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FUNDAMENTAL STABILITIES OF GENERALIZED COMPOSITE
FUNCTIONAL EQUATIONS IN NON-ARCHIMEDEAN SPACES

JOHN MICHAEL RASSIAS, PASUPATHI NARASIMMAN
and RAJARAM VIJAYARAGAVAN

Abstract. In this paper, we introduce a new generalized composite functional
equation of the form

f

(
kf(x1)−

k+1∑
i=2

f(xi)

)
+ kf (x1) +

k+1∑
i=2

f(xi) =

k+1∑
i=2

f(x1 + xi) +

k+1∑
i=2

f(x1 − xi),

for any real k ∈ R+ \ {0}, and prove its fundamental stabilities in non-Archime-
dean normed spaces.
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1. INTRODUCTION

The stability problem of functional equations originates from the funda-
mental question: When is it true that a mathematical object, satisfying ap-
proximately a certain property, has to be close to an object satisfying exactly
that property? The first stability problem concerning group homomorphisms
was raised by Ulam [19] in 1940. The first partial solution to Ulam’s question
was given by Hyers [7]. In 1978, Rassias [14] proved a generalization of Hyers’
theorem for additive maps. More exactly, he proved the following theorem.

Theorem 1.1. If a function f : E → E′ between the Banach spaces E, E′

satisfies the inequality

(1) ‖f(x+ y)− f(x)− f(y)‖ ≤ θ (‖x‖p + ‖y‖p)

for some θ ≥ 0, 0 ≤ p < 1 and for all x, y ∈ E, then there exists a unique
additive function a : E → E′ such that

(2) ‖f(x)− a(x)‖ ≤ 2θ

2− 2p
‖x‖p ,

for all x ∈ E. Moreover, if f(tx) is continuous in t, for each fixed x ∈ E, then
a is linear.

The authors would like to thank the anonymous reviewer and the editor for their very
helpful comments and suggestions.
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The result of Th. M. Rassias has provided a significant influence during
the last three decades in the development of a generalization of the Hyers-
Ulam stability concept. This new concept is known as the Hyers-Ulam-Rassias
stability of functional equations.

In the period 1982-1989, J. M. Rassias [12, 13] replaced the sum in the right
hand side of the equation (1) by the product of powers of norms. This stability
is called the Ulam-Găvruta-Rassias stability involving a product of different
powers of norms.

Recently, J. M. Rassias replaced in [15] the sum in the right hand side of
the equation (1) by the mixed product-sum of powers of norms. The study
of the stability of the functional equation involving the mixed product-sum of
powers of norms is known as the Ulam-J. Rassias stability.

During the last decades, several stability problems of functional equations
have been investigated (see [4, 5, 8, 9, 11, 16, 17]).

Definition 1.2. A non-Archimedean field is a field K equipped with a
function (valuation) | · | from K into [0,∞) such that

(i) |r| = 0 if and only if r = 0,
(ii) |rs| = |r||s|,

(iii) |r + s| ≤ max{|r|, |s|},
for all r, s ∈ K. Clearly |1| = | − 1| = 1 and |n| ≤ 1 for all n ∈ N. We always
assume, in addition, that | · | is non-trivial, i.e., there exists an a0 ∈ K such
that |a0| 6= 0, 1.

Definition 1.3. Let X be a vector space over a scalar field K with a
non-Archimedean non-trivial valuation | · |. A function ‖ · ‖ : X → R is a
non-Archimedean norm (valuation), if it satisfies the following conditions:

(i) ‖x‖ = 0 if and only if x = 0,
(ii) ‖rx‖ = |r|‖x‖ for all r ∈ K, x ∈ X,

(iii) the strong triangle inequality (ultrametric), namely,

‖x+ y‖ ≤ max{‖x‖, ‖y‖}, x, y ∈ X.

Due to the fact that

‖xn − xm‖ ≤ max{‖xj+1 − xj‖ : m ≤ j ≤ n− 1}, n > m,

a sequence {xn} is Cauchy if and only if {xn+1 − xn} converges to zero in a
non-Archimedean space. By a complete non-Archimedean space, we mean one
in which every Cauchy sequence is convergent.

It is generally accepted that non-Archimedean spaces are more fundamental
than the standard complete normed spaces to investigate Ulam’s stability of
any equation. Therefore, the benefit of such spaces is greater than those of
others.
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In 2011, H.Azadi Kenary [1] investigated the generalized Hyers-Ulam sta-
bility of the following Cauchy-Jensen type functional equation

Q

(
x+ y

2
+ z

)
+Q

(
x+ z

2
+ y

)
+Q

(
z + y

2
+ x

)
= 2[Q(x) +Q(y) +Q(z)]

in non-Archimedean spaces. Furthermore, in 2013, H.Azadi Kenary [2] proved
the generalized Hyers-Ulam (or Hyers-Ulam-Rassias) stability of the following
composite functional equation

f (f(x)− f(y)) + f(x) + f(y) = f(x+ y) + f(x− y)

in various normed spaces. The above equation is satisfied by the general
additive map f(x) = cx, where c is a real constant.

In 2015, Ravi and Ponmanaselvan[18] investigated a composite type func-
tional equation of the form

f (xf(y)− yf(x)) = f(x)− f(y) + x− y
on an abelian group.

Very recently, A. Bodaghi, P. Narasimman, J. M. Rassias and K. Ravi
introduced in [6] a new generalized reciprocal functional equation and studied
its Hyers-Ulam-Rassias stability. Also, they provided counterexamples for
some cases, such as the Ulam-Gǎvruta-Rassias stability and the Hyers-Ulam-
Rassias stability in non-Archimedean fields.

We now introduce a new generalized composite functional equation of the
form

f

(
kf(x1)−

k+1∑
i=2

f(xi)

)
+ kf (x1) +

k+1∑
i=2

f(xi) =(3)

k+1∑
i=2

f(x1 + xi) +

k+1∑
i=2

f(x1 − xi),

for any real k ∈ R+ \ {0}, which is satisfied by the map f(x) = cx, c being a
real constant. We study in the next section the Hyers-Ulam-Rassias stability,
the Ulam-Găvruta-Rassias stability and the Ulam-J. Rassias stability of the
functional equation (3) in non-Archimedean normed spaces.

2. HYERS-ULAM-RASSIAS STABILITY OF (3)

In this section, we prove the Hyers-Ulam-Rassias stability, the Ulam-Găvruta-
Rassias stability and the Ulam-J.Rassias stability of the functional equation
(3) in non-Archimedean normed spaces.

Theorem 2.1. Let ς : G×G→ [0,∞) be a function such that

(4) lim
k→∞

|2|k

|k|
ς
(x1

2k
, ...,

xk
2k
,
xk+1

2k

)
= 0,
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for all x1, x2, ..., xk, xk+1 ∈ G. Suppose that, for any x ∈ G, the limit

(5) Ψ(x) = lim
k→∞

max
{
|2|n+1ς

( x

2n+1
,
x

2n+1
, ...,

x

2n+1

)
: 0 ≤ n < k

}
exists, and that f : G→ X is a map satisfying

(6)
∥∥f (kf(x1)−

k+1∑
i=2

f(xi)

)
+ kf (x1) +

k+1∑
i=2

f(xi)

−
k+1∑
i=2

f(x1 + xi)−
k+1∑
i=2

f(x1 − xi)
∥∥ ≤ ς(x1, x1, ..., xk, xk+1),

for all x1, x2, ..., xk, xk+1 ∈ G. Then, for all x ∈ G, the limit T (x) :=

lim
k→∞

2kf
( x

2k

)
exists and satisfies the inequality

(7) ‖f(x)− T (x)‖ ≤ 1

|2k|
Ψ(x).

Moreover, if

(8) lim
j→∞

lim
k→∞

max
{
|2|n+1ς

( x

2n+1
,
x

2n+1
, ...,

x

2n+1

)
: j ≤ n < k + j

}
= 0,

then T is the unique additive map satisfying (7).

Proof. Putting x1, x2, . . . , xk, xk+1 = x in (6), we have

(9) ‖2f(x)− f(2x)‖ ≤ 1

|k|
ς(x, x, ..., x)k+1 times,

for all x ∈ G. Taking x to be x
2 in (9), we obtain

(10)
∥∥∥2f(

x

2
)− f(x)

∥∥∥ ≤ 1

|k|
ς
(x

2
,
x

2
, ...,

x

2

)
k+1 times

,

for all x ∈ G. Taking x to be x
2k

in (10), we obtain

(11)
∥∥∥2k+1f(

x

2k+1
)− 2kf(

x

2k
)
∥∥∥ ≤ |2|k|k| ς ( x

2k+1
,
x

2k+1
, ...,

x

2k+1

)
k+1 times

.

Thus, it follows from (4) and (11) that the sequence 2kf( x
2k

)
k≥1 is a Cauchy

sequence. Since X is complete, it follows that 2kf( x
2k

)
k≥1 is convergent. Set

T (x) = limn→∞ 2kf( x
2k

). Using induction, one can show that

(12)
∥∥∥2kf(

x

2k
)− f(x)

∥∥∥ =
max

{
|2|n+1ς

(
x

2n+1 ,
x

2n+1 , ...,
x

2n+1

)
: 0 ≤ n < k

}
|k||2|

,
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for all k ≥ 1 and x ∈ G. By taking k →∞ in (12) and using (5), one obtains
(7). By (4) and (6), we get∥∥∥∥T

(
kT (x1)−

k+1∑
i=2

T (xi)

)
+ kT (x1) +

k+1∑
i=2

T (xi)

−
k+1∑
i=2

T (x1 + xi)−
k+1∑
i=2

T (x1 − xi)
∥∥∥∥

= lim
k→∞

∥∥∥∥2k
[
f

(
kf
(x1

2k

)
−

k+1∑
i=2

f
(xi

2k

))
+ kf

(x1
2k

)
+

k+1∑
i=2

f
(xi

2k

)
−

k+1∑
i=2

f

(
x1 + xi

2k

)
−

k+1∑
i=2

f

(
x1 − xi

2k

)]∥∥∥∥
≤ lim

k→∞
|2|kς

(x1
2k
,
x2
2k
, ...,

xk
2k
,
xk+1

2k

)
= 0,

for all x1, x2, . . . , xk, xk+1 ∈ G. Therefore, the map T : G → X satisfies (3).
To prove the uniqueness property of T , let S be another map satisfying (7).
Then we have

‖T (x)− S(x)‖ = lim
j→∞

|2|j
∥∥∥T ( x

2j

)
− S

( x
2j

)∥∥∥
≤ lim

j→∞
|2|jmax

{∥∥∥T ( x
2j

)
− f

( x
2j

)∥∥∥ , ∥∥∥f ( x
2j

)
− S

( x
2j

)∣∣∣}
≤ lim

j→∞
lim
k→∞

1

|2k|
max

{
|2|n+1ς

( x

2n+1
,
x

2n+1
, ...,

x

2n+1

)
:

j ≤ n < k + j
}

= 0,

for all x ∈ G. Therefore, T = S. This completes the proof. �

Corollary 2.2. Let ξ : [0,∞)→ [0,∞) be a function satisfying

(13) ξ

(
t

|2|

)
≤ ξ

(
t

|2|

)
ξ(t), ξ

(
1

|2|

)
<

1

|2|
,

for all t ≥ 0. Let ι > 0 and let f : G→ X be a map such that

(14)
∥∥∥f (kf(x1)−

k+1∑
i=2

f(xi)

)
+ kf (x1) +

k+1∑
i=2

f(xi)−
k+1∑
i=2

f(x1 + xi)

−
k+1∑
i=2

f(x1 − xi)
∥∥∥ ≤ ι(ξ(|x1|) + ξ(|x2|) + ...+ ξ(|xk+1|)

)
,
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for all x1, x2, . . . , xk, xk+1 ∈ G. Then there exists a unique additive map T :
G→ X such that

(15) ‖f(x)− T (x)‖ ≤ (k + 1) ι ξ(|x|)
|2k|

.

Proof. If we define ς : G×G→ [0,∞) by

ς(x1, x2, . . . , xk+1) = ι
(
ξ(|x1|) + ξ(|x2|) + ...+ ξ(|xk+1|)

)
,

then we have that

lim
k→∞

|2|k

|k|
ς
(x1

2k
, ...,

xk
2k
,
xk+1

2k

)
≤ lim

k→∞

1

|k|

(
|2|ξ

(
1

|2|

))k [
ι
(
ξ(|x1|) + ξ(|x2|) + ...+ ξ(|xk+1|)

)]
= 0

for all x1, x2, . . . , xk, xk+1 ∈ G. On the other hand, for all x ∈ G,

Ψ(x) = lim
k→∞

max
{
|2|n+1ς

( x

2n+1
,
x

2n+1
, ...,

x

2n+1

)
: 0 ≤ n < k

}
= |2|ς

(x
2
,
x

2
, ...,

x

2

)
= ι(k + 1)ξ(|x|)

exists. Also, we have

lim
j→∞

lim
k→∞

max
{
|2|n+1ς

( x

2n+1
,
x

2n+1
, ...,

x

2n+1

)
: j ≤ n < k + j

}
= lim

j→∞
|2|j+1ς

( x

2j+1
,
x

2j+1
, ...,

x

2j+1

)
= 0.

Thus, applying Theorem 2.1, we get the desired result. �

Theorem 2.3. Let ς : G×G→ [0,∞) be a function such that

(16) lim
k→∞

|2|k

|k|
ς
(
2kx1, 2

kx2, . . . , 2
kxk, 2

kxk+1

)
= 0,

for all x1, x2, . . . , xk, xk+1 ∈ G. Suppose that, for every x ∈ G, the limit

Ψ(x) = lim
k→∞

max

{
ς
(
2nx, , ..., 2nx

)
|2|n

: 0 ≤ n < k

}
(17)

exists and that f : G → X is a map satisfying (6). Then the limit T (x) :=

limk→∞
f(2kx)

2k
exists, for all x ∈ G, and satisfies the inequality

(18) ‖f(x)− T (x)‖ ≤ 1

|2k|
Ψ(x).

Moreover, if

lim
j→∞

lim
k→∞

max

{
ς
(
2nx, 2nx, ..., 2nx

)
|2|n

: j ≤ n < k + j

}
= 0,(19)
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then T is the unique additive map satisfying (18).

Proof. By (9), we have

(20)

∥∥∥∥f(x)− f(2x)

2

∥∥∥∥ ≤ 1

|2k|
ς(x, x, . . . , x)k+1 times,

for all x ∈ G. Taking x to be 2kx in (20), we obtain

(21)

∥∥∥∥f(2kx)

2k
− f(2k+1x)

2k+1

∥∥∥∥ ≤ 1

|k||2|k+1
ς(2kx, 2kx, . . . , 2kx)k+1 times.

Thus, it follows from (16) and (21) that the sequence
{

2kx
2k

}
k≥1

is convergent.

Set T (x) = limk→∞
f(2kx)

2k
. On the other hand, it follows from (21) that∥∥∥∥f(2px)

2p
− f(2qx)

2q

∥∥∥∥ =

∥∥∥∥∥
q−1∑
n=p

f(2kx)

2k
− f(2k+1x)

2k+1

∥∥∥∥∥
≤ max

{∥∥∥∥f(2kx)

2k
− f(2k+1x)

2k+1

∥∥∥∥ : p ≤ n < q

}
≤ 1

|2k|
max

{
ς
(
2nx, 2nx, . . . , 2nx

)
|2|n

: p ≤ n < q

}
,

for all x ∈ G and all integers p, q ≥ 0 with q > p ≥ 0. Letting p = 0, taking
q →∞ in the last inequality and using (17), we obtain (18).

The rest of the proof is similar to the proof of Theorem 2.1. This completes
the proof. �

Corollary 2.4. Let ξ : [0,∞)→ [0,∞) be a function satisfying

(22) ξ (|2|t) ≤ ξ (|2|) ξ(t), ξ (|2|) < |2|,

for all t ≥ 0. Let ι > 0 and let f : G → X be a map satisfying (14). Then
there exists a unique additive map T : G→ X such that

(23) ‖f(x)− T (x)‖ ≤ (k + 1) ι ξ(|x|)
|2k|

.

Proof. If we define ς : G×G→ [0,∞) by

ς(x1, x2, . . . , xk+1) = ι
(
ξ(|x1|) + ξ(|x2|) + . . .+ ξ(|xk+1|)

)
,

we get that

lim
k→∞

ς
(
2kx1, 2

kx2, . . . , 2
kxk, 2

kxk+1

)
|2|k|k|

≤ lim
k→∞

1

|k|

(
1

|2|
ξ (|2|)

)k [
ι
(
ξ(|x1|) + ξ(|x2|) + . . .+ ξ(|xk+1|)

)]
= 0,
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for all x1, x2, . . . , xk, xk+1 ∈ G. On the other hand, for all x ∈ G,

Ψ(x) = lim
k→∞

max

{
ς
(
2nx, 2nx, . . . , 2nx

)
|2|n

: 0 ≤ n < k

}

=
1

|2|
(
ι
(
ξ(|2x|) + . . .+ ξ(|2x|)

))
= ι(k + 1)ξ(|x|)

exists. Also, we have

lim
j→∞

lim
k→∞

max

{
ς
(
2nx, 2nx, . . . , 2nx

)
|2|n

: j ≤ n < k + j

}

= lim
j→∞

ς
(
2jx, 2jx, . . . , 2jx

)
|2|j

= 0.

Thus, applying Theorem 2.3, we get the desired result. �

3. CONCLUSION

In this paper, we have introduced a new generalized composite functional
equation and we have studied its fundamental stabilities in non-Archimedean
normed spaces.
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