A NOTE ON NUMERICAL RADIUS AND THE KREĬN-LIN INEQUALITY

SILVESTRU SEVER DRAGOMIR

Abstract. In this note we show that the Kreĭn-Lin triangle inequality can be naturally applied to obtain an elegant reverse for a classical numerical radius power inequality for bounded linear operators on complex Hilbert spaces, due to C. Pearcy.

MSC 2010. 47A63. Key words. Triangle inequality, operator norm, numerical radius.

1. INTRODUCTION

Let $(H, \langle \cdot, \cdot \rangle)$ be a complex inner product space and $x, y \in H$ two nonzero vectors. One can define the *angle* between the vectors x, y either by the standard formula $\cos \Phi_{x,y} = \frac{\operatorname{Re} \langle x, y \rangle}{\|x\| \|y\|}$ or by $\cos \Psi_{x,y} = \frac{|\langle x, y \rangle|}{\|x\| \|y\|}$. The function $\Psi_{x,y}$ is a natural metric on the complex projective space [6].

In 1969 M. K. Kreĭn [5] obtained the following inequality for angles between two vectors

(1)
$$\Phi_{x,y} \le \Phi_{x,z} + \Phi_{z,y},$$

for any $x, y, z \in H \setminus \{0\}$.

By using the representation

(2)
$$\Psi_{x,y} = \inf_{\alpha,\beta \in \mathbb{C} \setminus \{0\}} \Phi_{\alpha x,\beta y} = \inf_{\alpha \in \mathbb{C} \setminus \{0\}} \Phi_{\alpha x,y} = \inf_{\beta \in \mathbb{C} \setminus \{0\}} \Phi_{x,\beta y}$$

and Kreĭn's inequality (1), M. Lin [6] has shown recently that the following triangle inequality is also valid

(3)
$$\Psi_{x,y} \le \Psi_{x,z} + \Psi_{z,y},$$

for any $x, y, z \in H \setminus \{0\}$.

In this note we show that the Kreĭn-Lin triangle inequality (3) can be naturally applied to obtain an elegant reverse for a classical numerical radius power inequality for bounded linear operators on a complex Hilbert space, due to C. Pearcy [7].

The author thanks the referee for his helpful comments and suggestions.

DOI: 10.24193/mathcluj.2018.2.06

2. A REVERSE INEQUALITY

Let $(H; \langle \cdot, \cdot \rangle)$ be a complex Hilbert space. The *numerical range* of an operator T is the subset of the complex numbers \mathbb{C} given by [3, p. 1]:

 $W(T) = \{ \langle Tx, x \rangle, \ x \in H, \ ||x|| = 1 \}.$

The numerical radius w(T) of an operator T on H is given by [3, p. 8]:

(4)
$$w(T) = \sup\{|\lambda|, \lambda \in W(T)\} = \sup\{|\langle Tx, x \rangle|, \|x\| = 1\}.$$

It is well known that $w(\cdot)$ is a *norm* on the Banach algebra B(H) of all bounded linear operators $T: H \to H$. This norm is equivalent to the operator norm. In fact, the following more precise result holds [3, p. 9]:

(5)
$$w\left(T\right) \le \|T\| \le 2w\left(T\right),$$

for any $T \in B(H)$

For other results on numerical radii, see [4, Chapter 11], [3] and the recent monograph [2].

The following result is well known in the literature [7]:

(6)
$$w\left(T^{n}\right) \leq w^{n}\left(T\right)$$

for each positive integer n and any operator $T \in B(H)$.

The following elegant reverse inequality for n = 2 can be derived from the Kreĭn-Lin triangle inequality (3).

THEOREM 2.1. For any $T \in B(H)$, we have

(7)
$$w^{2}(T) \leq w\left(T^{2}\right) + \inf_{\lambda \in \mathbb{C}} \|T - \lambda I\|^{2}.$$

Proof. The inequality (3) is equivalent to

(8)
$$\cos \Psi_{x,y} \ge \cos (\Psi_{x,z} + \Psi_{y,z}) = \cos \Psi_{x,z} \cos \Psi_{y,z} - \sin \Psi_{x,z} \sin \Psi_{y,z}$$

or to

(9)
$$\frac{|\langle x, y \rangle|}{\|x\| \|y\|} + \sqrt{1 - \frac{|\langle x, z \rangle|^2}{\|x\|^2 \|z\|^2}} \sqrt{1 - \frac{|\langle y, z \rangle|^2}{\|y\|^2 \|z\|^2}} \ge \frac{|\langle x, z \rangle|}{\|x\| \|z\|} \frac{|\langle y, z \rangle|}{\|y\| \|z\|},$$

for any $x, y, z \in H \setminus \{0\}$.

If we multiply (10) by $||x|| ||z||^2 ||y|| > 0$, then we get

(10)
$$|\langle x, y \rangle| \, ||z||^2 + \sqrt{||x||^2 ||z||^2 - |\langle x, z \rangle|^2} \sqrt{||y||^2 ||z||^2 - |\langle y, z \rangle|^2} \\ \geq |\langle x, z \rangle| \, |\langle y, z \rangle| \, .$$

We notice that the inequality (10) remains true, becoming equality, if either x = 0 or y = 0 or z = 0.

We know that, for any $u, e \in H$ with ||e|| = 1, we have the representation (see for instance [1, Lemma 2.4])

$$||u||^2 - |\langle u, e \rangle|^2 = ||u - \langle u, e \rangle e||^2 = \inf_{\lambda \in \mathbb{C}} ||u - \lambda e||^2.$$

Then, by (10), we have, for any $x, y, z \in H$ with ||z|| = 1, that

(11)
$$|\langle x, y \rangle| + \inf_{\lambda \in \mathbb{C}} ||x - \lambda z|| \inf_{\mu \in \mathbb{C}} ||y - \mu z|| \ge |\langle x, z \rangle| |\langle y, z \rangle|.$$

By taking x = Tz and $y = T^*z$ in (11), we get

$$\begin{aligned} \langle Tz, z \rangle | | \langle T^*z, z \rangle | &\leq | \langle Tz, T^*z \rangle | + \inf_{\lambda \in \mathbb{C}} ||Tz - \lambda z|| \inf_{\mu \in \mathbb{C}} ||T^*z - \mu z| \\ &\leq | \langle Tz, T^*z \rangle | + ||Tz - \lambda z|| ||T^*z - \mu z||, \end{aligned}$$

for any $z \in H$ with ||z|| = 1 and $\lambda, \mu \in \mathbb{C}$.

Therefore

$$\left|\langle Tz, z \rangle\right|^{2} \leq \left|\langle T^{2}z, z \rangle\right| + \|Tz - \lambda z\|\|T^{*}z - \mu z\|,$$

for any $z \in H$ with ||z|| = 1 and $\lambda, \mu \in \mathbb{C}$.

By taking the supremum over $z \in H$ with ||z|| = 1, we deduce

12)
$$w^{2}(T) \leq w(T^{2}) + ||T - \lambda I|| ||T^{*} - \mu I||,$$

for any $\lambda, \mu \in \mathbb{C}$.

(

Finally, by taking the infimum in (12) over $\lambda, \mu \in \mathbb{C}$ and since

$$\inf_{\mu \in \mathbb{C}} \|T^* - \mu I\| = \inf_{\mu \in \mathbb{C}} \|T - \overline{\mu}I\| = \inf_{\lambda \in \mathbb{C}} \|T - \lambda I\|$$

we deduce the desired result (7).

COROLLARY 2.2. Let $T \in B(H)$. If there exist $\omega \in \mathbb{C}$ and r > 0 such that $||T - \omega I|| \le r$, then $w^2(T) \le w(T^2) + r^2$.

REFERENCES

- S.S. Dragomir, Some Grüss type inequalities in inner product spaces, JIPAM, 4 (2003), 1–10.
- S.S. Dragomir, Inequalities for the numerical radius of linear operators in Hilbert spaces, Springer Briefs in Mathematics, Springer, Cham, 2013.
- [3] K.E. Gustafson and D.K.M. Rao, Numerical range, Springer-Verlag, New York, 1997.
- [4] P.R. Halmos, A Hilbert space problem book (second edition), Springer-Verlag, New York, 1982.
- [5] M.K. Krein, Angular localization of the spectrum of a multiplicative integral in a Hilbert space, Funct. Anal. Appl., 3 (1969), 89–90.
- [6] M. Lin, Remarks on Krein's inequality, Math. Intelligencer, 34 (2012), 3-4.
- [7] C. Pearcy, An elementary proof of the power inequality for the numerical radius, Michigan Math. J., 13 (1966), 289–291.

Received March 13, 2018 Accepted May 22, 2018 Victoria University Mathematics, College of Engineering & Science PO Box 14428 Melbourne City, MC 8001, Australia E-mail: sever.dragomir@vu.edu.au