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ON DIFFERENCES OF SEMICONTINUOUS FUNCTIONS

AND PERFECT CLASSES

PETR POŠTA

Abstract. Let K be a metric space and f : K → R be a bounded function.
H. Rosenthal and others showed in a series of papers that f can be written as
a difference of two bounded semicontinuous functions on K if and only if its
transfinite oscillations are bounded on K. We provide a generalization of this
characterization to an arbitrary Hausdorff topological space. As an application,
we provide an alternative proof of the result obtained by J. Saint Raymond that
the class of differences of semicontinuous functions is perfect.
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1. INTRODUCTION

In a series of papers by Rosenthal and others (see e.g. [2, 5, 7, 8]), the
space of differences of semicontinuous functions and the space of differences of
bounded semicontinuous functions were extensively studied. Among others,
the authors provided the following characterization of differences of bounded
semicontinuous functions in metric spaces, using the transfinite oscillations
defined below.

Definition 1.1 (Transfinite oscillations). Let T be a Hausdorff topological
space and let f be a real-valued function on T . The α-th oscillation of f , in the
sense of H. Rosenthal (cf. [2, Section 5]), is defined by transfinite induction.
Let osc0 f = 0 on T and let β > 0 be a given ordinal. If oscα f has been
defined for each α < β, then, for x ∈ T and β = α + 1, we set (the limes
superior is considered to be non-exclusive)

õscβf(x) = lim sup
y→x

(
|f(y)− f(x)|+ oscα f(y)

)
and, for β a limit ordinal, we set

õscβf(x) = sup
α<β

oscα f(x).

Finally, we set
oscβ f(x) = lim sup

y→x
õscβf(y).

Theorem 1.2 (Rosenthal). Let K be a metric space and f : K → R be a
bounded function. Then there exists a countable ordinal α such that oscβ f =
oscα f , for any β > α. Let τ be the least such α. Then f is a difference of
bounded semicontinuous functions on T if and only if oscτf is bounded.
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If the metric space is separable, the proof can be found in [7, Theorem 3.5].
In the unpublished paper [8], the proof is presented for an arbitrary metric
space (see [8, Theorem 3.2]).

In this paper, we extend Theorem 1.2 to an arbitrary Hausdorff topological
space, using Rosenthal’s ideas .

Our paper is organized as follows. In Section 2, we provide a summary of
the notations used in the paper. Section 3 provides a proof of our main result.
Then, we present an application in Section 4. We show a different proof for a
result that was originally achieved by J. Saint Raymond (see e.g. [3, Lemma
3]), that differences of (unbounded) semicontinuous functions form a so-called
perfect class.

2. NOTATION

Throughout the article, we use the following notations. We denote by N the
set of natural numbers and by R the set of real numbers equipped with the
Euclidean topology. We say that a function is real-valued if its range lies in
R. We denote by C(T ) the space of all continuous functions on a topological
space T .

For f : T → [−∞,+∞] and x ∈ T , we define the limes inferior of f at
x ∈ T by

lim inf
y→x

f(y) := sup{inf f(V ) : V is a neighborhood of x}

and the limes superior by

lim sup
y→x

f(y) := inf{sup f(V ) : V is a neighborhood of x}.

We say that a function f : T → [−∞,+∞] is lower semicontinuous, if the set
{x ∈ T : f(x) > a} is open, for each a ∈ R. This is equivalent to f(x) =
lim infy→x f(y), for each x ∈ T . We say that a function f : T → [−∞,+∞] is
upper semicontinuous, if −f is lower semicontinuous.

3. DIFFERENCES OF BOUNDED SEMICONTINUOUS FUNCTIONS AND

TRANSFINITE OSCILLATIONS

This section is devoted to the proof of our main result.

Theorem 3.1. Let T be a Hausdorff topological space and f : T → R be a
bounded function. Then there exists an ordinal α such that oscβ f = oscα f ,
for any β > α. Let τ be the least such α. Then f is a difference of bounded
semicontinuous functions on T if and only if oscτf is bounded.

Proof. We prove the theorem in the following nine steps.
The first step is a simple observation.

(1) The function oscα f is an upper semicontinuous function with values
in [0,+∞]. For every ordinals α ≤ β, we have oscα f ≤ oscβ f .
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This first assertion is obvious, while the second one follows easily by
transfinite induction.

Now, we show the existence of the ordinal τ .

(2) There exists an ordinal number α such that oscβ f = oscα f , for all
β > α.
Fix B a base of the topology of T . The generalized sequence (oscα f),
indexed by ordinal numbers, is nondecreasing, by step (1). For a con-
tradiction, let us assume that, if α + 1 is a successor of α, then we
always have oscα+1 f 6= oscα f . Then we may pick xα ∈ T such that

oscα+1 f(xα) > oscα f(xα). (∗)

By the upper semicontinuity of oscα f , there exists Uα ∈ B, which
contains xα, such that

sup
y∈Uα

oscα f(y) < oscα+1 f(xα).

If α is an ordinal strictly greater than the cardinality of a base B of T
and equal at least to ω1, then we may choose an uncountable subset Γ
of α such that

Uγ1 = Uγ2 =: U, for all γ1, γ2 ∈ Γ.

We claim that

sup
y∈U

oscβ1 f(y) < sup
y∈U

oscβ2 f(y), β1 < β2, β1, β2 ∈ Γ.

Indeed, consider xβ1 defined above by (∗). Then xβ1 ∈ Uβ1 = U and,
therefore,

sup
y∈Uβ1

oscβ1 f(y) < oscβ1+1 f(xβ1) ≤ oscβ2 f(xβ1) ≤ sup
y∈Uβ2

oscβ2 f(y).

Since Γ is uncountable, this is not possible. Indeed, for γ ∈ Γ, let

λγ := sup
y∈Uγ

oscγ f(y) and Λ := {λγ : γ ∈ Γ}.

The set Γ is well ordered and there exists a natural isomorphism be-
tween Γ and Λ. Thus Λ is well-ordered with respect to the ordering
induced by this isomorphism. However, it is easy to see that this in-
duced ordering is identical with the standard ordering on real numbers.
Hence, we have an uncountable subset Γ of R, ordered by the stan-
dard ordering on R, that is well ordered. But, this is known to be
impossible.

Next, we shall prove, in steps (3)–(5), that, if oscτf is bounded, then f is
a difference of bounded semicontinuous functions.
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(3) If α is an ordinal such that oscα f = oscα+1 f , then oscβ f = oscα f ,
for any β > α.
We proceed by transfinite induction.
Let β be a successor ordinal, that is, β = γ + 1, and oscγ f = oscα f .
Fix x ∈ T . We have

õscβf(x) = õscγ+1f(x)

= lim sup
y→x

(
|f(y)− f(x)|+ oscγ f(y)

)
= lim sup

y→x

(
|f(y)− f(x)|+ oscα f(y)

)
= õscα+1f(x) ≤ oscα+1 f(x) = oscα f(x).

Due to the fact that oscγ f is upper semicontinuous, we have

õscβf(x) = õscγ+1f(x) = lim sup
y→x

(
|f(y)− f(x)|+ oscγ f(y)

)
≥ lim sup

y→x
oscγ f(y) = oscγ f(x) = oscα f(x).

Thus, we get

õscβf(x) = oscα f(x).

Since oscβ f is an upper semicontinuous regularization of õscβf , which
(being equal to oscα f) is already an upper semicontinuous function,
we have

oscβ f = õscβf(x) = oscα f.

Let β be a limit ordinal. Then, by definition and by the previous part
of the proof, for each x ∈ T , we have

õscβf(x) = sup
γ<β

oscγ f(x) = sup
α<γ<β

oscγ f(x) = oscα f(x)

The rest of the proof follows as above.

(4) If α is an ordinal number such that oscα f = oscα+1 f , then the func-
tions oscα f + f and oscα f − f are upper semicontinuous.
Let x ∈ T . Then

lim sup
y→x

(
f(y)− f(x) + oscα f(y)

)
≤ lim sup

y→x

(
|f(y)− f(x)|+ oscα f(y)

)
= õscα+1f(x) = oscα f(x).

This implies

lim sup
y→x

(
f(y) + oscα f(y)

)
≤ f(x) + oscα f(x)
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and thus f + oscα f is upper semicontinuous at x. We also observe
that, by definition,

oscβ f = oscβ(−f),

for any ordinal β. Hence, we have

lim sup
y→x

(
f(x)− f(y) + oscα(−f)(y)

)
≤ lim sup

y→x

(
|f(x)− f(y)|+ oscα f(y)

)
= õscα+1f(x) = oscα f(x)

and therefore

lim sup
y→x

(
oscα f(y)− f(y)

)
≤ oscα f(x)− f(x).

It follows that the function oscα f − f is upper semicontinuous at x as
well.

(5) It follows directly that, if there exists an ordinal τ such that oscτ f is
bounded and oscτ+1 f = oscτ f , then

2f = (oscτ f + f)− (oscτ f − f)

and therefore f is a difference of bounded upper semicontinuous func-
tions.

Finally, we shall prove, in steps (6)-(9), the converse implication that, if f
is a difference of bounded semicontinuous functions, then oscτf is bounded.

(6) If α is an ordinal such that functions oscα f + f and oscα f − f are
upper semicontinuous, then oscα f = oscα+1 f .
Assume that oscα f 6= oscα+1 f . Then there exists x ∈ T , such that
õscα+1f(x) > õscαf(x), because otherwise we would have

õscαf(x) ≥ õscα+1f(x) ≥ oscα f(x) ≥ õscαf(x),

thus õscα+1f(x) = oscα f(x) and, therefore, oscα+1 f(x) = oscα f(x).
From

õscα+1f(x) > õscαf(x)

and by the definition of the (α+ 1)-th oscillation, we get that

lim sup
y→x

(
|f(y)− f(x)|+ oscα f(y)

)
> oscα f(x),

which implies that at least one of the two following inequalities holds

lim sup
y→x

(
f(y)− f(x) + oscα f(y)

)
> oscα f(x),

lim sup
y→x

(
f(x)− f(y) + oscα f(y)

)
> oscα f(x).
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If we rewrite them in the following way

lim sup
y→x

(oscα f(y) + f(y)) > oscα f(x) + f(x),

lim sup
y→x

(oscα f(y)− f(y)) > oscα f(x)− f(x),

then it follows that either oscα f + f or oscα f − f is not upper semi-
continuous.

(7) If f is upper or lower semicontinuous, then oscα f = osc1 f , for each
ordinal α.
First, if f is an upper semicontinuous function, then osc1 f+f is clearly
upper semicontinuous.
We want to prove that also osc1 f − f is upper semicontinuous. We
have

õsc1f(x) = lim sup
y→x

|f(y)− f(x)|

= max

{
lim sup
y→x

(
f(y)− f(x)

)
, lim sup

y→x

(
f(x)− f(y)

)}
.

By the upper semicontinuity of f , we have

lim sup
y→x

(
f(y)− f(x)

)
= 0

and also

0 = lim sup
y→x

0 = lim sup
y→x

(
f(y)− f(y)

)
≤ lim sup

y→x
f(y) + lim sup

y→x
(−f(y))

= f(x) + lim sup
y→x

(
− f(y)

)
= lim sup

y→x

(
f(x)− f(y)

)
.

Thus

õsc1f(x) = lim sup
y→x

(
f(x)− f(y)

)
= f(x) + lim sup

y→x
(−f(y)),

so

õsc1f(x)− f(x) = lim sup
y→x

(−f(y)),

which yields that the function õsc1f − f is an upper semicontinu-
ous regularization of the function −f , in particular, an upper semi-
continuous function. Hence õsc1f is upper semicontinuous, therefore
osc1 f = õsc1f and, finally, osc1 f − f is upper semicontinous, since
osc1 f − f = õsc1f − f .
We have just proved that both functions osc1 f ± f are upper semi-
continuous. Now, the assertion that f is upper semicontinuous follows
immediately from the step (6).
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Let now f be lower semicontinuous. Then −f is upper semicontinuous
and it follows, as above, that osc1(−f)± (−f) are upper semicontinu-
ous. Since osc1(−f) = osc1 f , by the definition of the 1-th oscillation,
we have that the functions osc1 f ∓ f are upper semicontinuous and
the rest of the proof follows, again, from step (6).

(8) If u, v are semicontinuous, then oscα(u−v) ≤ oscα(u+v) = osc1(u+v),
for each ordinal α.
Without any loss of generality, we may assume that u and v are lower
semicontinuous. For α = 1, the assertion is trivial. Next, let α = β+1
and assume that the assertion is true for each ordinal less than α. Fix
x ∈ T . By definition,

õscα(u− v)(x)

= lim sup
y→x

[∣∣(u(y)− v(y))− (u(x)− v(x))
∣∣+ oscβ

(
u(y)− v(y)

)]
.

By the triangle inequality, we get

lim sup
y→x

[∣∣(u(y)− v(y))− (u(x)− v(x))
∣∣+ oscβ

(
u(y)− v(y)

)]
≤ lim sup

y→x

[∣∣u(y)− u(x)
∣∣+
∣∣v(y)− v(x)

∣∣+ oscβ
(
u(y)− v(y)

)]
≤ lim sup

y→x

[∣∣u(y)− u(x)
∣∣+
∣∣v(y)− v(x)

∣∣+ oscβ
(
u(y) + v(y)

)]
.

Let (yγ) be a net that converges to y. We may assume that also the
nets (u(yγ)), (v(yγ)) and

(
oscβ

(
u(yγ) + v(yγ))

)
converge. Then

lim sup
y→x

[∣∣u(y)− u(x)
∣∣+
∣∣v(y)− v(x)

∣∣+ oscβ
(
u(y) + v(y)

)]
= sup

yγ→y
lim
γ

[∣∣u(yγ)− u(x)
∣∣+
∣∣v(yγ)− v(x)

∣∣+ oscβ
(
u(yγ) + v(yγ)

)]
.

By the lower semicontinuity of u, we get

lim sup
y→x

(u(x)− u(y)) = u(x)− lim inf
y→x

u(y) = 0

and
lim sup
y→x

u(y) ≥ lim inf
y→x

u(y) = u(x).

Therefore
lim
γ
|u(yγ)− u(x)|

= max

{
lim
γ

(
u(yγ)− u(x)

)
, lim

γ

(
u(x)− u(yγ)

)}
= lim

γ

(
u(yγ)− u(x)

)
.
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Using the same ideas for v, we get

sup
yγ→y

lim
γ

[∣∣u(yγ)− u(x)
∣∣+
∣∣v(y)− v(x)

∣∣+ oscβ
(
u(y) + v(y)

)]
= sup

yγ→y
lim
γ

[(
u(y)− u(x) + v(y)− v(x)

)
+ oscβ

(
u(y) + v(y)

)]
= sup

yγ→y
lim
γ

[∣∣u(y)− u(x) + v(y)− v(x)
∣∣+ oscβ

(
u(y) + v(y)

)]
= õscα(u+ v)(x) ≤ oscα(u+ v)(x).

It follows that

õscα(u− v) ≤ oscα(u+ v)

and, by the upper semicontinuity of oscα(u+ v),

oscα(u− v) ≤ oscα(u+ v).

By step (7), we obtain

oscα(u+ v) = osc1(u+ v)

and thus the proof of step (8) is complete.

(9) Now, if f = u − v, where u, v are bounded semicontinuous functions,
and there exists an ordinal τ such that oscβ f = oscτ f , for each ordinal
β > τ , then, by step (8), we have

oscτ f(x) ≤ osc1(u+ v)(x)

= lim sup
y→x

|u(y)− u(x) + v(y)− v(x)| ≤ 2|u(x)|+ 2|v(x)|.

Hence, oscτ f is bounded and the proof is complete.

�

4. APPLICATION TO PERFECT CLASSES OF FUNCTIONS

If C denotes a class of functions and T is a topological space, the symbol
C(T ) stands for the set of all functions on T that belong to C.

Definition 4.1 (Perfect classes of functions). We say that a class C of
functions is perfect if, given X and Y compact spaces (which need not to
be metrizable) and a continuous surjective function ϕ : X → Y , we have
g ◦ ϕ ∈ C(X) if and only if g ∈ C(Y ).

The perfect classes of functions were studied, for example, in [9] and [10].
It is proved in [6, Corollary 5.27] that the following real-valued functions form
classes that are perfect: lower and upper semicontinuous functions, Baire func-
tions of class α, for α ∈ (0, ω1), Borel functions and universally measurable
functions. It is proved in [3, Lemma 3] that the same property holds for
the differences of (unbounded) semicontinuous functions. In the following,
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we present a proof, different from the one given in [3], based on transfinite
oscillations.

Theorem 4.2. Each of the following classes of real-valued functions is per-
fect:

(a) the class of differences of semicontinuous functions,
(b) the class of bounded functions which are differences of semicontinuous

functions,
(c) the class of differences of bounded semicontinuous functions.

Since a composition of continuous function and a difference of (bounded)
semicontinuous functions is again a difference of (bounded) semicontinuous
functions, one implication is obvious in each part of (a)-(c).

For the converse implication, we prove first part (c) and then continue with
part (a). Part (b) obviously follows from part (a).

Part (c) is derived from Theorem 4.5 and thus the proof of part (a) is
completed by Theorem 4.7.

Next, we use the technique of transfinite oscillations developed above. Given
compact spaces X and Y and a continuous surjective function ϕ : X → Y ,
the map ϕ is closed and thus it is a quotient mapping (see [1, Proposition
2.4.3]). Therefore, it is natural to expect that the oscillations of any real-
valued function g on Y control the oscillations of g ◦ ϕ on X and vice versa,
in some sense. In Lemma 4.3, we shall prove a result of this kind, adequate
for our purposes.

We shall adopt one more definition, before proving our first key lemma. Let
X and Y be (Hausdorff) topological spaces. We say that a given mapping
ϕ : X → Y is inversely cluster preserving, if, for any net (xα) in X whose
image (ϕ(xα)) converges to a point y ∈ Y , the inverse fiber ϕ−1(y) contains
at least one cluster point of the net (xα). This means that we can choose a
subnet (xγ) of (xα) such that (xγ) converges to x, while (ϕ(xγ)) converges to
ϕ(x) = y.

It was proved in [4, Theorem 3.1] that ϕ is inversely cluster preserving if
and only if it is compact and closed. In particular, if X and Y are compact
spaces and ϕ : X → Y is a continuous surjective function, then ϕ is closed
and compact and thus inversely cluster preserving.

Lemma 4.3. Let X and Y be Hausdorff topological spaces and ϕ : X → Y
be a continuous surjective function that is inversely cluster preserving. Let g :
Y → R be an arbitrary function and f = g ◦ϕ. If there exists M > 0 such that
oscα f(x) ≤ M , for each x ∈ X and for each ordinal α, then oscα g(y) ≤ M ,
for each y ∈ Y and for each ordinal α.

Proof. If α is a limit ordinal, the assertion is trivial. Next, let α = β+ 1 be
a successor ordinal. Fix y ∈ Y . Whenever a net (yγ) in Y tends to y, there
exists a subnet such that the nets g(yγ) and oscβ(yγ) converge. There exists
also xγ ∈ X such that ϕ(xγ) = yγ . Since ϕ is inversely cluster preserving,



10 On differences of semicontinuous functions 99

there exists x ∈ ϕ−1(y) and a subnet of (xγ) that tends to x ∈ X. Thus,
without any loss of generality, we can assume that (xγ) tends to x and the
nets f(xγ) and oscβ f(xγ) converge. Therefore

õscαg(y) = lim sup
z→y

(
|g(z)− g(y)|+ oscβ g(z)

)
= sup

yγ→y
lim
γ

(
|g(yγ)− g(y)|+ oscβ g(yγ)

)
≤ sup

xγ→x
lim
γ

(
|g(ϕ(xγ))− g(ϕ(x))|+ oscβ g(ϕ(xγ))

)
= sup

xγ→x
lim
γ

(
|f(xγ)− f(x)|+ oscβ f(xγ)

)
= õscαf(x) ≤ oscα f(x) ≤M

Hence oscα g(y) ≤M and thus the proof is complete. �

Corollary 4.4. Let X and Y be compact spaces and ϕ : X → Y be
a continuous surjective function. Let g : Y → R and f = g ◦ ϕ. If there exists
M > 0 such that oscα f(x) ≤M , for each x ∈ X and for each ordinal α, then
oscα g(y) ≤M , for each y ∈ Y and for each ordinal α.

We are now ready for the proof of part (c) of Theorem 4.2.

Theorem 4.5. The class of differences of bounded semicontinuous functions
is perfect.

Proof. Let X,Y be compact spaces, ϕ : X → Y be a continuous surjective
function and g : Y → R.

It is obvious that, if g is a difference of bounded semicontinuous functions,
then g ◦ϕ has the same property. Now, let us assume that g ◦ϕ can be written
as a difference of bounded semicontinuous functions on X. Then, by Theorem
3.1, oscτ (g ◦ ϕ) is bounded on X. By Corollary 4.4, oscτ (g) is bounded on
Y and, again by Theorem 3.1, g can be written as a difference of bounded
semicontinuous functions on Y . �

We shall now move from the case of differences of bounded semicontinuous
functions to the case of differences of semicontinuous functions. It is not
obvious whether the idea presented above, that is to write f as a difference of
oscτ f ± f , would work. The reason is that oscτ f ± f may be infinite at some
points. For example, let f(x) = 1/x on (0, 1] and f(0) = 0. Then, obviously,
f is lower semicontinuous on [0, 1] and osc1 f(0) = +∞. Therefore, we shall
use another approach.

Proposition 4.6. Let K be a compact space and f : K → R. Then f
is a difference of two real-valued lower semicontinous functions on K if and
only if there exists a sequence of compact sets Kn such that ∪n∈NKn = K,
Kn ⊂ Kn+1 and f |Kn can be written as a difference of bounded semicontinous
functions on Kn.
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Proof. Assume that f = u − v, where u, v are real valued and lower semi-
continous. Since each lower bounded lower semicontinuous function attains its
minimum on the compact K, we may assume, without any loss of generality,
that both u and v are nonnegative. For each n ∈ N, set

Kn = {x ∈ K : u(x) ≤ n} ∩ {y ∈ K : v(y) ≤ n}.
Obviously, Kn is compact, ∪∞n=1Kn = K, Kn ⊂ Kn+1 and both u and v are
bounded on Kn. Conversely, assume that there exists an increasing sequence
of compact sets Kn such that ∪n∈NKn = K and

f = un − vn on Kn,

where un and vn are bounded lower semicontinuous functions. If Kn = K,
for any n ∈ N, everything is trivial. So, let us assume that Kn 6= K, for each
n ∈ N. Then, without any loss of generality, we may assume that Kn+1 6= Kn

for each n ∈ N. We define

ũ = un + Cn on Kn \Kn−1,

ṽ = vn + Cn on Kn \Kn−1,

where Cn are constants that are chosen such that

inf
Kn\Kn−1

un + Cn > sup
Kn−1

un−1 + Cn−1

and
inf

Kn\Kn−1

vn + Cn > sup
Kn−1

vn−1 + Cn−1.

It is now enough to show that ũ and ṽ are lower semicontinous on K. Fix
x ∈ K. Then there exists a unique n ∈ N such that x ∈ Kn \ Kn−1. Since
each compact space is regular, there exists a neighborhood Vx of x that does
not intersect Kn−1. Therefore,

lim inf
y→x

ũ(y) = sup{inf u(V ) : V neighborhood of x}

= sup{inf ũ(V ∩Kn) : V neighborhood of x}
= sup{inf un(V ∩Kn) : V neighborhood of x}+ Cn

= sup{inf un(V ) : V is neighborhood of x in Kn}+ Cn

= lim inf
y→x

un(y) + Cn = un(x) + Cn = ũ(x).

Hence ũ is lower semicontinuous at x. Analogously, the same property holds
for ṽ. Since x ∈ K is arbitrary, the proof is complete. �

Theorem 4.7. The class of differences of semicontinuous functions is per-
fect.

Proof. Let X,Y be compact spaces, ϕ : X → Y be a continuous surjective
function and g : Y → R. It is obvious that, if g is a difference of semicontinuous
functions, then g ◦ ϕ has the same property. Now, let us assume that g ◦ ϕ
can be written as a difference of two (lower) semicontinuous functions. By



12 On differences of semicontinuous functions 101

Proposition 4.6, there exists a sequence of compact subsets Xn of X such
that ∪n∈NXn = X, Xn ⊂ Xn+1 and (g ◦ ϕ)|Xn is a difference of two bounded
semicontinous functions on Xn. Set Yn = ϕ(Xn). Then Yn is a compact
subset of Y , ∪n∈NYn = Y and Yn ⊂ Yn+1. Since ϕ|Xn is a continuous surjective
function from Xn onto Yn, it follows, by Theorem 4.5, that g|Yn can be written
as a difference of two bounded semicontinuous functions on Yn. But, again by
Proposition 4.6, g is a difference of two semicontinous functions. �
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[10] Spurný, J., Representation of abstract affine functions, Real Anal. Exchange, 28
(2002), 337–354

Received January 7, 2017

Accepted July 10, 2017

Charles University

Faculty of Mathematics and Physics

Department of Mathematics

Sokolovská 83
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