=\sup \{|\lambda|, \lambda \in W(T)\}=\sup \{|\langle T x, x\rangle|,\|x\|=1\} . \tag{4}
\end{equation*}
$$

It is well known that $w(\cdot)$ is a norm on the Banach algebra $B(H)$ of all bounded linear operators $T: H \rightarrow H$. This norm is equivalent to the operator norm. In fact, the following more precise result holds [3, p. 9]:

$$
\begin{equation*}
w(T) \leq\|T\| \leq 2 w(T) \tag{5}
\end{equation*}
$$

for any $T \in B(H)$
For other results on numerical radii, see [4, Chapter 11], [3] and the recent monograph [2].

The following result is well known in the literature [7]:

$$
\begin{equation*}
w\left(T^{n}\right) \leq w^{n}(T), \tag{6}
\end{equation*}
$$

for each positive integer n and any operator $T \in B(H)$.
The following elegant reverse inequality for $n=2$ can be derived from the Krě̆n-Lin triangle inequality (3).

Theorem 2.1. For any $T \in B(H)$, we have

$$
\begin{equation*}
w^{2}(T) \leq w\left(T^{2}\right)+\inf _{\lambda \in \mathbb{C}}\|T-\lambda I\|^{2} \tag{7}
\end{equation*}
$$

Proof. The inequality (3) is equivalent to

$$
\begin{equation*}
\cos \Psi_{x, y} \geq \cos \left(\Psi_{x, z}+\Psi_{y, z}\right)=\cos \Psi_{x, z} \cos \Psi_{y, z}-\sin \Psi_{x, z} \sin \Psi_{y, z} \tag{8}
\end{equation*}
$$

or to

$$
\begin{equation*}
\frac{|\langle x, y\rangle|}{\|x\|\|y\|}+\sqrt{1-\frac{|\langle x, z\rangle|^{2}}{\|x\|^{2}\|z\|^{2}}} \sqrt{1-\frac{|\langle y, z\rangle|^{2}}{\|y\|^{2}\|z\|^{2}}} \geq \frac{|\langle x, z\rangle|}{\|x\|\|z\|} \frac{|\langle y, z\rangle|}{\|y\|\|z\|}, \tag{9}
\end{equation*}
$$

for any $x, y, z \in H \backslash\{0\}$.
If we multiply (10) by $\|x\|\|z\|^{2}\|y\|>0$, then we get

$$
\begin{align*}
&|\langle x, y\rangle|\|z\|^{2}+\sqrt{\|x\|^{2}\|z\|^{2}-|\langle x, z\rangle|^{2}} \sqrt{\|y\|^{2}\|z\|^{2}-|\langle y, z\rangle|^{2}} \tag{10}\\
& \geq|\langle x, z\rangle||\langle y, z\rangle| .
\end{align*}
$$

We notice that the inequality (10) remains true, becoming equality, if either $x=0$ or $y=0$ or $z=0$.

We know that, for any $u, e \in H$ with $\|e\|=1$, we have the representation (see for instance [1, Lemma 2.4])

$$
\|u\|^{2}-|\langle u, e\rangle|^{2}=\|u-\langle u, e\rangle e\|^{2}=\inf _{\lambda \in \mathbb{C}}\|u-\lambda e\|^{2} .
$$

Then, by (10), we have, for any $x, y, z \in H$ with $\|z\|=1$, that

$$
\begin{equation*}
|\langle x, y\rangle|+\inf _{\lambda \in \mathbb{C}}\|x-\lambda z\| \inf _{\mu \in \mathbb{C}}\|y-\mu z\| \geq|\langle x, z\rangle||\langle y, z\rangle| \tag{11}
\end{equation*}
$$

By taking $x=T z$ and $y=T^{*} z$ in (11), we get

$$
\begin{aligned}
|\langle T z, z\rangle|\left|\left\langle T^{*} z, z\right\rangle\right| & \leq\left|\left\langle T z, T^{*} z\right\rangle\right|+\inf _{\lambda \in \mathbb{C}}\|T z-\lambda z\| \inf _{\mu \in \mathbb{C}}\left\|T^{*} z-\mu z\right\| \\
& \leq\left|\left\langle T z, T^{*} z\right\rangle\right|+\|T z-\lambda z\|\left\|T^{*} z-\mu z\right\|,
\end{aligned}
$$

for any $z \in H$ with $\|z\|=1$ and $\lambda, \mu \in \mathbb{C}$.
Therefore

$$
|\langle T z, z\rangle|^{2} \leq\left|\left\langle T^{2} z, z\right\rangle\right|+\|T z-\lambda z\|\left\|T^{*} z-\mu z\right\|
$$

for any $z \in H$ with $\|z\|=1$ and $\lambda, \mu \in \mathbb{C}$.
By taking the supremum over $z \in H$ with $\|z\|=1$, we deduce

$$
\begin{equation*}
w^{2}(T) \leq w\left(T^{2}\right)+\|T-\lambda I\|\left\|T^{*}-\mu I\right\| \tag{12}
\end{equation*}
$$

for any $\lambda, \mu \in \mathbb{C}$.
Finally, by taking the infimum in (12) over $\lambda, \mu \in \mathbb{C}$ and since

$$
\inf _{\mu \in \mathbb{C}}\left\|T^{*}-\mu I\right\|=\inf _{\mu \in \mathbb{C}}\|T-\bar{\mu} I\|=\inf _{\lambda \in \mathbb{C}}\|T-\lambda I\|,
$$

we deduce the desired result (7).
Corollary 2.2. Let $T \in B(H)$. If there exist $\omega \in \mathbb{C}$ and $r>0$ such that $\|T-\omega I\| \leq r$, then $w^{2}(T) \leq w\left(T^{2}\right)+r^{2}$.

REFERENCES

[1] S.S. Dragomir, Some Grüss type inequalities in inner product spaces, JIPAM, 4 (2003), 1-10.
[2] S.S. Dragomir, Inequalities for the numerical radius of linear operators in Hilbert spaces, Springer Briefs in Mathematics, Springer, Cham, 2013.
[3] K.E. Gustafson and D.K.M. Rao, Numerical range, Springer-Verlag, New York, 1997.
[4] P.R. Halmos, A Hilbert space problem book (second edition), Springer-Verlag, New York, 1982.
[5] M.K. Kreĭn, Angular localization of the spectrum of a multiplicative integral in a Hilbert space, Funct. Anal. Appl., 3 (1969), 89-90.
[6] M. Lin, Remarks on Kreĭn's inequality, Math. Intelligencer, 34 (2012), 3-4.
[7] C. Pearcy, An elementary proof of the power inequality for the numerical radius, Michigan Math. J., 13 (1966), 289-291.

Received March 13, 2018
Accepted May 22, 2018

Victoria University
Mathematics, College of Engineering \& Science
PO Box 14428
Melbourne City, MC 8001, Australia
E-mail: sever.dragomir@vu.edu.au

