MATHEMATICA, 60 (83), N° 2, 2018, pp. 103–110

A TOPOLOGY VIA ω -LOCAL FUNCTIONS IN IDEAL SPACES

AHMAD AL-OMARI and HANAN AL-SAADI

Abstract. The class of ω -closed subsets of a space (X, τ) was defined to introduce ω -closed functions. The purpose of this paper to introduce the notion of ω -local functions and to give some of its basic properties in an ideal topological space. Moreover, we define and investigate the ω -compatible spaces. **MSC 2010.** 54A05, 54C10.

Key words. Ideal, Kuratowski, local function, ω -open set, compatible space.

1. INTRODUCTION AND PRELIMINARIES

A point $x \in X$ is called a condensation point of A, if for each $U \in \tau$ with $x \in U$, the set $U \cap A$ is uncountable. A is said to be ω -closed - see [12] - if it contains all its condensation points. The complement of an ω -closed set is said to be ω -open. It is well known that a subset W of a space (X, τ) is ω -open if and only if, for each $x \in W$, there exists $U \in \tau$ such that $x \in U$ and U - W is countable. The family of all ω -open subsets of a space (X, τ) , denoted by τ_{ω} or $\omega O(X)$, forms a topology on X finer than τ . The ω -closure and ω -interior, which can be defined in the same way as Cl(A) and Int(A), respectively, will be denoted by $Cl_{\omega}(A)$ and $Int_{\omega}(A)$, respectively. Several characterizations of ω -closed subsets and ideal spaces were provided in [1, 2, 3, 5, 6, 7, 9, 12, 13].

Let (X, τ) be a topological space with no separation properties assumed. For a subset A of a topological space (X, τ) , Cl(A) and Int(A) denote the closure and the interior of A in (X, τ) , respectively. An ideal \mathcal{I} on a topological space (X, τ) is a non-empty collection of subsets of X which satisfies the properties: (1) $A \in \mathcal{I}$ and $B \subseteq A$ imply that $B \in \mathcal{I}$; (2) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ imply $A \cup B \in \mathcal{I}$.

An ideal topological space is a topological space (X, τ) with an ideal \mathcal{I} on X and is denoted by (X, τ, \mathcal{I}) . For a subset $A \subseteq X$, $A^*(\mathcal{I}, \tau) = \{x \in X : A \cap U \notin \mathcal{I} \text{ for every open set } U \text{ containing } x\}$ is called the local function of A with respect to \mathcal{I} and τ (see [11, 14]). We simply write A^* instead of $A^*(\mathcal{I}, \tau)$, when there is no chance for confusion. For every ideal topological space (X, τ, \mathcal{I}) , there exists a topology $\tau^*(\mathcal{I})$, finer than τ , generated by the base $\beta(\mathcal{I}, \tau) = \{U - J : U \in \tau \text{ and } J \in \mathcal{I}\}$. It is known - see [11] - that $\beta(\mathcal{I}, \tau)$ is not always a topology. When there is no ambiguity, $\tau^*(\mathcal{I})$ is denoted by τ^* .

The authors wish to thank the referees for useful comments and suggestions.

DOI: 10.24193/mathcluj.2018.2.01

Recall that A is said to be *-dense in itself (resp. τ^* -closed, *-perfect) if $A \subseteq A^*$ (resp. $A^* \subseteq A, A = A^*$). For a subset $A \subseteq X, Cl^*(A)$ and $Int^*(A)$ will denote the closure and the interior of A in (X, τ^*) , respectively. Let (X, τ, \mathcal{I}) be an ideal topological space. We say the topology τ is compatible with the ideal \mathcal{I} and denote $\tau \sim \mathcal{I}$, if, for every $A \subseteq X$, we have that if, for every $x \in A$, there exists $U \in \tau(x)$ such that $U \cap A \in \mathcal{I}$, then $A \in \mathcal{I}$ - see [11].

2. ω -LOCAL FUNCTIONS

DEFINITION 2.1. Let (X, τ, \mathcal{I}) be an ideal topological space. For a subset A of X, we define the set $A_{\omega}(\mathcal{I}, \tau) = \{x \in X : A \cap U \notin \mathcal{I} \text{ for every } U \in \tau_{\omega}(x)\}$, where $\tau_{\omega}(x) = \{U \in \tau_w : x \in U\}$. When there is no confusion, $A_{\omega}(\mathcal{I}, \tau)$ is briefly denoted by A_{ω} and called the ω -local function of A with respect to \mathcal{I} and τ .

LEMMA 2.2. Let (X, τ, \mathcal{I}) be an ideal topological space. Then $A_{\omega}(\mathcal{I}, \tau) \subseteq A^*(\mathcal{I}, \tau)$, for every subset A of X.

Proof. Let $x \in A_{\omega}(\mathcal{I}, \tau)$. Then $A \cap U \notin \mathcal{I}$, for every ω -open set U containing x. Since every open set is ω -open, $x \in A^*(\mathcal{I}, \tau)$.

EXAMPLE 2.3. Let X be an uncountable set and let A, B, C be subsets of X such that each of them is an uncountable set and the family $\{A, B, C, D\}$ is a partation of X. We defined the topology $\tau = \{\emptyset, \{A\}, \{A, B\}, \{A, B, C\}, X\}$ with $\mathcal{I} = \{\emptyset, \{A\}, \{B\}, \{A, B\}\}$. Let $H = \{A, D\}$, then $H^*(I) = \{C, D\} = Cl(H^*)$ and $H_{\omega}(I) = \emptyset = Cl_{\omega}(H_{\omega})$.

LEMMA 2.4. Let (X, τ) be an ideal topological space, \mathcal{I} and \mathcal{J} be ideals on X, and let A and B be subsets of X. Then the following properties hold.

- (1) If $A \subseteq B$, then $A_{\omega} \subseteq B_{\omega}$.
- (2) If $\mathcal{I} \subseteq \mathcal{J}$, then $A_{\omega}(\mathcal{I}) \supseteq A_{\omega}(\mathcal{J})$.
- (3) $A_{\omega} = Cl_{\omega}(A_{\omega}) \subseteq Cl_{\omega}(A)$ and A_{ω} is ω -closed in (X, τ) .
- (4) If $A \subseteq A_{\omega}$, then $A_{\omega} = Cl_{\omega}(A_{\omega}) = Cl_{\omega}(A)$.
- (5) If $A \in \mathcal{I}$, then $A_{\omega} = \emptyset$.

Proof. (1) Suppose that $x \notin B_{\omega}$. Then there exists $U \in \tau_{\omega}(x)$ such that $U \cap B \in \mathcal{I}$. Since $U \cap A \subseteq U \cap B$, $U \cap A \in \mathcal{I}$. Hence $x \notin A_{\omega}$. Thus $X \setminus B_{\omega} \subseteq X \setminus A_{\omega}$ or $A_{\omega} \subseteq B_{\omega}$.

(2) Suppose that $x \notin A_{\omega}(\mathcal{I})$. There exists $U \in \tau_{\omega}(x)$ such that $U \cap A \in \mathcal{I}$. Since $\mathcal{I} \subseteq \mathcal{J}, U \cap A \in \mathcal{J}$ and $x \notin A_{\omega}(\mathcal{J})$. Therefore $A_{\omega}(\mathcal{J}) \subseteq A_{\omega}(\mathcal{I})$.

(3) We have $A_{\omega} \subseteq Cl_{\omega}(A_{\omega})$, in general. Let $x \in Cl_{\omega}(A_{\omega})$. Then $A_{\omega} \cap U \neq \emptyset$, for every $U \in \tau_{\omega}(x)$. Therefore there exist $y \in A_{\omega} \cap U$ and $U \in \tau_{\omega}(y)$. Since $y \in A_{\omega}, A \cap U \notin \mathcal{I}$ and hence $x \in A_{\omega}$. Hence we have $Cl_{\omega}(A_{\omega}) \subseteq A_{\omega}$ and thus $A_{\omega} = Cl_{\omega}(A_{\omega})$. Again, let $x \in Cl_{\omega}(A_{\omega}) = A_{\omega}$. Then $U \cap A \notin \mathcal{I}$ for every $U \in \tau_{\omega}(x)$. This implies $U \cap A \neq \emptyset$, for every $U \in \tau_{\omega}(x)$. Therefore $x \in Cl_{\omega}(A)$. This shows that $A_{\omega}(\mathcal{I}) = Cl_{\omega}(A_{\omega}) \subseteq Cl_{\omega}(A)$.

(4) For any subset A of X, by (3), we have $A_{\omega} = Cl_{\omega}(A_{\omega}) \subseteq Cl_{\omega}(A)$. Since $A \subseteq A_{\omega}, Cl_{\omega}(A) \subseteq Cl_{\omega}(A_{\omega})$ and hence $A_{\omega} = Cl_{\omega}(A_{\omega}) = Cl_{\omega}(A)$.

(5) Suppose that $x \in A_{\omega}$. Then, for any $U \in \tau_{\omega}(x)$, $U \cap A \notin \mathcal{I}$. But, since $A \in \mathcal{I}, U \cap A \in \mathcal{I}$ for some $U \in \tau_{\omega}(x)$. This is a contradiction. So $A_{\omega} = \emptyset$. LEMMA 2.5. Let (X, τ, \mathcal{I}) be an ideal topological space. If $U \in \tau$, then $U \cap A_{\omega} = U \cap (U \cap A)_{\omega} \subseteq (U \cap A)_{\omega}$, for any closed set A of X.

Proof. Suppose that U is open set and $x \in U \cap A_{\omega}$. Then $x \in U$ and $x \in A_{\omega}$. Let V be any ω -open set containing x. Then $V \cap U \in \tau_{\omega}(x)$ and $V \cap (U \cap A) = (V \cap U) \cap A \notin \mathcal{I}$. This shows that $x \in (U \cap A)_{\omega}$ and hence we obtain $U \cap A_{\omega} \subseteq (U \cap A)_{\omega}$. Moreover, $U \cap A_{\omega} \subseteq U \cap (U \cap A)_{\omega}$ and, by Lemma 2.4, $(U \cap A)_{\omega} \subseteq A_{\omega}$ and $U \cap (U \cap A)_{\omega} \subseteq U \cap A_{\omega}$. Therefore $U \cap A_{\omega} = U \cap (U \cap A)_{\omega}$.

3. A TOPOLOGY ASSOCIATED WITH ω -local functions

THEOREM 3.1. Let (X, τ, \mathcal{I}) be an ideal topological space and A, B be any subsets of X. Then the following properties hold:

(1) $(\emptyset)_{\omega} = \emptyset.$ (2) $(A_{\omega})_{\omega} \subseteq A_{\omega}.$

(3) $A_{\omega} \cup B_{\omega} = (A \cup B)_{\omega}$.

Proof. (1) The proof is obvious.

(2) Let $x \in (A_{\omega})_{\omega}$. Then, for every $U \in \tau_{\omega}(x)$, $U \cap A_{\omega} \notin \mathcal{I}$ and hence $U \cap A_{\omega} \neq \emptyset$. Let $y \in U \cap A_{\omega}$. Then $U \in \tau_{\omega}(y)$ and $y \in A_{\omega}$. Hence we have $U \cap A \notin \mathcal{I}$ and $x \in A_{\omega}$. This shows that $(A_{\omega})_{\omega} \subseteq A_{\omega}$.

(3) It follows from Lemma 2.4 that $(A \cup B)_{\omega} \supseteq A_{\omega} \cup B_{\omega}$. To prove the reverse inclusion, let $x \notin A_{\omega} \cup B_{\omega}$. Then x belongs neither to A_{ω} nor to B_{ω} . Therefore there exist $U_x, V_x \in \tau_{\omega}(x)$ such that $U_x \cap A \in \mathcal{I}$ and $V_x \cap B \in \mathcal{I}$. Since \mathcal{I} is additive, $(U_x \cap A) \cup (V_x \cap B) \in \mathcal{I}$. Since \mathcal{I} is hereditary and

$$(U_x \cap A) \cup (V_x \cap B) = [(U_x \cap A) \cup V_x] \cap [(U_x \cap A) \cup B]$$
$$= (U_x \cup V_x) \cap (A \cup V_x) \cap (U_x \cup B) \cap (A \cup B)$$
$$\supseteq (U_x \cap V_x) \cap (A \cup B),$$

 $(U_x \cap V_x) \cap (A \cup B) \in \mathcal{I}$. Since $(U_x \cap V_x) \in \tau_{\omega}(x), x \notin (A \cup B)_{\omega}$. Hence $(X \setminus A_{\omega}) \cap (X \setminus B_{\omega}) \subseteq X \setminus (A \cup B)_{\omega}$ or $(A \cup B)_{\omega} \subseteq A_{\omega} \cup B_{\omega}$. Hence we obtain $A_{\omega} \cup B_{\omega} = (A \cup B)_{\omega}$.

THEOREM 3.2. Let (X, τ, \mathcal{I}) be an ideal topological space, $Cl_{\omega}^*(A) = A_{\omega} \cup A$ and A, B be subsets of X. Then:

- (1) $Cl^*_{\omega}(\emptyset) = \emptyset.$
- (2) $A \subseteq Cl^*_{\omega}(A)$.
- (3) $Cl^*_{\omega}(A \cup B) = Cl^*_{\omega}(A) \cup Cl^*_{\omega}(B).$
- (4) $Cl^*_{\omega}(A) = Cl^*_{\omega}(Cl^*_{\omega}(A)).$
- (5) If $A \subseteq B$, then $Cl^*_{\omega}(A) \subseteq Cl^*_{\omega}(B)$.

Proof. By Theorem 3.1, we obtain: (1) $Cl^*_{\omega}(\emptyset) = (\emptyset)_{\omega} \cup \emptyset = \emptyset.$ (2) $A \subseteq A \cup A_{\omega} = Cl^*_{\omega}(A).$

 $(3) Cl^*_{\omega}(A \cup B) = (A \cup B)_* \cup (A \cup B) = (A_{\omega} \cup B_{\omega}) \cup (A \cup B) = Cl^*_{\omega}(A) \cup Cl^*_{\omega}(B).$ $(4) Cl^*_{\omega}(Cl^*_{\omega}(A)) = Cl^*_{\omega}(A_{\omega} \cup A) = (A_{\omega} \cup A)_{\omega} \cup (A_{\omega} \cup A) = ((A_{\omega})_{\omega} \cup A_{\omega}) \cup (A_{\omega} \cup A) = (A_{\omega})_{\omega} \cup A_{\omega} \cup A_{\omega} \cup A_{\omega} \cup A_{\omega} \cup A_{\omega}) \cup (A_{\omega} \cup A) = (A_{\omega} \cup A)_{\omega} \cup (A_{\omega} \cup A) = (A_{\omega} \cup A)$ $(A_{\omega} \cup A) = A_{\omega} \cup A = Cl_{\omega}^*(A).$ (5) Since $A \subseteq B$, we have $Cl^*_{\omega}(A) = A_{\omega} \cup A \subseteq B_{\omega} \cup B = Cl^*_{\omega}(B)$.

By Theorem 3.2, we obtain that $Cl^*_{\omega}(A) = A \cup A_{\omega}$ is a Kuratowski closure operator. We will denote by τ_{ω}^* the topology generated by Cl_{ω}^* , that is $\tau_{\omega}^* =$ $\{U \subseteq X : Cl^*_{\omega}(X - U) = X - U\}.$

LEMMA 3.3. Let (X, τ, \mathcal{I}) be an ideal topological space and A, B be subsets of X. Then $A_{\omega} - B_{\omega} = (A - B)_{\omega} - B_{\omega}$.

Proof. By Theorem 3.1, we obtain $A_{\omega} = [(A - B) \cup (A \cap B)]_{\omega} = (A - B)_{\omega} \cup (A \cap B)$ $(A \cap B)_{\omega} \subseteq (A - B)_{\omega} \cup B_{\omega}$. Therefore $A_{\omega} - B_{\omega} \subseteq (A - B)_{\omega} - B_{\omega}$. We have, by Theorem 3.1, $(A - B)_{\omega} \subseteq A_{\omega}$ and hence $(A - B)_{\omega} - B_{\omega} \subseteq A_{\omega} - B_{\omega}$. Hence we obtain $A_{\omega} - B_{\omega} = (A - B)_{\omega} - B_{\omega}$.

COROLLARY 3.4. Let (X, τ, \mathcal{I}) be an ideal topological space and A, B be subsets of X with $B \in \mathcal{I}$. Then $(A \cup B)_{\omega} = A_{\omega} = (A - B)_{\omega}$.

Proof. By Theorem 3.2 and since $B \in \mathcal{I}$, $B_{\omega} = \phi$. Therefore $A_{\omega} = (A - B)_{\omega}$, by Lemma 3.3. Hence, by Theorem 3.2, $(A \cup B)_{\omega} = A_{\omega} \cup B_{\omega} = A_{\omega}$.

LEMMA 3.5. Let (X, τ, \mathcal{I}) be an ideal topological space and A, B be subsets of X. Then:

(1) $Cl^*_{\omega}(A \cap B) \subseteq Cl^*_{\omega}(A) \cap Cl^*_{\omega}(B).$ (2) If $U \in \tau_{\omega}$, then $U \cap Cl^*_{\omega}(A) \subseteq Cl^*_{\omega}(U \cap A)$.

Proof. (1) This is obvious by Theorem 3.2.

(2) Since $U \in \tau_{\omega}$, we have by Theorem 3.2, $U \cap Cl^*_{\omega}(A) = U \cap (A \cup A_{\omega}) =$ $(U \cap A) \cup (U \cap A_{\omega}) \subseteq (U \cap A) \cup (U \cap A)_{\omega} = Cl_{\omega}^*(U \cap A).$

COROLLARY 3.6. Let (X, τ, \mathcal{I}) be an ideal topological space and A be subsets of X. If $A \subseteq A_{\omega}$, then $Cl_{\omega}(A) = Cl_{\omega}^*(A)$.

Proof. The proof follows from Theorem 3.2.

DEFINITION 3.7. Let (X, τ) be a topological space and \mathcal{I} an ideal on X. A subset A of X is said to be τ_{ω}^* -closed if and only if $A_{\omega} \subseteq A$.

It is well known that if $U \in \tau_{\omega}^*$ if and only if X - U is τ_{ω}^* -closed, then $U \subseteq X - (X - U)_{\omega}$. Thus, if $x \in U, x \notin (X - U)_{\omega}$, i.e there exists a ω -open set V such that $V \cap (X - U) \in \mathcal{I}$. Hence $I_0 = V \cap (X - U)$ and we have $x \in V - I_0 \subseteq U$, where V is ω -open set and $I_0 \in \mathcal{I}$.

THEOREM 3.8. Let (X, τ) be a topological space and \mathcal{I} be an ideal on X. Then β is a basis, where $\beta(\mathcal{I}, \tau) = \{V - I_0 : V \in \tau_\omega, I_0 \in \mathcal{I}\}.$

Proof. Since $\phi \in \mathcal{I}$, then $\tau_{\omega} \subseteq \beta$ and hence $X = \cup \beta$. Also, for every $\beta_1, \beta_2 \in \beta$, we have $\beta_1 = V_1 - I_1$ and $\beta_2 = V_2 - I_2$, where $V_1, V_2 \in \tau_{\omega}$ and $I_1, I_2 \in \mathcal{I}. \text{ Then } \beta_1 \cap \beta_2 = (V_1 - I_1) \cap (V_2 - I_2) = (V_1 \cap -(X - I_1)) \cap (V_2 \cap (X - I_2)) = (V_1 \cap V_2) - (I_1 \cup I_2) \in \beta, \text{ where } V_1 \cap V_2 \in \tau_{\omega}, I_1 \cup I_2 \in \mathcal{I}.$

REMARK 3.9. The topology τ_{ω}^* finer than τ_{ω} . See the following example.

EXAMPLE 3.10. Let $X = \mathbb{R}$ be the set of all real numbers with the topology $\tau = \{\emptyset, X, \{1\}\}$ and let Q be the set of all rational numbers, $\mathcal{I} = \{\mathcal{P}(Q)\}$. Put A = Q. Then $A \in \tau_{\omega}^*$, but A is not ω -open, since $Cl_{\omega}(A) \nsubseteq A$

REMARK 3.11. Let A be a subset of an ideal topological space (X, τ, \mathcal{I}) .

(1) If $\mathcal{I} = \{\phi\}$, then $A_{\omega} = Cl_{\omega}(A) = Cl_{\omega}^*(A)$.

(2) If $\mathcal{I} = \mathcal{P}(X)$, then $A^* = A_\omega = \{\phi\}$ and $Cl^*(A) = Cl^*_\omega(A) = A$.

In view of our remarks, the following implications hold:

EXAMPLE 3.12. Let (X, τ, \mathcal{I}) be an ideal space, with $X\{a, b, c\}, \tau = \{\emptyset, X, \{a\}\}$ and $\mathcal{I} = \{\emptyset, \{b\}\}$. Then the set $\{b\}$ is ω -open, but not τ^* -open.

EXAMPLE 3.13. Let X = R with the usual topology τ and let Q be the set of all rational numbers, $\mathcal{I} = \{\mathcal{P}(Q^c)\}$. Let A = Q. Then A is τ^* -open, but it is not an ω -open set.

4. ω -COMPATIBLE IN IDEAL TOPOLOGICAL SPACE

DEFINITION 4.1. Let (X, τ, \mathcal{I}) be an ideal topological space. We say the topology τ is ω -compatible with the ideal \mathcal{I} and denote $\tau \sim_{\omega} \mathcal{I}$, if the following holds for every $A \subseteq X$: if, for every $x \in A$, there exists $U \in \tau_{\omega}(x)$ such that $U \cap A \in \mathcal{I}$, then $A \in \mathcal{I}$.

REMARK 4.2. A compatible space is ω -compatible, but not conversely. THEOREM 4.3. Let (X, τ, \mathcal{I}) be an ideal topological space. Then the following are equivalent:

- (1) $\tau \sim_{\omega} \mathcal{I};$
- (2) if a subset A of X has a cover of ω-open sets, each of whose intersection with A is in I, then A ∈ I;
- (3) for every $A \subseteq X$, $A \cap A_{\omega} = \phi$ implies that $A \in \mathcal{I}$;
- (4) for every $A \subseteq X$, $A A_{\omega} \in \mathcal{I}$;
- (5) for every $A \subseteq X$, if A contains no non-empty subset B with $B \subseteq B_{\omega}$, then $A \in \mathcal{I}$.

Proof. $(1) \Rightarrow (2)$ The proof is obvious.

 $(2) \Rightarrow (3)$ Let $A \subseteq X$ and $x \in A$. Then $x \notin A_{\omega}$ and there exists $V_x \in \tau_{\omega}(x)$ such that $V_x \cap A \in \mathcal{I}$. Therefore we have $A \subseteq \bigcup \{V_x : x \in A\}$ and $V_x \in \tau_{\omega}(x)$ and, by (2), $A \in \mathcal{I}$.

(3) \Rightarrow (4) For any $A \subseteq X$, $A - A_{\omega} \subseteq A$ and $(A - A_{\omega}) \cap (A - A_{\omega})_{\omega} \subseteq (A - A_{\omega}) \cap A_{\omega} = \phi$. By (3), $A - A_{\omega} \in \mathcal{I}$.

(4) \Rightarrow (5) By (4), for every $A \subseteq X$, $A - A_{\omega} \in \mathcal{I}$. Let $A - A_{\omega} = J \in \mathcal{I}$. Then $A = J \cup (A \cap A_{\omega})$. By Lemma 2.4, $A_{\omega} = J_{\omega} \cup (A \cap A_{\omega})_{\omega} = (A \cap A_{\omega})_{\omega}$. Therefore we have $A \cap A_{\omega} = A \cap (A \cap A_{\omega})_{\omega} \subseteq (A \cap A_{\omega})_{\omega}$ and $(A \cap A_{\omega}) \subseteq A$. By the assumption $A \cap A_{\omega} = \phi$, $A = A - A_{\omega} \in \mathcal{I}$.

(5) \Rightarrow (1) Let $A \subseteq X$ and assume that, for every $x \in A$, there exists $U \in \tau_{\omega}(x)$ such that $U \cap A \in \mathcal{I}$. Then $A \cap A_{\omega} = \phi$. Since $(A - A_{\omega}) \cap (A - A_{\omega})_{\omega} \subseteq (A - A_{\omega}) \cap A_{\omega} = \phi$, $A - A_{\omega}$ contains no nonempty subset B with $B \subseteq B_{\omega}$. By (5), $A - A_{\omega} \in \mathcal{I}$ and we have $A = A \cap (X - A_{\omega}) = A - A_{\omega} \in \mathcal{I}$.

THEOREM 4.4. Let (X, τ, \mathcal{I}) be an ideal topological space. Then the following properties are equivalent:

- (1) $\tau \sim_{\omega} \mathcal{I};$
- (2) for every τ_{ω}^* -closed subset $A, A A_{\omega} \in \mathcal{I}$.

Proof. (1) \Rightarrow (2) It follows by Theorem 4.3.

 $(2) \Rightarrow (1) \text{ Let } A \subseteq X \text{ and suppose that, for every } x \in A, \text{ there exists an } \omega\text{-open set } U \text{ containing } x \text{ such that } U \cap A \in \mathcal{I}. \text{ Then } A \cap A_{\omega} = \emptyset. \text{ Since } Cl_{\omega}^*(A) = A \cup A_{\omega} \text{ is } \tau_{\omega}^*\text{-closed, we have } (A \cup A_{\omega}) - (A \cup A_{\omega})_{\omega} \in \mathcal{I}. \text{ Moreover, } (A \cup A_{\omega}) - (A \cup A_{\omega})_{\omega} = (A \cup A_{\omega}) - (A_{\omega} \cup (A_{\omega})_{\omega}) = (A \cup A_{\omega}) - A_{\omega} = A. \text{ Therefore } A \in \mathcal{I}.$

THEOREM 4.5. Let (X, τ, \mathcal{I}) be an ideal topological space and τ be ω compatible with \mathcal{I} . A set is closed with respect to the τ_{ω}^* -topology if and only
if it is the union of a set which is ω -closed with respect to τ and a set in \mathcal{I} .

Proof. Let A be τ_{ω}^* -closed. Then $A_{\omega} \subseteq A$ implies that $A = (A - A_{\omega}) \cup A_{\omega}$. We have, by Theorem 4.4, $A - A_{\omega} \in \mathcal{I}$ and, by Theorem 3.1, A_{ω} is ω -closed with respect to τ .

Conversely, if $A = B \cup \mathcal{I}$, where B is ω -closed with respect to τ and $I \in \mathcal{I}$, then, by Theorem 3.1 and Lemma 2.4, we have $A_{\omega} = B_{\omega} \cup I_{\omega} = B_{\omega} \subseteq Cl_{\omega}(B) = B \subseteq A$. Thus $A_{\omega} \subseteq A$ and A is τ_{ω}^* -closed.

COROLLARY 4.6. Let (X, τ, \mathcal{I}) be an ideal topological space. If τ is ω compatible with \mathcal{I} , then $\beta(\tau, \mathcal{I}) = \tau_{\omega}^*$.

Proof. Let $U \in \tau_{\omega}^*$. Then, by Theorem 4.5, $X - U = F \cup B$, where F is ω -closed and $B \in \mathcal{I}$. Then $U = X - (F \cup B) = (X - F) \cap (X - B) = (X - F) - B = V - B$, where V = X - F is ω -open set of X. Thus every τ_{ω}^* -open set is of the from V - B, where V is ω -open and $B \in \mathcal{I}$. It follows from Theorem 3.8 that $\beta(\tau, \mathcal{I}) = \tau_{\omega}^*$.

THEOREM 4.7. Let (X, τ, \mathcal{I}) be an ideal topological space. Then the following properties are equivalent:

- (1) $\tau_{\omega} \cap \mathcal{I} = \emptyset;$
- (2) if $I \in \mathcal{I}$, then $Int_{\omega}(I) = \emptyset$;
- (3) for every $G \in \tau_{\omega}$, $G \subseteq G_{\omega}$;
- (4) $X = X_{\omega}$.

Proof. (1) \Rightarrow (2) Let $\tau_{\omega} \cap \mathcal{I} = \emptyset$ and $I \in \mathcal{I}$. Suppose that $x \in Int_{\omega}(I)$. Then there exists $U \in \tau_{\omega}$ such that $x \in U \subseteq I$. Since $I \in \mathcal{I}, \ \emptyset \neq \{x\} \subseteq U \in \tau_{\omega} \cap \mathcal{I}$. This implies $\tau_{\omega} \cap \mathcal{I} = \emptyset$. Therefore $Int_{\omega}(I) = \emptyset$.

 $(2) \Rightarrow (3)$ Let $x \in G$. Assume that $x \notin G_{\omega}$. Then there exists $U_x \in \tau_{\omega}(x)$ such that $G \cap U_x \in \mathcal{I}$. By (2), $x \in G \cap U_x = Int_{\omega}(G \cap U_x) = \emptyset$. Hence $x \in G_{\omega}$ and $G \subseteq G_{\omega}$.

(3) \Rightarrow (4) Since X is ω -open, $X = X_{\omega}$.

(4) \Rightarrow (1) $X = X_{\omega} = \{x \in X : U \cap X = U \notin \mathcal{I}\}$, for each ω -open set U containing x. Hence $\tau_{\omega} \cap \mathcal{I} = \emptyset$.

THEOREM 4.8. Let (X, τ, \mathcal{I}) be an ideal topological space, τ be ω -compatible with \mathcal{I} and $\tau_{\omega} \cap \mathcal{I} = \emptyset$. Let G be a τ_{ω}^* -open set such that G = U - A, where $U \in \tau_{\omega}$ and $A \in \mathcal{I}$. Then $Cl_{\omega}(G_{\omega}) = Cl_{\omega}(G) = G_{\omega} = U_{\omega} = Cl_{\omega}(U) = Cl_{\omega}(U_{\omega})$.

Proof. Let G = U - A, where $U \in \tau_{\omega}$ and $A \in \mathcal{I}$. Since $\tau_{\omega} \cap \mathcal{I} = \emptyset$, by Theorem 4.7, we have $U \subseteq U_{\omega}$. Hence, by Lemma 2.4, $U_{\omega} = Cl_{\omega}(U_{\omega}) = Cl_{\omega}(U)$.

Now, we prove that $G \subseteq G_{\omega}$, by using $G \in \tau_{\omega}^*$. Since $Cl_{\omega}^*(X-G) = X-G$, $(X-G)_{\omega} \subseteq X-G$ and, by Lemma 3.3, $X_{\omega} - G_{\omega} \subseteq X - G$. Since $\tau_{\omega} \cap \mathcal{I} = \emptyset$, by Theorem 4.7, $X - G_{\omega} \subseteq X - G$ and hence we have $G \subseteq G_{\omega}$. Hence, by Lemma 2.4, $G_{\omega} = Cl_{\omega}(G) = Cl_{\omega}(G_{\omega})$.

Now, since $G \subseteq U$, $G_{\omega} \subseteq U_{\omega}$. By Lemma 3.3, $G_{\omega} = (U - A)_{\omega} \supseteq U_{\omega} - A_{\omega} = U_{\omega}$, since $A \in \mathcal{I}$. Thus $U_{\omega} = G_{\omega}$. Hence we obtain the desired result. \Box

DEFINITION 4.9. An ideal \mathcal{I} is called a σ -ideal - see [11] - if it is countably additive, that is if $I_n \in \mathcal{I}$, for each $n \in N$, then $\cup \{I_n : n \in N\} \in \mathcal{I}$.

DEFINITION 4.10. A space (X, τ) is said to satisfy the C_1 condition - see [10] - if every infinite subset of X has non-empty interior.

PROPOSITION 4.11 ([10]). If a space (X, τ) satisfies the condition C_1 , then A - Int(A) is finite, for any $A \subseteq X$.

DEFINITION 4.12 ([12]). A space (X, τ) is said to be ω -Lindelöf if and only if every cover of X by ω -open sets of X has a countable subcover. A space (X, τ) is said to have the hereditary ω -Lindelöf property if every subspace has the ω -Lindelöf property.

LEMMA 4.13 ([8]). If U is an ω -open subset of a space (X, τ) , then U - C is ω -open, for every countable subsets C of X.

THEOREM 4.14. Let (X, τ) be a hereditary ω -Lindelöf space satisfying condition C_1 and let \mathcal{I} be a σ -ideal on X. Then $\tau \sim_{\omega} \mathcal{I}$.

Proof. Let $A \subseteq X$ and assume that, for every $x \in A$, there exists an ω open set U such that $U \cap A \in \mathcal{I}$. This implies $U \cap Int(A) \in \mathcal{I}$. Now, $\{(U_x - C) \cap Int(A) : x \in A\}$ is a cover of Int(A) by ω -open sets and a
countable subset C of X. By the assumption that (X, τ) is hereditarily ω Lindelöf, this cover has a countable subcover $\{(U_{x(n)} - C) \cap Int(A) : n \in N\}$.

Since \mathcal{I} is a σ -ideal, $Int(A) = \bigcup \{ (U_{x(n)} - C) \cap Int(A) : n \in N \} \in \mathcal{I}$. If A is an open subset of X, then the proof is complete. If A is not open, then, by Proposition 4.11, A - Int(A) is finite. For every $x \in A - Int(A)$, there exists an ω -open set U_x such that $U_x \cap A \in \mathcal{I}$, hence $U_x \cap (A - Int(A)) \in \mathcal{I}$. By the finite additivity of \mathcal{I} , we have $A - Int(A) = \bigcup \{U_x \cap (A - Int(A))\} \in \mathcal{I}$. This means that $A = Int(A) \cup (A - Int(A)) \in \mathcal{I}$. Hence $\tau \sim_{\omega} \mathcal{I}$. \Box

REFERENCES

- A. Al-Omari and M.S.M. Noorani, Regular generalized ω-closed sets, Int. J. Math. Math. Sci., 2007 (2007), Article 16292, 1–11.
- [2] A. Al-Omari and M.S.M. Noorani, Contra-ω-continuous and almost contra-ω-continuous, Int. J. Math. Math. Sci., 2007 (2007), Article 040469, 1–13.
- [3] A. Al-Omari and T. Noiri, Local closure functions in ideal topological spaces, Novi Sad J. Math., 43 (2013), 139–149.
- [4] A. Al-Omari, T. Noiri, M.S. Noorani, Weak and strong forms of sT-continuous functions, Commun. Korean Math. Soc., 30 (2015), 493–504.
- [5] A. Al-Omari, S. Modak and T. Noiri, On θ-modifications of generalized topologies via hereditary classes, Commun. Korean Math. Soc., 31 (2016), 857–868.
- [6] A. Al-Omari, T. Noiri and S. Modak, *Paracompact spaces with m-structures*, An. Univ. Oradea Fasc. Mat., 24 (2017), 155–162.
- [7] H. Al-Saadi and A.Al-Omari, Some operators in ideal topological spaces, Missouri J. Math. Sci., 30 (2018), 1–13.
- [8] K.Y. Al-Zoubi, On generalized ω-closed sets, Int. J. Math. Math. Sci., 13 (2005), 2011– 2021.
- [9] E. Ekici, S. Jafari and S.P. Moshokoa, On a weaker form of ω-continuity, An. Univ. Craiova Ser. Mat. Inform., 37 (2010), 38–46.
- [10] M. Ganster, Some remarks on strongly compact spaces and semi compact spaces, Bull. Malays. Math. Sci. Soc., 10 (1987), 67–81.
- [11] D. Jankovic and T.R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97 (1990), 295–310.
- [12] H.Z. Hdeib, ω-closed mapping, Rev. Colombiana Mat., 16 (1982), 65–78.
- [13] H.Z. Hdeib, ω -continuous functions, Dirasat Journal, **16** (1989), 136–142.
- [14] K. Kuratowski, Topology I, Warszawa, 1933.

Received February 27, 2018 Accepted May 22, 2018 Al al-Bayt University Faculty of Sciences Department of Mathematics P.O. Box 130095, Mafraq 25113, Jordan E-mail: omarimutah1@yahoo.com

Umm Al-Qura University Faculty of Applied Sciences Department of Mathematics P.O. Box 11155, Makkah 21955, Saudi Arabia E-mail: hasa112@hotmail.com

8