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OPTIMAL CONTROL OF A MATHEMATICAL MODEL
FOR THE 2014 EBOLA OUTBREAK IN WEST AFRICA

ANA-MARIA CROICU

Abstract. Ebola hemorrhagic fever is a highly infectious and lethal disease that
poses serious public health risks in Africa and even countries beyond the African
continent. The main goal of this study is to develop a theoretical optimal control
treatment of Ebola. The aim of the mathematical model used herein is to make
the number of the infectious individuals decrease and the number of recovered
individuals increase, while administering an efficient medical treatment (vacci-
nation / medication). Pontryagin’s classical control theory is applied to a SEIR
mathematical model of Ebola infection characterized by a system of nonlinear
differential equations with the following unknown functions: the susceptible in-
dividuals, exposed individuals, infectious individuals and recovered individuals.
An optimal control strategy is derived for 2014 Ebola outbreaks in Guinea, Sierra
Leone, Liberia and Nigeria.
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1. INTRODUCTION

Ebola virus is a lethal human pathogen, causing Ebola virus disease (EVD)
with an average case fatality rate of 78% [15]. Ebola is transmitted by physical
contact with body fluids, secretions, tissues or semen from infected persons.
Ebola is not spread through the air, by water, or in general, by food [6].
Individuals exposed to the virus who become infectious do so after an in-
cubation period ranging from 2 to 21 days. Nonspecific symptoms appear,
including sudden onset of fever, weakness, vomiting, diarrhea, rash, headache,
sore throat, and internal and external bleeding [4].

A complex and unprecedented Ebola epidemic has affected West Africa since
December 2013, when the first cases occurred in southern Guinea [3]. This
current epidemic was not identified until later in March 2014 ([3]), therefore
it facilitated transmission to Sierra Leone, Liberia and a limited outbreak in
Nigeria. The World Health Organization declared the Ebola epidemic in West
Africa a Public Health Emergency of International Concern in August 2014
[21]. As of April 13, 2016, according to the Centers for Disease Control and
Prevention, a total of 3, 814 cases with 2, 544 deaths have been reported in
Guinea, 14, 124 cases with 3, 956 deaths in Sierra Leone, 10, 678 cases with
4, 810 deaths in Liberia, and 20 cases with 8 deaths in Nigeria [7].

Mathematical modeling has emerged as an important tool for gaining un-
derstanding of the dynamics of the spread of Ebola virus. SIR epidemic models
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have been analyzed in [13, 20], SEIR epidemic models in [9, 17, 1, 2], SEIHR
epidemic models in [10], SEIHFR epidemic models in [16], and SEEIHDRB
epidemic models in [5]. However, there is a scarcity of studies that quantify
the effects of control interventions implemented during past Ebola outbreaks
[9, 16, 10]. Moreover, with the 2014 Ebola epidemic in West Africa, the devel-
opment of treatments and vaccines against Ebola is accelerating [10, 11, 12].
For example, an experimental drug with unknown efficacy or safety record
in humans has been initiated during the outbreak [12]. Recent experiments
in monkeys provide encouraging evidence that this experimental drug could
have a significant impact on mortality during Ebola outbreaks [10, 19]. Fur-
thermore, an Ebola vaccine has entered human safety trials in 2014 [10, 14].
Apart from pharmaceutical effects on the infection, we have yet to examine
how medication/vaccination changes the overall Ebola virus dynamics. Re-
cently in 2015, Rachah and Torres have considered an optimal control problem
for the SIR model to study the effect of vaccination on the spread of Ebola
virus in Liberia [20].

In this paper, we apply the classical optimal control theory to the SEIR
mathematical model proposed by Althaus [1, 2] for the Guinea, Sierra Leone,
Liberia and Nigeria countries. Our goal is to minimize the number of the infec-
tious individuals and maximize the number of the recovered individuals, while
administering an efficient medical treatment (medication and vaccination). In
Section 2, we present the SEIR mathematical model. In Section 3, we discuss
the model with controls and present the objective functional. In Section 4,
we state the necessary conditions for the optimal control pair. In Section 5,
numerical results are provided. The paper will conclude with Section 6.

2. SEIR MATHEMATICAL MODEL OF EBOLA INFECTION

The objective of this section is to describe the dynamics of the popula-
tion infected by the Ebola virus mathematically. The SEIR Ebola infection
mathematical model examined in [1, 2] is used within this paper. The popula-
tion analyzed in this model is divided into four important groups: susceptible
group, exposed group, infected group and recovered group. Susceptible indi-
viduals S in contact with the virus enter the exposed class E at the per-capita
rate βI/N , where β is transmission rate per person per day, N is the total
population size, and I/N is the probability that a contact with an infectious
individual is made. Exposed individuals move through the incubation period
at rate σ before they become infectious individuals I. Infectious individuals I
recover or die at rate γ. The expression 1/σ denotes the average duration of
incubation, 1/γ denotes the average duration of infectiousness, and f denotes
the case fatality rate.

Therefore, the system of four ordinary differential equations describing the
Ebola dynamics over the time horizon t0 ≤ t ≤ tf is given by
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dS

dt
= −βSI/N, S (t0) = S0

dE

dt
= βSI/N − σE,E (t0) = E0

dI

dt
= σE − γI, I (t0) = I0

dR

dt
= (1− f) γI,R (t0) = R0.

All of the parameter values in the above equations are assumed to be posi-
tive.

For the purpose of this paper, we will normalize the equations (by substi-
tuting S/N → S, E/N → E, I/N → I, R/N → R) and we will use the
normalized equations where the variables are dimensionless

dS

dt
= −βSI, S (t0) = S0 ∈ [0, 1]

dE

dt
= βSI − σE,E (t0) = E0 ∈ [0, 1]

dI

dt
= σE − γI, I (t0) = I0 ∈ [0, 1]

dR

dt
= (1− f) γI,R (t0) = R0 ∈ [0, 1] .

One key parameter describing the spread of an infection is the basic re-
production number, denoted by R0, understood as the number of cases one
infected case generates on average over the course of its infectious period, in
an otherwise uninfected population. This metric is useful because it helps de-
termine whether or not an infectious disease can spread through a population.
When R0 < 1, the infection will die out in the long run, but if R0 > 1, the
infection will be able to spread in a population. Generally, the larger the value
of R0 the harder it is to control the epidemic.

Several Ebola studies have fitted mathematical models to data from previous
oubreaks in order to provide estimates for the reproduction number [9, 17, 16].
Estimates of the reproduction number during the 2014 outbreak in Guinea,
Sierra Leone, Liberia and Nigeria have been provided by Althaus in [1, 2].
Lower, but greater than 1, R0 values have been estimated for Guinea and
Liberia, a larger R0 value has been determined for Sierra Leone, while a very
large R0 value has been predicted for Nigeria. Therefore, it is expected to be
able to control the Ebola outbreak in Guinea and Liberia easier compared to
the Ebola outbreak in Nigeria.
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3. OPTIMAL CONTROL OF EBOLA INFECTION

Controlling infectious diseases has been an increasingly challenging and im-
portant issue in biomedicine. According to the latest experiments on EVD,
there is proof and hope that the Ebola infection can be controlled by vaccina-
tion and medication [10, 11, 12, 14, 19]. An optimal control problem of Ebola
infection that takes into account these controlling venues is proposed herein.
The system of equations that describe the SEIR model with vaccination and
medication could be formulated as follows

dS

dt
= −βSI − u1(t)S, S (t0) = S0

dE

dt
= βSI − σE,E (t0) = E0

dI

dt
= σE − γI, I (t0) = I0(1)

dR

dt
= (1− f (1− u2(t))) γI + u1(t)S,R (t0) = R0,

where

0 ≤ a1 ≤ u1 (t) ≤ b1 ≤ 1,

u1 denotes the “effectiveness” of vaccination,

0 ≤ a2 ≤ u2 (t) ≤ b2 ≤ 1

and u2 denotes the “effectiveness” of medication.
Due to vaccination, the susceptible population is reduced by u1(t)S and the

successfully vaccinated individuals become recovered. Due to medication, the
fatality rate is reduced by (1− u2 (t)). It is assumed that medication does not
change the average duration of infectiousness.

We formulate an optimal control problem to minimize the infectious pop-
ulation and to maximize the recovered population, but also to minimize the
cost of treatment

(2) J(u1, u2) =

∫ tf

t0

(
C11I(t)− C12R(t) +

C21

2
u1

2(t) +
C22

2
u2

2(t)

)
dt,

subject to the system of differential equations (1) and to the range restrictions
on the continuous controls

(u1, u2) : [t0, tf ]× [t0, tf ]→ [a1, b1]× [a2, b2].

The coefficients C11, C12, C21 and C22 are strictly positive weight constants
chosen to balance the values of the infectious and recovered populations and
the control functions, respectively, and/or chosen to emphasize the most im-
portant term(s) / aspect(s) in the control problem. The negative sign of the
recovered population comes from the need to maximize this population. The
square of the control functions and the fractions with denominator 2 are taken
for the sake of mathematical manipulations that will follow next. In addition,
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since it is expected that the effects of the controls to be non-linear, the qua-
dratic cost terms u2

i (t), i = 1, 2 will reflect these effects. The weight constants
on the controls, C21, C22, include a measure of the cost associated with vacci-
nation and medication. The higher the weights, the greater the expense. The
lower and upper bounds for u1, u2 correspond to minimum/maximum control.

Therefore, the optimal control problem can be written as follows

(3) min
u1,u2

J(u1, u2)

subject to
dS

dt
= −βSI − u1(t)S, S (t0) = S0

dE

dt
= βSI − σE,E (t0) = E0

(4)
dI

dt
= σE − γI, I (t0) = I0

dR

dt
= (1− f (1− u2 (t))) γI + u1(t)S,R (t0) = R0.

4. OPTIMALITY CONDITIONS

The optimal control problem is solved using the Pontryagin’s Minimum
Principle [8, 18]. The optimal control pair (u∗1, u

∗
2) which gives the optimal

treatment will be derived.

Theorem 4.1. If (u∗1, u
∗
2) is an optimal control pair of the optimal control

problem (3), S∗, E∗I∗, R∗ are the corresponding state variables of the state
system (4), then there exist adjoint (co-state) variables ΨS ,ΨE ,ΨI ,ΨR which
satisfy

dΨS

dt
= βI∗ (ΨS −ΨE) + u1 (ΨS −ΨR)

dΨE

dt
= σ(ΨE −ΨI)

(5)
dΨI

dt
= −C11 + βS∗ (ΨS −ΨE) + γΨI − (1− f (1− u2)) γΨR

dΨR

dt
= C12

and transversality conditions (terminal conditions)

(6) ΨS (tf ) = 0,ΨE (tf ) = 0,ΨI (tf ) = 0,ΨR (tf ) = 0.

Furthermore,

u1
∗ = min

{
max

{
a1,

S∗ (ΨS −ΨR)

C21

}
, b1

}
, C21 > 0
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(7) u2
∗ = min

{
max

{
a2,−

fγI∗ΨR

C22

}
, b2

}
, C22 > 0.

Proof. Denote the Hamiltonian H of the optimal control problem by

H (S,E, I,R,ΨS ,ΨE ,ΨI ,ΨR, w11, w12, w21, w22, u1, u2)

= C11I − C12R+
C21

2
u2

1 +
C22

2
u2

2 + ΨS (−βSI − u1S)

+ ΨE (βSI − σE) + ΨI (σE − γI) + ΨR ((1− f (1− u2)) γI + u1S)

+ w11 (b1 − u1) + w12 (u1 − a1) + w21 (b2 − u2) + w22 (u2 − a2) ,

where, w11(t), w12(t), w21(t), w22(t) ≥ 0 are penalty multipliers satisfying

w11(b1 − u1) = 0, w12(u1 − a1) = 0, at u1 = u∗1
w21(b2 − u2) = 0, w22(u2 − a2) = 0, at u2 = u∗2.

Using Pontryagin’s Minimum Principle [18]

dΨS

dt
= −∂H

∂S
,
dΨE

dt
= −∂H

∂E
,
dΨI

dt
= −∂H

∂I
,
dΨR

dt
= −∂H

∂R
,

we derive the following equations

dΨS

dt
= βI∗ (ΨS −ΨE) + u1 (ΨS −ΨR)

dΨE

dt
= σ(ΨE −ΨI)

dΨI

dt
= −C11 + βS∗ (ΨS −ΨE) + γΨI − (1− f (1− u2)) γΨR

dΨR

dt
= C12.

The transversality conditions have the expression provided in (6).
The Hamiltonian is minimized with respect to the controls at the optimal

control pair, so we differentiate H with respect to u1 and u2, respectively, and
impose equality to zero

∂H

∂u1
= C21u1 + S∗ (ΨR −ΨS)− w11 + w12 = 0, at u1 = u1

∗

∂H

∂u2
= C22u2 + fγI∗ΨR − w21 + w22 = 0, at u2 = u2

∗.

Solving for u∗1 and u∗2 on the interior sets we obtain

u1
∗ =

S∗ (ΨS −ΨR) + w11 − w12

C21

u2
∗ =

−fγI∗ΨR + w21 − w22

C22
.
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By standard control arguments involving the bounds on the controls, we con-
clude

u∗1 =


S∗(ΨS−ΨR)

C21
, if a1 <

S∗(ΨS−ΨR)
C21

< b1

a1, if S∗(ΨS−ΨR)
C21

≤ a1

b1, if S∗(ΨS−ΨR)
C21

≥ b1.
By the same argument,

u∗2 =


−fγI∗ΨR

C22
, if a2 < −fγI∗ΨR

C22
< b2

a2, if −fγI∗ΨR
C22

≤ a2

b2, if −fγI∗ΨR
C22

≥ b2.

In compact notation,

u1
∗ = min

{
max

{
a1,

S∗ (ΨS −ΨR)

C21

}
, b1

}
, C21 > 0

u2
∗ = min

{
max

{
a2,−

fγI∗ΨR

C22

}
, b2

}
, C22 > 0.

�

We have derived the optimality system for the optimal control pair (u∗1, u
∗
2)

for the state system (4) with given initial conditions and the adjoint system
(5) with transversality conditions (6).

5. NUMERICAL RESULTS

Analytical solution for optimal control is difficult to obtain since the state
system is non-linear. In addition, we have initial conditions for the state
variables and terminal conditions for the adjoint variables. Therefore, the
optimality system has been solved numerically, using an Euler integration
scheme, based on the following algorithm

(1) Choose an initial guess of control (u1, u2);
(2) Solve the state system forward in time;
(3) Solve the adjoint system backward in time;
(4) Update the control using the optimality condition (7);
(5) Repeat the iterations #2, #3 and #4, until convergence of controls is

achieved.

We will illustrate the numerical algorithm on the Ebola outbreaks in Guinea,
Sierra Leone, Liberia and Nigeria and the estimates of the parameters deter-
mined by Althaus in [1, 2] (see Table 1).

We will discuss the optimal control problem for the outbreaks in Guinea,
Sierra Leone, Liberia and Nigeria for the same control objective (same values
of the weights C11, C12, C21, C22), as well as the optimal control for the Nigeria
outbreak for different control objectives (different values of C11, C12, C21, C22).



8 Optimal control of a mathematical model 39

Parameter Guinea Sierra Leone Liberia Nigeria

β 0.27 0.45 0.28 1.22
1
σ 5.3 5.3 5.3 9.31
1
γ 5.61 5.61 5.61 7.41

f 0.74 0.48 0.71 0.39
R0 1.51 2.53 1.59 9.01

Table 1 – Coefficients estimated by Althaus et. al., 2014, 2015

We choose to study the outbreak in Nigeria, as it exhibits the largest repro-
duction number, and it is more critical to be addressed compared to outbreaks
with lower reproduction numbers.

Same Control Objective for all Outbreaks

The weight values in the objective functional J(u1, u2) are chosen to bal-
ance the magnitude of the infectious and recovered populations and treatment
functions, therefore we consider the case described by

C11 = 100, C12 = 1, C21 = 1, C22 = 0.1.

We have chosen C11 � C12 to balance the magnitude of I (that is aimed
to approach 0) and R (that is aimed to approach 1). Along the same lines,
C21 > C22, as the cost of population vaccination is usually greater than the
cost of administering medication. The bounds imposed on control are

a1 = 0, a2 = 0, b1 = 0.8, b2 = 0.8

(80% maximum efficacy of the treatment) and the treatment strategy is de-
termined for a period of 90 days.

The basic reproduction number R0 is greater than 1 for all four cases,
indicating that Ebola virus has been spreading within the healthy population.

Figures 5.1, 5.3, 5.5, 5.7 describe the behavior of I,R without and with
control for all four outbreaks. Figures 5.2, 5.4, 5.6, and 5.8 illustrate the
control functions u1 (vaccination), u2 (medication) for the same outbreaks,
respectively.

One can remark that the infectious population I is minimized during the
treatment period for all outbreaks, due to sustained vaccination. The recov-
ered population R approaches 100% with control, due to concomitant admin-
istration of vaccination to susceptible individuals and medication to infected
individuals.

It is observed that for outbreaks with lower reproduction number, the in-
fected population without control peaks later within the control window, there-
fore, vaccination / medication should be administered for a longer period of
time (see Figures 5.2 and 5.6). As the reproduction number increases, the in-
fected population without control peaks higher and earlier within the control
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window, therefore, it is enough to administer vaccination /medication for a
shorter period of time (see Figures 5.4 and 5.8).

The price to control outbreaks with lower reproduction number is greater
that the price corresponding to higher reproduction numbers. As the repro-
duction number increases, though, it is imperative to apply vaccination early,
to reduce the infected population as soon as possible.

Different Control Objective for Nigeria Outbreak

Different control objectives will be chosen to emphasize different possible
outcomes on the EVD optimal control. The weights that describe these dif-
ferent objectives are given in the following table

Case C11 C12 C21 C22

Different Control for Nigeria Outbreak: Case 1 100 100 1 1
Different Control for Nigeria Outbreak: Case 2 1 0.1 10 0.1
Different Control for Nigeria Outbreak: Case 3 1 0.1 1 0.001

Previous Control for Nigeria Outbreak 100 1 1 0.1

Table 2 – Different Weights of Objective Functional J(u1, u2) for Nigeria Outbreak

Figures 5.9, 5.10, 5.11, 5.12, 5.13, 5.14 show the state variables without and
with control and the optimal controls for Case 1, Case 2 and Case 3, respec-
tively. We will compare these results to the Nigeria case discussed previously
at ”Same Control Objective for all Outbreaks”.

For Case 1, since C11 = C12, greater emphasis is given to the recovered
population R compared to the infected population I. In addition, the vacci-
nation / medication are equally as expensive, since C21 = C22. The optimal
control in this case suggests sustained vaccination and longer administration
of medication (see Figures 5.8 and 5.10).

Case 2 is considered with the purpose of reducing the cost of the vaccination
u1, since C21 � C22. Comparing Figures 5.8 and 5.12, one can see that
the vaccination timeframe is greatly reduced, however, the administration of
medication is increased and postponed until after the vaccination is over.

The main goal of Case 3 is to allow more control compared to Case 2, while
still trying to reduce the cost of vaccination. From Figures 5.12 and 5.14,
it can be seen that the vaccination / medication are administered longer, as
expected. In addition, since the medication is cheap in this case (C22 is very
low), medication is administered right from the beginning and for a longer
period of time.

In other words, the vaccination / medication strategies differ from one ob-
jective to another, to “adjust” to the goals determined by the coefficients C11,
C12, C21, C22 of the objective functional J(u1, u2).
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Fig. 5.1 – I and R Populations with/without Control in Guinea.
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Fig. 5.2 – Controls u1(t), u2(t) in Guinea.
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Fig. 5.3 – I and R Populations with/without Control in Sierra Leone.
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Fig. 5.4 – Controls u1(t), u2(t) in Sierra Leone.
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Fig. 5.5 – I and R Populations with/without Control in Liberia.
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Fig. 5.6 – Controls u1(t), u2(t) in Liberia.
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Fig. 5.7 – I and R Populations with/without Control in Nigeria.
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Fig. 5.8 – Controls u1(t), u2(t) in Nigeria.
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Fig. 5.9 – Case 1: I and R Populations with/without Control in Nigeria.
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Fig. 5.10 – Case 1: Controls u1(t), u2(t) in Nigeria.
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Fig. 5.11 – Case 2: I and R Populations with/without Control in Nigeria.
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Fig. 5.12 – Case 2: Controls u1(t), u2(t) in Nigeria.
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Fig. 5.13 – Case 3: I and R Populations with/without Control in Nigeria.
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Fig. 5.14 – Case 3: Controls u1(t), u2(t) in Nigeria.

6. CONCLUSION

In this paper we formulated a control problem for Ebola virus that aims
the minimization of infected population and maximization of recovered pop-
ulation. Using Pontryagin’s Minimum Principle, we proved the existence of
the optimal control pair (u∗1, u

∗
2) for the vaccination/medication. The optimal

controls were computed using numerical methods. Our solutions indicate that
optimal control treatment differs from one outbreak to another and from one
optimal goal to another.

For Ebola diseases with low values of the basic reproduction number, such
as Guinea and Liberia’ cases, vaccination and medication should be adminis-
tered longer. As the reproduction number increases, such as Sierra Leone and
Nigeria’s cases, the administration of vaccination /medication is reduced in
time. This is due to the fact that the virus is more potent and intervention is
needed only early within the control window until the danger has passed.

In addition the optimal control protocols are highly dependent on the em-
phasis formulated in the objective functional, i.e. the values of the weight
coefficients. Depending on the cost of vaccination/medication, custom control
strategies could be determined to minimize the number of infected individuals
and maximize the number of recovered individuals.

Finally, since continuous vaccination and medication is usually not fea-
sible and the dynamics of Ebola infection is far more complicated than it
was captured in this optimal control problem, the vaccination and medica-
tion strategies computed numerically herein can only be viewed as possible
recommendations for practical usage.
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