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A NOTE ON NUMERICAL RADIUS
AND THE KREĬN-LIN INEQUALITY

SILVESTRU SEVER DRAGOMIR

Abstract. In this note we show that the Krĕın-Lin triangle inequality can be
naturally applied to obtain an elegant reverse for a classical numerical radius
power inequality for bounded linear operators on complex Hilbert spaces, due to
C. Pearcy.
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1. INTRODUCTION

Let (H, 〈·, ·〉) be a complex inner product space and x, y ∈ H two nonzero
vectors. One can define the angle between the vectors x, y either by the

standard formula cos Φx,y =
Re 〈x, y〉
‖x‖‖y‖

or by cos Ψx,y =
|〈x, y〉|
‖x‖‖y‖

. The function

Ψx,y is a natural metric on the complex projective space [6].
In 1969 M. K. Krĕın [5] obtained the following inequality for angles between

two vectors

(1) Φx,y ≤ Φx,z + Φz,y,

for any x, y, z ∈ H \ {0} .
By using the representation

(2) Ψx,y = inf
α,β∈C\{0}

Φαx,βy = inf
α∈C\{0}

Φαx,y = inf
β∈C\{0}

Φx,βy

and Krĕın’s inequality (1), M. Lin [6] has shown recently that the following
triangle inequality is also valid

(3) Ψx,y ≤ Ψx,z + Ψz,y,

for any x, y, z ∈ H \ {0} .
In this note we show that the Krĕın-Lin triangle inequality (3) can be natu-

rally applied to obtain an elegant reverse for a classical numerical radius power
inequality for bounded linear operators on a complex Hilbert space, due to C.
Pearcy [7].
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2. A REVERSE INEQUALITY

Let (H; 〈·, ·〉) be a complex Hilbert space. The numerical range of an oper-
ator T is the subset of the complex numbers C given by [3, p. 1]:

W (T ) = {〈Tx, x〉 , x ∈ H, ‖x‖ = 1} .
The numerical radius w (T ) of an operator T on H is given by [3, p. 8]:

(4) w (T ) = sup {|λ| , λ ∈W (T )} = sup {|〈Tx, x〉| , ‖x‖ = 1} .
It is well known that w (·) is a norm on the Banach algebra B (H) of all

bounded linear operators T : H → H. This norm is equivalent to the operator
norm. In fact, the following more precise result holds [3, p. 9]:

(5) w (T ) ≤ ‖T‖ ≤ 2w (T ) ,

for any T ∈ B (H)
For other results on numerical radii, see [4, Chapter 11], [3] and the recent

monograph [2].
The following result is well known in the literature [7]:

(6) w (Tn) ≤ wn (T ) ,

for each positive integer n and any operator T ∈ B(H).
The following elegant reverse inequality for n = 2 can be derived from the

Krĕın-Lin triangle inequality (3).

Theorem 2.1. For any T ∈ B (H), we have

(7) w2 (T ) ≤ w
(
T 2
)

+ inf
λ∈C
‖T − λI‖2.

Proof. The inequality (3) is equivalent to

(8) cos Ψx,y ≥ cos (Ψx,z + Ψy,z) = cos Ψx,z cos Ψy,z − sin Ψx,z sin Ψy,z

or to

(9)
|〈x, y〉|
‖x‖‖y‖

+

√
1− |〈x, z〉|

2

‖x‖2‖z‖2

√
1− |〈y, z〉|

2

‖y‖2‖z‖2
≥ |〈x, z〉|
‖x‖‖z‖

|〈y, z〉|
‖y‖‖z‖

,

for any x, y, z ∈ H \ {0} .
If we multiply (10) by ‖x‖‖z‖2‖y‖ > 0, then we get

(10) |〈x, y〉| ‖z‖2 +

√
‖x‖2‖z‖2 − |〈x, z〉|2

√
‖y‖2‖z‖2 − |〈y, z〉|2
≥ |〈x, z〉| |〈y, z〉| .

We notice that the inequality (10) remains true, becoming equality, if either
x = 0 or y = 0 or z = 0.

We know that, for any u, e ∈ H with ‖e‖ = 1, we have the representation
(see for instance [1, Lemma 2.4])

‖u‖2 − |〈u, e〉|2 = ‖u− 〈u, e〉 e‖2 = inf
λ∈C
‖u− λe‖2.
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Then, by (10), we have, for any x, y, z ∈ H with ‖z‖ = 1, that

(11) |〈x, y〉|+ inf
λ∈C
‖x− λz‖ inf

µ∈C
‖y − µz‖ ≥ |〈x, z〉| |〈y, z〉| .

By taking x = Tz and y = T ∗z in (11), we get

|〈Tz, z〉| |〈T ∗z, z〉| ≤ |〈Tz, T ∗z〉|+ inf
λ∈C
‖Tz − λz‖ inf

µ∈C
‖T ∗z − µz‖

≤ |〈Tz, T ∗z〉|+ ‖Tz − λz‖‖T ∗z − µz‖,
for any z ∈ H with ‖z‖ = 1 and λ, µ ∈ C.

Therefore

|〈Tz, z〉|2 ≤
∣∣〈T 2z, z

〉∣∣+ ‖Tz − λz‖‖T ∗z − µz‖,
for any z ∈ H with ‖z‖ = 1 and λ, µ ∈ C.

By taking the supremum over z ∈ H with ‖z‖ = 1, we deduce

(12) w2 (T ) ≤ w
(
T 2
)

+ ‖T − λI‖‖T ∗ − µI‖,
for any λ, µ ∈ C.

Finally, by taking the infimum in (12) over λ, µ ∈ C and since

inf
µ∈C
‖T ∗ − µI‖ = inf

µ∈C
‖T − µI‖ = inf

λ∈C
‖T − λI‖,

we deduce the desired result (7). �

Corollary 2.2. Let T ∈ B (H). If there exist ω ∈ C and r > 0 such that
‖T − ωI‖ ≤ r, then w2 (T ) ≤ w

(
T 2
)

+ r2.
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