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A SPECTRAL METHOD FOR FOURTH-ORDER
BOUNDARY VALUE PROBLEMS

NADRA BOUARROUDJ, LEKHMISSI BELAIB, and BEKKAI MESSIRDI

Abstract. Boundary-value problems for fourth-order partial differential equa-
tions are studied in this paper; more precisely, vibrational phenomena of plates in
an incompressible non-viscous fluid along the edge are mathematically analyzed.
The spectral method via the variational formulation is used to prove existence,
uniqueness and regularity theorems for the strong solution. We discuss also a
discrete variational formulation for the considered problem.
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1. INTRODUCTION

The spectral methods (of approximation) are used to approximate solutions
of partial differential equations by means of truncated series of orthogonal
functions (eigenfunctions). They are particularly attractive, since the distance
between the solution of the problem and its spectral approximation depends
only on the smoothness of the solution - see [4, 1]. The spectral method has
been applied successfully in numerical simulations in science and engineering.
It is well known that many topics in mathematical physics require the inves-
tigation of the eigenvalues and eigenfunctions of the linear boundary value
problems. In the presence of nonlinearities, linearization approaches are often
used to convert the given original problem to an equivalent linear integro-
differential equation which implies all boundary condition (see e.g. [6, 2]).
The spectral methods enjoy a variety of well known virtues for the solution of
the ordinary and partial differential equations.

The aim of this paper is to develop a spectral method for fourth order
problems with mixed boundary conditions. We shall consider the following
inhomogeneous boundary value problem:

(1) (P0)

 ∆2u+ α∂ttu− β∂tt∆u = f, in ]0, T [× Ω,
u(., 0) = u0, ∂tu(., 0) = u1 in Ω,
u = ∂nu = 0 in ]0, T [× Γ,
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where Ω is an open bounded and convex set in R2 with polygonal bound-
ary Γ, f ∈ L2(]0, T [ ;L2(Ω)), T > 0, and ∂n is the normal derivative on Γ
with α ≥ 0, β ≥ 0. ∆2 is the biLaplacian; it appears in various problems of
linear elasticity, for example when looking at small displacements of a plate.
Hp((]0, T [ ;L2(Ω)) is the Sobolev space of L2(Ω)-valued functions on ]0, T [
with p-summable weak derivative, p ∈ [0,+∞[. Cq(]0, T [;L2(Ω)) is the space
of continuously q−differentiable functions of L2(Ω)-valued functions on ]0, T [ ,
q ∈ N.

When Γ is smooth, the existence and uniqueness of the solution of non-
linear problems governed by the biharmonic equations in the plane is usually
obtained by using Green’s formula [5]. If Γ is nonsmooth, the situation is more
complicated and brings certain additional difficulties. (P0) can be solved by
Hilbertian decomposition. For this purpose it is very convenient to choose an
orthonormal basis of the basic Hilbert space consisting of the eigenfunctions
of a perturbation of ∆2 with Dirichlet and Neumann conditions on Γ. More
precisely, one of the proposed approaches to solve the problem (P0) is to define
the solution u with respect to the basis of eigenfunctions of the system (1).
For this, we compute the eigenvalues and eigenvectors of the system (1), we
set f = 0 and we look for a solution of the form u(x, t) = ψ(x)φ(t), in view
of separation of variables x and t. We are therefore led to find the spectral
parameters λ ∈ R, for which there exists a non-zero eigenfunction w : Ω→ R
satisfying the stationary mixed clamped and buckled plate eigenvalue problem
for ∆2

(2)

 ∆2w = λ(αw − β∆w), ae in Ω,
w = 0 on Γ,
∂nw = 0 on Γ.

Problem (2) arises in the study of the vibration modes of a free elastic plate
subject to lateral tension (represented by the parameters α and β), whose to-
tal mass is concentrated at the boundary. This concentration phenomenon is
described by the spectrum of the eigenvalue problem. This, combined with the
variational formulation, allows us to prove existence, uniqueness and regulari-
ty theorems of the strong solution and conclude that the problem (1) is well
posed. The paper is organized as follows. In Section 2, we formulate the non-
linear boundary problem and present some preliminary results for the bound-
ary value problems for the biharmonic equation. Section 3 contains the core
materials for the basic boundary integral equations. Theorem 3 in Section 3
contains the main result concerning existence, uniqueness and regularity of the
solution of the problem (1). In Section 4, we discuss the discrete variational
formulation of the problem.

2. FORMULATION OF THE STATIONARY PROBLEM

We first recall some spectral analysis results that can be found in [3]. We
particularly characterize some properties of the variational equations that
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guarantee the existence of a unique solution. Then, in every concrete situ-
ation, one has only to check these properties. Let V and H be two real Hilbert
spaces such that

(3) V ⊂ H, V is dense in H.

Furthermore, let there be given two linear forms, a(., .) defined on V × V and
b(., .) defined on H ×H such that

(4)

{
a(., .) is symetric, continuous and V -elliptical,
b(., .) is symetric, continuous and H-elliptical.

The existence and uniqueness of the solutions of the variational equations
a(w, v) = λb(w, v), λ ∈ R, is ensured by a general version of the Lax-Milgram
theorem [7]. Indeed, there exist a real increasing sequence (λn)n≥1 such that,
0 ≤ λ1 ≤ λ2 ≤ ... ≤ λn ≤ .... and a basis (wn)n≥1 of H, where each wn is
an eigenvector of V and (wn)n≥1 is orthonormalized in H with respect to the
scalar product defined by the form b(., .):

(5)

{
a(wn, v) = λnb(wn, v), ∀v ∈ V,∀n ≥ 1,

b(wn, wm) = δnm,∀n,m ≥ 1.

We remark that, if we put

(6) vn =
1√
λn
wn, ∀n ≥ 1,

then a(vn, vm) = δnm, for all n,m ≥ 1. This means that (vn)n≥1 is an or-
thonormal basis of V with respect to the scalar product defined by the form
a(., .). We also note that, for every w ∈ H and v ∈ V ,

w =
∑
n≥1

αnwn and v =
∑
n≥1

βnvn,

where αn, βn ∈ R, for all n ≥ 1.
Now, we formulate the weakly stationary problem (2). Taking into account

the boundary conditions, we apply Green’s formula twice to obtain, for all
v ∈ H4(Ω) and w ∈ H2

0 (Ω),

∫
Ω

(
∆2v

)
wdx =

∫
Γ
∂n (∆v)wds−

∫
Ω
∇(∆v)∇wdx

= −
∫

Γ
∆v∂nwds+

∫
Ω

∆v∆wdx

=

∫
Ω

∆v∆wdx

(7)
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and

(8)

∫
Ω

∆vwdx = −
∫
Ω

∇v∇wdx.

Therefore, the weak formulation of the given problem reads as follows. Find
w ∈ H2

0 (Ω) such that

(Var)

∫
Ω

∆v∆wdx = λ

α ∫
Ω

vwdx+ β

∫
Ω

∇v∇wdx

 for all v ∈ H2
0 (Ω).

Let us put

V = H2
0 (Ω) and H =

{
H1

0 (Ω) if β > 0
L2(Ω) if β = 0.

and the associated forms for v ∈ V

(9)


a(v, w) =

∫
Ω

∆v∆wdx,

b(v, w) = α
∫
Ω

vwdx+ β
∫
Ω

∇v∇wdx.

The variational equation (Var) can be written in the abstract form

a(w, v) = λb(w, v), for all v ∈ V.

Using the Friedrichs inequality, we remark that the previous hypothesis are
satisfied. From the above result, we deduce the existence of two sequences
(λn)n≥1 ∈ R∗+ and (wn)n≥1 ∈ V orthonormal in H such that

(10)



0 ≤ λn ≤ λn+1, for all n ≥ 1,

a(wn, v) = λnb(wn, v), for all n ≥ 1 and v ∈ V,
b(wn, wm) = δnm, for all n,m ≥ 1,

vn = 1√
λn
wn ∈ V, for all n ≥ 1,

a(vn, vm) = δnm, for all n,m ≥ 1.

For all w ∈ H and v ∈ V, there exists (αn)n≥1 and

(βn)n≥1 in R, such that w =
∑
n≥1

αnwn and v =
∑
n≥1

βnvn.

Thus,

∆2wn = λn(αwn − β∆wn), for all n ≥ 1,

almost everywhere on Ω.

3. EXISTENCE, UNICITY AND REGULARITY OF THE NON-STATIONARY

PROBLEM

Let us now proceed to discussing some solvability results of the problem
(P0), where f ∈ L2(]0, T [;L2(Ω)), u0 ∈ H2

0 (Ω) and u1 ∈ H1
0 (Ω).
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Theorem 3.1. For u = u(t), t ∈ ]0, T [ , sufficiently regular, the weak for-
mulation of the problem (P0) is expressed by

(11) a(u(t), v) +
d2

dt2
b(u(t), v) =

∫
Ω

f(t)vdΩ, ∀v ∈ H2
0 (Ω), ∀t ∈ ]0, T [ ,

where u(t) = u(x, t), x ∈ Ω and t ∈]0, T [.

Proof. Multiply equation (1) by a function v ∈ H2
0 (Ω) and, using the Green

formula and taking into account (7) and (8), deduce formula (11). �

Theorem 3.2. Under the conditions f ∈ L2(]0, T [;L2(Ω)), u0 ∈ H2
0 (Ω) and

u1 ∈ H1
0 (Ω), the problem (11) admits a unique solution u ∈C0(]0, T [ ;H2

0 (Ω))∩
C1(]0, T [ ;H1

0 (Ω)).

Proof. Since u(t) ∈ C0(]0, T [ ;H2
0 (Ω)), we have

(12) u(t) =
∑
m≥1

ξm(t)wm,

where ξm(t) = b(u(t), wm) and

(13) a(wm, v) = λmb(wm, v).

Let, for all m ≥ 1,

(14) φm(t) =

∫
Ω

f(t, x)wm(x)dx.

We obtain from (11), that for all n ≥ 1 and t ∈ ]0, T [,

(15)
∑
m≥1

ξm(t)a(wm, wn) +
∑
m≥1

d2ξm
dt2

(t)b(wm, wn) = φn(t).

Using (10), we have:

(16)
d2ξn
dt2

(t) + λnξn(t) = φn(t), for all n ≥ 1 and t ∈ ]0, T [ .

On the other hand, according to (10), we have

(17) u0(x) =
∑
m≥1

ξ0mwm(x) and u1(x) =
∑
m≥1

ξ1mwm(x),

where ξ0m(t) = b(u0, wm) and ξ1m(t) = b(u1, wm).
The relation (11) can be reduced to the system

(p0)

{
d2ξn
dt2

(t) + λnξn(t) = φn(t), for all n ≥ 1 and t ∈ ]0, T [ ,

ξn(0) = ξ0n,
dξ
dt (0) = ξ1n.

The Cauchy problem (p0) can be easily solved by the method of variation
of parameters, using the two linearly independent solutions cos(

√
λnt) and
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1√
λn

sin(
√
λnt) of the homogenous part and the initial conditions, the explicit

solution of this system is given by

(18) ξn(t) = b(u0, wn) cos(
√
λnt) +

1√
λn
b(u1, wn) sin(

√
λnt) +

1√
λn
An(t),

with

(19) An(t) =

∫ t

0
φn(s) sin(

√
λn(t− s))ds,

where φn(t) is given by the relation (14).
According to the explicit expression of ξn(t), we find that, if the function u

is the solution of the problem (11), it is given by
(20)

u(t) =
∑
n≥1

{
b(u0, wn) cos(

√
λnt) +

1√
λn
b(u1, wn) sin(

√
λnt) +

1√
λn
An(t)

}
wn,

we deduce the uniqueness of the solution u.
Let us put

M(t) =

(
cos t sin t
− sin t cos t

)
.

Then, from equation (18), we can write

(21)

(√
λnξn(t)
dξn
dt (t)

)
= M(

√
λnt)

(√
λnb(u0, wn)
b(u1, wn)

)
+

∫ t

0
M(
√
λn(t− s))

(
0

φn(s)

)
.

For the existence of the solution, we construct an approximate solution um of
the problem (11) on a subspace Vm of V :

(22) um(t) =
m∑
i=1

ξi(t)wi.

Using equation (21) and the approximate problem of (11), we can show that
um(t) is a Cauchy sequence in C0(]0, T [ ;H2

0 (Ω)) and C1(]0, T [ ;H1
0 (Ω)). Since

these two spaces are complete, we deduce that the sequence (um)m converges
to a function u in C0(]0, T [ ;H2

0 (Ω)) ∩ C1(]0, T [ ;H1
0 (Ω)). This limit satisfies

problem (11). �

4. DISCRETE VARIATIONAL FORMULATION

In order to obtain a numerical solution of the problem (P0) in H, we shall

approximate the operator L = a(u(t), v)+ d2

dt2
b(u(t), v) =

∫
Ω

f(t)vdx by a family

of “discrete” operators LN , N ∈ N. Every “discrete” operator will be defined
on a finite dimensional subspace Vh of V, in which the solution will be searched
and its co-domain is a subspace Wh of H.
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Under the hypotheses (3) and (4), let us consider

(23)

{
Vh a finite-dimensional subspace of V = H2

0 (Ω),
n = dimVh, (ϕhi)1≤i≤n, is a basis of Vh.

Under the assumptions (3), (4) and (23), there exists an increasing finite
sequence of eigenvalues

(24) 0 < λ1 ≤ λ2 ≤ ...λn
and eigenvectors

(
Xi
h

)
1≤i≤n of the pair (A,B)

(25) Xi
h ∈ Rn, Xi

h 6= 0, 1 ≤ i ≤ n,

were the matrices A and B are defined in Rn×n by

(26)

{
Aij = a(ϕhi , ϕhj ), 1 ≤ i, j ≤ n
Bij = b(ϕhi , ϕhj ), 1 ≤ i, j ≤ n.

Assumptions (4) ensure that A and B are symmetric and positive definite ma-
trices. Using the variational formulation of Section 2 and the results obtained
in Section 3, we establish the following theorem.

Theorem 4.1. The problem{
Find uh ∈ Vh such that
a(uh, vh) = λhb(uh, vh), for all vh ∈ Vh,

is equivalent to the matrix spectral problem:

(27) AXi
h = λiBX

i
h, 1 ≤ i ≤ n.

We can then use the Cholesky decomposition and put B = M tM , where M
is upper triangular with positive diagonal elements.

We replace equation (27) by

AXi
h = λiBX

i
h ⇔ AXi

h = λiM
tMXi

h

⇔ (M t)−1AM−1MXi
h = λiMXi

h

⇔ Fηi = λiηi ,

where F = (M t)−1AM−1 is a symmetric positive definite matrix and ηi =
MXi

h.

CONCLUSION

In this note, we present a method based on spectral tools (this method
was used for the heat and the wave problem in the Laplacian case) and we
generalize it for the fourth order operator.

In future work, we will test numerically this method on a 2D rectangular
domain. We aim also to extend this study for 3D domains.
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[6] E. Şen, On spectral properties of a fourth-order boundary value problem, Ain Shams

Engineering Journal, 4 (2013), 531–537.
[7] P.-A. Raviart and J.-M. Thomas, Introduction à l’analyse numérique des équations aux
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