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SOME CATEGORICAL ASPECTS
IN TOPOLOGICAL FORMAL CONCEPT ANALYSIS

BRIGITTE E. BRECKNER and CHRISTIAN SĂCĂREA

Abstract. Formal Concept Analysis (FCA) is a prominent field of Applied
Mathematics which is grounded on the mathematization of the notion of con-
cept and concept hierarchy, having a wide range of applications in data analysis
and knowledge discovery in databases. Topological FCA is investigating issues
related to the interplay between Topology and FCA. This paper is devoted to
the study of some categorical equivalences in topological FCA. We prove that
the category of pseudometric contexts is dually equivalent to a certain category
of complete lattices enhanced with a pseudometric, extending by this the Basic
Theorem on Concept Lattices to topological FCA.
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1. INTRODUCTION

Formal Concept Analysis (FCA) has been introduced by R. Wille as an
attempt to restructure lattice theory and to provide order theoretical tools
for real-life applications. In his seminal paper [14], Wille states that “restruc-
turing lattice theory is an attempt to reinvigorate connections to our general
culture by interpreting the theory as concretely as possible, and in this way to
promote better communication between lattice theorists and potential users
of lattice theory”. Since then, FCA developed as a prominent field of applied
mathematics with various applications mainly in Knowledge Discovery and
Artificial Intelligence but also with connections to other fields of Mathemat-
ics.

There is a vast literature on FCA and its applications. The mathematical
foundations are described in [1], while some applications are given in [2]. Syn-
thesizing, FCA has been defined by its founders as a mathematical theory of
concepts and concept hierarchies. One can prove that the set of all concepts is
a complete lattice, called conceptual hierarchy and used as a basis for further
communication and data analysis using algebraic tools.

Gerd Hartung introduced in [4] the notion of a topological context with
the aim to represent 0-1-lattices by means of FCA tools. This representation
was then completed to a duality, where first only surjective 0-1-lattice ho-
momorphisms were considered. This duality was extended in [5] to arbitrary
0-1-lattice homomorphisms, while the appropriate morphisms in the category
of standard topological contexts were defined using multivalued functions (see
[7]). Later on, a duality theory for polarity lattices has been developed in [6].
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Topological representation theories for algebras of protoconcepts and semi-
concepts (as introduced in [13]) have been studied in [9]. While investigating
the foundations of Contextual Topology, (pseudo)metric contexts have been
introduced in [9] as a tool for approximating objects by their attributes. These
contexts generalize the notion of (pseudo)metric spaces. Based on this con-
struction, contextual uniformities have been developed and studied in [10].

This paper is devoted to the study of several categorical aspects related to
the construction of (pseudo)metric contexts and their dualities. In particular,
the Basic Theorem on Concept Lattices is extended to the pseudometric case.

2. BASIC DEFINITIONS AND RESULTS

We start by recalling some basic facts. For more details we refer to [1].

Definition 2.1. A formal context is a triple K = (G,M, I), where G and
M are sets and I ⊆ G×M is a binary relation. The elements of G are called
objects, those of M attributes, and I is the incidence relation.

Given a formal context K = (G,M, I), one defines for subsets A ⊆ G and
B ⊆ M the concept forming operators by A′ = {m ∈ M | gIm for all g ∈ A}
and B′ = {g ∈ G | gIm for all m ∈ B}. We denote by A′′ := (A′)′ and by
B′′ := (B′)′. The concept forming operators lead to a Galois connection on
the power sets of G and M , respectively.

Definition 2.2. A formal concept of the formal context K = (G,M, I) is
a pair (A,B) with A ⊆ G, B ⊆ M such that A′ = B and B′ = A. The set
A is called extent, while B is the intent of the concept (A,B). The set of all
concepts of K is denoted by B(K).

On the set B(K) of concepts we define the subconcept-superconcept relation
by (A1, B1) ≤ (A2, B2)⇔ A1 ⊆ A2(⇔ B1 ⊇ B2).

Theorem 2.3 (The Basic Theorem on Concept Lattices). Let K := (G,M, I)
be a formal context. The concept lattice B(K) is a complete lattice in which
infimum and supremum are given by:∧

t∈T
(At, Bt) =

(⋂
t∈T

At,
(⋃
t∈T

Bt
)′′)

,

∨
t∈T

(At, Bt) =
((⋃
t∈T

At
)′′
,
⋂
t∈T

Bt
)
.

A complete lattice V is isomorphic to B(K) if and only if there are mappings
γ̃ : G→ V and µ̃ : M → V such that γ̃(G) is supremum-dense in V , µ̃(M) is
infimum-dense in V , and gIm is equivalent to γ̃g ≤ µ̃m for all g ∈ G and all
m ∈M . In particular, V ' B(V, V,≤).

Every object and every attribute can be recovered in the concept lattice of
the given context. For an object g ∈ G, we write g′ instead of {g}′ for the
object intent {m ∈M | gIm} of the object g. Correspondingly, m′ stands for
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the attribute extent {g ∈ G | gIm} of the attribute m. Using the notations
from the Basic Theorem, we write γg for the object concept (g′′, g′) and µm
for the attribute concept (m′,m′′).

Definition 2.4. A formal context (G,M, I) is called clarified if for any
objects g, h ∈ G with g′ = h′ always follows that g = h and, similarly, if for
any attributes m,n ∈M the equality m′ = n′ implies m = n.

Definition 2.5. A clarified context (G,M, I) is called row reduced if ev-
ery object concept is

∨
-irreducible, and it is called column reduced, if every

attribute concept is
∧

-irreducible. A context, which is both row reduced and
column reduced, is called reduced.

Definition 2.6. A many-valued context (G,M,W, I) consists of sets G, M ,
W , and a ternary relation I between them (i.e., I ⊆ G ×M ×W ) for which
the following holds:

(g,m,w) ∈ I and (g,m, v) ∈ I always imply w = v.

The elements of G are called objects, those of M (many-valued) attributes
and those of W attribute values of the many-valued context. Every attribute
m ∈M can be interpreted as a (partial) map m : G→W .

In order to assign concepts to a many-valued context we first have to trans-
form the latter into a formal context, according to some rules, rules which are
called scaling the many-valued context. The concepts of this derived one-valued
context are then interpreted as the concepts of the many-valued context. This
process is not canonical and depends on the semantics of the attribute values.

Definition 2.7. A scale for the attribute m of a many-valued context
(G,M,W, I) is a (formal) context Sm := (Gm,Mm, Im) with m(G) ⊆ Gm.
The objects of a scale are called scale values, the attributes are called scale
attributes.

Definition 2.8 ([15]). A multicontext of signature σ : P → I2, where I and
P are nonempty sets, is a pair (SI , RP ) consisting of a family SI := (Si)i∈I
of sets and a family RP := (Rp)p∈P of binary relations with Rp ⊆ Si × Sj if
σp = (i, j). A multicontext K := (SI , RP ) can be understood as a network of
formal contexts Kp := (Si, Sj , Rp) with p ∈ P and σp = (i, j).

3. DUALITY

By the Basic Theorem on Concept Lattices, every complete lattice can
be considered as the concept lattice of some formal context and the concept
lattice of a formal context is a complete lattice. We will prove that this
correspondence is a categorical duality.

Definition 3.1. Consider the class of all reduced formal contexts, and let
K1 := (G1,M1, I1) and K2 := (G2,M2, I2) be objects of this class. A contextual
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morphism from K1 to K2 is a pair (β∧, β∨) : K1 → K2, where β∧ : M1 → M2

and β∨ : G2 → G1 are mappings satisfying

β∨(g)I1m⇔ gI2β
∧(m) for every g ∈ G2 and m ∈M1.

Since the identity morphism and the composition of two contextual morphisms
are obviously satisfying the above condition, the class of formal contexts and
the contextual morphisms between them form a category denoted with FC.

Consider now the class of all objects of the form (V,G,M), where V is
a complete lattice, G a supremum-dense subset of V and M an infimum-
dense subset of V . The morphisms between these triples are defined as pairs
(φ, ψ) : (V1, G1,M1) → (V2, G2,M2), where φ : V1 → V2 and ψ : V2 → V1 are
mappings having the following properties:

1) φ and ψ are monotone;
2) p ≤ ψ(φ(p)) and φ(ψ(q)) ≤ q for every p ∈ V1 and every q ∈ V2;
3) φ(G1) ⊆ G2 and ψ(M2) ⊆M1.
The class of all objects (V,G,M) together with the above defined morphisms

define a category denoted by L. By the Basic Theorem on Concept Lattices,
every object (V,G,M) in L generates the formal context (G,M,≤) in FC.
By this construction, we obtain an object map T : Ob L → Ob FC. For
morphisms, define T (φ, ψ) := (ψ|M2

, φ|G1
), where ψ|M2

denotes the restriction

of ψ toM2 and φ|G1
denotes the restriction of φ toG1. The functor T : L→ FC

is well-defined and contravariant.
For the converse, we define both a correspondence between the objects of

FC and those of L, and a correspondence between the morphisms of these
two categories. For this, define first the object map S : Ob FC → Ob L by
(G,M, I) 7→ (B(G,M, I), γ(G), µ(M)). For every morphism (β∧, β∨) : K1 →
K2, define S(β∧, β∨) : (B(K2), γ(G2), µ(M2)) → (B(K1), γ(G1), µ(M1)) to be
the pair of mappings (φ, ψ), where φ : B(K1) → B(K2) and ψ : B(K2) →
B(K1) are defined by

φ(A1, B1) := (β∧(B1)
′, β∧(B1)

′′),

ψ(A2, B2) = (β∨(A2)
′′, β∨(A2)

′)

for all (A1, B1) ∈ B(K1) and (A2, B2) ∈ B(K2). The functor S : FC → L is
well-defined and contravariant. Furthermore, the following theorem is true.

Theorem 3.2. The categories FC and L are dually equivalent.

Proof. The following diagram is commutative

(G1,M1, I1)
ι1−−−−→ TS(G1,M1, I1)

(β,α)

y yTS(β,α)
(G2,M2, I2) −−−−→

ι2
TS(G2,M2, I2)
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Define ι : (G,M, I)→ TS(G,M, I) by ι := (µ, γ−1), where γ and µ are the
maps from the Basic Theorem on Concept Lattices. Since the contexts are
reduced, ι is an isomorphism in FC.

On the other hand, for every object (V,G,M) in L, define (j, k) : (V,G,M)
→ ST (V,G,M). Consider j : V → B(G,M,≤) given by j(p) := (↓p ∩ G, ↑
p ∩M) for every p ∈ V , and k : B(G,M,≤) → V defined by k(A,B) :=

∧
B

for every concept (A,B) ∈ B(G,M,≤). Then (j, k) is an isomorphism in L
and the following diagram commutes:

(V1, G1,M1)
(j1,k1)−−−−→ ST (V1, G1,M1)

(φ,ψ)

y yST (φ,ψ)
(V2, G2,M2) −−−−→

(j2,k2)
ST (V2, G2,M2)

�

4. PSEUDOMETRICS ON CONTEXTS

Contextual Topology has been introduced in [9] with the aim to extend the
classical notion of a topological space on a formal context. The need for this
generalization was the following remark. If K = (G,M, I) is a formal context,
the incidence relation does not make any qualitative difference between the
attributes, all incident attributes are related to the correspondent object. But
obviously, in practice some attributes are more relevant than others, respec-
tively the description of an object by these attributes is more accurate, than
by others. Hence, we need a measure for the distance between the objects and
attributes, i.e., a generalization of the pseudometric on a formal context.

Definition 4.1. Let G and M be two sets. We call pseudometric between
G andM a map d : G×M → R+ satisfying the following rectangle condition:

(R) d(g,m) ≤ d(g, n) + d(h,m) + d(h, n), g, h ∈ G, m, n ∈M,

and for every g ∈ G and ε > 0 there is an attribute m ∈M with d(g,m) < ε.
Dually, for every m ∈ M and every ε > 0 there is an object g ∈ G with
d(g,m) < ε.

Proposition 4.2. The pseudometric d between G and M induces the pseu-
dometrics d∨ and d∧ on G and M , respectively.

Proof. Let us define d∨ : G×G→ R+ by

d∨(g, h) := infm∈M (d(g,m) + d(h,m)), g, h ∈ G.

It follows from the definition of d that d∨(g, g) = 0 for every g ∈ G and d∨

is symmetric. We just have to prove the triangle inequality, i.e., d∨(x, v) +
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d∨(v, u) ≥ d∨(x, u) for all x, v, u ∈ G. Consider x, v, u ∈ G arbitrary chosen.
Using the rectangle inequality, we have

d∨(x, v) + d∨(v, u) = infy∈M (d(x, y) + d(v, y)) + infz∈M (d(v, z) + d(u, z))

= infy,z∈M (d(x, y) + d(v, y) + d(v, z) + d(u, z))

≥ infz∈M (d(x, z) + d(u, z)) = d∨(x, u).

The pseudometric d∧ on M is defined in an analogous manner. �

In the following, we shall investigate some categorical properties of the above
construction.

Every pseudometric between two sets G and M can be considered as a
many-valued context K := (G,M,R+; d). This context will be simply called
the context of the pseudometric d. The class of all many-valued contexts with
fixed value set W is the object class of a category Ctx, category in which
the morphisms are given by pairs of mappings (f, f∗) : (G1,M1,W, e1) →
(G2,M2,W, e2) with f : G1 → G2 and f∗ : M2 →M1 satisfying e1(g, f

∗(m)) =
e2(f(g),m) for every g ∈ G1 and m ∈M2, where ei : Gi×Mi →W is a partial
map defined by ei(g,m) = m(g) for every g ∈ Gi,m ∈ Mi, i = 1, 2. It fol-
lows that the class of contexts of pseudometrics constitutes a full subcategory
CtxM of Ctx.

As we have seen in Section 3, there is a categorical duality between the
category of formal contexts and that of complete lattices whose morphisms are
conveniently chosen. In this section we will discuss the question of extending
this duality to pseudometric contexts and pseudometric lattices. We start
first with some considerations on pseudometric morphisms and the question
of scaling the context of a pseudometric.

Lemma 4.3. Let (f, f∗) : (G1,M1,R+, d1) → (G2,M2,R+, d2) be a mor-
phism between the two contexts of the pseudometrics d1 and d2. We denote by
d∨1 the pseudometric induced by d1 on G1 and by d∧1 the pseudometric induced
by d1 on M1. Similar d∨2 and d∧2 denote the pseudometrics induced by d2 on
G2 and M2, respectively. Then the mappings f and f∗, are expansive with
respect to these pseudometrics.

Proof. Indeed, for every g, h ∈ G1, we have

d∨2 (f(g), f(h)) = inf
z∈M2

(d2(f(g), z) + d2(f(h), z))

= inf
z∈M2

(d1(g, f
∗(z)) + d1(h, f

∗(z))

= inf
y∈Imf∗

(d1(g, y) + d1(h, y))

≥ d∨1 (g, h).

�

Remark 4.4. If f∗ is onto then f is an isometry. Dually, we obtain that
f∗ is expansive too, and if f is onto then f∗ is an isometry.
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The information stored in a many-valued context can be interpreted by as-
signing a conceptual structure to the given many-valued context. This asign-
ment is called conceptual scaling. M. Gottsleben showed in [3] that this as-
signment is a functor called SkalS from Ctx in FC, the latter denoting the
category of formal contexts.

Definition 4.5. A formal context K := (G,M, I) is called a pseudometric
context if there is a pseudometric d : G×M → R+ between G and M satisfying
the following two conditions, called ε-conditions:

∀ε > 0 ∀g ∈ G ∃m ∈M : gIm and d(g,m) < ε,

∀ε > 0 ∀m ∈M ∃g ∈ G : gIm and d(g,m) < ε.

We call a pseudometric context standard if for every concept (A,B) of K,
we have d(A,B) = inf{d(a, b) | a ∈ A, b ∈ B} = 0. A scale S := (X,Y, J) with
R ⊆ X is called pseudometric scale if the result of the conceptual scaling by
S, i.e., SkalS(G,M,R, d) is a pseudometric context.

Example 4.6. 1) If (K, d) is a pseudometric context then the object set and
attribute set of K are pseudometric spaces with the induced pseudometrics d∨

on the object set and d∧ on the attribute set, respectively. In the following,
we start with a formal context K := (G,M, I) and let d1 : G × G → R+ and
d2 := M ×M → R+ be two pseudometrics on G and M , respectively. Define
d : G×M → R+ by d(g,m) := min{d1(g,m′), d2(g′,m)} for all (g,m) ∈ G×M .
Then d is a pseudometric on the context K.

The ε-condition, i.e., for every ε > 0 and every g ∈ G, there is a m ∈ g′ with
d(g,m) < ε, is obviously fulfilled, since for every gIm, we have d(g,m) = 0.
We only have to prove the rectangle condition. Let g, h ∈ G and m,n ∈M be
arbitrary chosen. Then

d(g, n) + d(h, n) + d(h,m) = min{d1(g, n′), d2(g′, n)}
+ min{d1(h, n′), d2(h′, n)}+ min{d1(h,m′), d2(h′,m)}

= min{d1(g, n′) + d1(h, n
′) + d1(h,m

′), d2(g
′, n) + d2(h

′, n) + d2(h
′,m)}.

Now

d1(g, n
′) + d1(h, n

′) + d1(h,m
′) = inf

a∈n′
d1(g, a) + inf

ã∈n′
d1(h, ã) + inf

b∈m′
d1(h, b)

= inf
a,ã∈n′

(d1(g, a) + d1(a, ã) + d1(h, a)) + inf
b∈m′

d1(h, b)

≥ inf
a,ã∈n′

d1(g, h) + inf
b∈m′

d1(h, b)

= d1(g, h) + inf
b∈m′

d1(h, b) = inf
b∈m′

(d1(g, h) + d1(h, b))

≥ inf
b∈m′

d1(g, b) = d1(g,m
′),
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where we have used the triangle inequality for d1 and the fact that d1(g, h) ≤
d1(g, a) + d1(a, ã) + d1(h, ã)⇒ d1(g, h) ≤ infa∈n′ d1(g, a) + inf ã∈n′ d1(h, ã)). It
follows that d(g,m) ≤ d(g, n) + d(h, n) + d(h,m).

The same construction works for the maximum metric, i.e., D : G×M → R,
D(g,m) := max{d1(g,m′), d2(g′,m)} for every (g,m) ∈ G×M .

There are examples of metrics of a context K which do not arise from this
construction. Take for example the euclidian metric on the set of rationals
Q. If r < s then d(r, s) 6= 0 but for every g ∈ Q and m ∈ Q, we have
d(g, g′) = d(m′,m) = 0.

2) While working with a pseudometric space, we are often thinking in terms
of distance less then an appropriate ε. This conceptualization is in fact a
pseudometric scale. Let d be a pseudometric between G and M and ε ≥ 0.
We consider the scale Sε := (R, ε,≤). The context Sε is a metric scale. Indeed,
SkalSε(G,M,R, d) = (G,M,Pε) where (g,m) ∈ Pε if and only if d(g,m) ≤ ε.
More, if (C,D) is a concept of Kε := (G,M,Pε) then C = {g ∈ G | d(g,m) ≤
ε for every m ∈ D} and dually, D = {m ∈ M | d(g,m) ≤ ε for every g ∈ C}.
Similar to the case of a pseudometric space, we denote for g ∈ G and m ∈M ,

BKε(g, ε) := {m ∈M | d(g,m) ≤ ε} = gε,

BKε(m, ε) := {g ∈ G | d(g,m) ≤ ε} = mε,

and for X ⊆ G and Y ⊆M ,

BKε(X, ε) := {m ∈M | d(x,m) ≤ ε for all x ∈ X} =
⋂
g∈X

gε,

BKε(Y, ε) := {g ∈ G | d(g, y) ≤ ε for all y ∈ Y } =
⋂
m∈Y

gε.

For an arbitrary chosen concept (C,D), we obtain, by the Basic Theorem on
Concept Lattices that (C,D) = (BKε(D, ε), BKε(C, ε)).

On the other hand, d(C,D) = inf{d(g,m) | g ∈ C,m ∈ D}. Since d is
a pseudometric between G and M , then for every g ∈ G and m ∈ M , we
have d(g,M) = d(G,m) = 0, hence for every η ≥ 0, there is an mη ∈ M
with d(g,mη) ≤ η, and a gη ∈ M with d(gη,m) ≤ η. For every g ∈ G, we
have d(g, gε) = infm∈gε d(g,m) and using the above statement, we conclude
that d(g, gε) = 0 since mη ∈ D and d(g,mη) ≤ η for every η ≤ ε. Analogous
arguments shows that d(mε,m) = 0, i.e., Sε is a pseudometric scale.

Definition 4.7. A map d : G×M → R+ is called metric between the sets
G and M if and only if d is a pseudometric between G and M and

∀n ∈M : d(g, n) = d(h, n)⇒ g = h,

∀g ∈ G : d(g,m) = d(g, n)⇒ m = n.

An analogous definition yields the notion of a metric on the formal context K.

Remark 4.8. If d is a metric between G and M , then the induced pseudo-
metrics on G and M are metrics too.
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Let g, h ∈ G with d∨(g, h) = 0. Then infm∈M (d(g,m) + d(h,m)) = 0.
From the rectangle condition follows that d(h, n) ≤ d(g,m) +d(h,m) +d(g, n)
for every m,n ∈ M , i.e., d(h, n) ≤ d(g, n). By symmetry, we have that
d(g, n) = d(h, n) for every n ∈ M and since d was a metric on K, we have
that g = h, i.e., d∨ is a metric on G. Analogous arguments proves that d∧ is
a metric on M .

Remark 4.9. The last condition in the definition of a metric on a context
K is the analogon of the “clarifying” a formal context. Hence metric contexts
are, in some sense, clarified pseudometric contexts

Proposition 4.10. Every pseudometric context (K, d) can be factorized to
a metric context. The concept lattice of the factor context is a surjective image
of the concept lattice of K, but these two complete lattices are generally not
isomorphic.

Proof. Let (K, d) := (G,M, I; d) be a pseudometric context. Consider the
following equivalence relations on G and M , respectively:

Rd ⊆ G×G with (g, h) ∈ Rd :⇔ ∀n ∈M : d(g, n) = d(h, n),

Sd ⊆M ×M with (m,n) ∈ Sd :⇔ ∀g ∈ G : d(g,m) = d(g, n),

satisfying the following compatibility condition with the incidence of K:

gIm, gRg1,mSm1 ⇒ g1Im1.

We define the context K̃ := (G/Rd,M/Sd, J) where [g]J [m] :⇔ gIm. The

claim is that K̃ is a metric context where the metric on K̃ is defined ap-
propriately. The incidence relation J of K̃ is well defined. For every pair
([g], [m]) ∈ J and every representant h ∈ [g] and n ∈ [m], we have gRh and
mSn and, by the compatibility condition, hIn, i.e., ([h], [n]) ∈ J .

Define d̃ : G/Rd ×M/Sd → R by d̃([g], [m]) := d(g,m). The map d̃ is well
defined. Indeed, for gRh and mSn, we have d(g, p) = d(h, p) and d(q,m) =
d(q, n) for every p ∈ M and every q ∈ G. Choose p = m, then d(g,m) =
d(h,m) by the definition of Rd. By choosing q = h, we obtain d(g,m) =

d(h,m) = d(h, n) by the definition of Sd, i.e., d̃ is well defined. One can easy

check that d̃ is a metric on K̃.
Let us denote by B(K) and B(K̃) the concept lattices of the contexts K and

K̃. Define φ : B(K) → B(K̃) by φ(A,B) := ([A], [B]) where [A] denotes the
set [A] := {[g] | g ∈ A}. For every concept (A,B) ∈ B(K), we have

[A]J := {[n] ∈M/Sd | ∀[g] ∈ [A], [g]J [n]} = {[n] ∈M/Sd | ∀g ∈ A, gIn} = [B].

Analogous arguments show that [B]J = [A], i.e., the map φ is well-defined.
Moreover, φ is clearly a complete lattice homomorphism and it is onto but

not necessary one-to-one. For every (C,D) ∈ B(K̃), define A := {g ∈ G | [g] ∈
C} and B := {m ∈ M | [m] ∈ D}. Now AI = {n ∈ M | ∀g ∈ A, gIn} = {n ∈
M | ∀g ∈ A, [g]J [n]} = {n ∈ M | ∀x ∈ C, xJ [n]} = B, i.e., (A,B) ∈ B(K),
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which proves that φ is onto. Since the context K̃ was obtained by factorization,
it is not difficult to see that φ is generally not one-to-one. �

In the following, we will describe the context of a pseudometric as a mul-
ticontext. The incidence relations of this multicontext play a certain role in
characterizing the topological properties of a pseudometric context [9].

Let d : G×M → R be a pseudometric between G and M . The pseudometric
d generates a multicontext K where I := {1, 2}, P := [0,∞], S1 := G, and
S2 := M . The relations Rε with ε ≥ 0 are defined by Rε := {(g,m) ∈
G×M | d(g,m) ≤ ε} and are satisfying the following properties:

(M) Rε(g,m)⇒ Rδ(g,m), δ ≥ ε
Rε(g,m) ∧Rδ(g, h) ∧Rη(h,m)⇒ Rε+δ+η(h, n)

(M0) ∀g ∀ε ∈ R+ ∃m Rε(g,m)

(M∞) ∀δ ∈ R+ δ > ε, Rδ(x, y)⇒ Rε(x, y)
The class of multicontexts (G,M,Pε)ε≥0 where G and M are sets and

(Pε)ε≥0 is a family of binary relations between G and M satisfying (M), (M0),
and (M∞) yields a category denoted with RelM in which the morphisms
(f, f∗) : (G1,M1, Pε)ε≥0 → (G2,M2, Qε)ε≥0, are pairs of mappings f : G1 →
G2 and f∗ : M2 → M1 satisfying Pε(g, f

∗(m)) ⇔ Qε(f(g),m) for ε ≥
0, g ∈ G1, and m ∈ M1. The composition of (f, f∗) : (G1,M1, Pε)ε≥0 →
(G2,M2, Qε)ε≥0 and (g, g∗) : (G2,M2, Qε)ε≥0 → (G3,M3, Rε)ε≥0 defined by
(g, g∗) ◦ (f, f∗) = (g ◦ f, f∗ ◦ g∗) is also a morphism. It satisfies the compati-
bility condition with the given family of relations, since

Pε(h, f
∗(g∗(m))⇔ Qε(f(h), g∗(m))⇔ Rε(g(f(h)),m).

Proposition 4.11. The category CtxM of contexts of pseudometrics is
equivalent to RelM.

Proof. Let us consider the functor F : CtxM → RelM defined on objects
by F (G,M,R, d) := (G,M,Pε)ε≥0 and on morphisms by F (f, f∗) := (f, f∗).

Let (f, f∗) : F (G1,M1,R+, d1) → F (G2,M2,R+, d2) be a morphism in the
category RelM, (f, f∗) : (G1,M1, Pε)ε≥0 → (G2,M2, Qε)ε≥0, where (Pε)ε≥0
and (Qε)ε≥0 are the relations induced by d1 on G1×M1 and by d2 on G2×M2,
respectively.

Since f : G1 → G2 and f∗ : M2 → M1, we will prove that (f, f∗) :
(G1,M1,R, d1) → (G2,M2,R, d2) is a morphism in CtxM. Choosing ε :=
d1(g, f

∗(m)) we conclude that Pε(g, f
∗(m)) is equivalent to Qε(f(g),m) if and

only if d2(f(g),m) ≤ d1(g, f∗(m)).
Let d2(f(g),m) =: δ then (f(g),m) ∈ Qδ is equivalent to (g, f∗(m)) ∈ Pδ,

which holds true if and only if d1(g, f
∗(m)) ≤ d2(f(g),m), concluding that F

is faithful.
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For the equivalence, we only have to prove that for every object (G,M,Pε)ε≥0
in the category RelM, there is a an object (G,M,R, d) in CtxM with

F (G,M,R, d) ∼= (G,M,Pε)ε≥0,

which express the fact that the family (Pε)ε≥0 induces a convenient pseudo-
metric between G and M . For any multicontext (G,M,Pε)ε≥0 in RelM we
define the pseudometric d : G×M → R induced by (Pε)ε≥0 between G and M
by d(g,m) := inf{δ ≥ 0 | Pδ(g,m)}. Axioms (M), (M0) and (M∞) guarantees
that d is well defined and a pseudometric between G and M , which finishes
the proof. �

As we have seen, the category of formal contexts is dual equivalent to that
of complete lattices. To extend this duality to the metric case, it is naturally
to ask whether the given pseudometric can be extended on the correspondent
concept lattice.

Lemma 4.12. Let K := (G,M, I; ρ) be a pseudometric context. The map
d : B(G,M, I)×B(G,M, I)→ R, defined by

d((A,B), (C,D)) := max{ρ(A,D), ρ(C,B)},

is a pseudometric on B(G,M, I), the concept lattice of K.

Proof. Let (A,B), (C,D), and (E,F ) be some formal concepts of K. Then
d((A,B), (A,B)) = ρ(A,B) = 0 because of the properties of ρ. The map d is
symmetric by definition, so we only have to prove the triangle inequality.

d((A,B), (C,D)) + d((C,D), (E,F ))

= max{ρ(A,D), ρ(C,B)}+ max{ρ((C,F ), ρ(E,D)}
= max{inf{ρ(a, d) | a ∈ A, d ∈ D}, inf{ρ(c, b) | c ∈ C, b ∈ B}}

+ max{inf{ρ(c, f) | c ∈ C, f ∈ F}, inf{ρ(e, d) | e ∈ E, d ∈ D}}.

Now,

d((A,B), (E,F )) = max{ρ(A,F ), ρ(E,B)}
= max{inf{ρ(a, f) | a ∈ A, f ∈ F}, inf{ρ(e, b) | e ∈ E, b ∈ B}}

≤ max{ρ(a, f), ρ(e, b)}
≤ max{ρ(a, d) + ρ(e, d) + ρ(e, f), ρ(e, f) + ρ(c, f) + ρ(c, b)}

for every a ∈ A, b ∈ B, c ∈ C, d ∈ D, e ∈ E and f ∈ F .
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It follows that

d((A,B), (C,D)) ≤max{inf{ρ(a, d) | a ∈ A, d ∈ D}
+ inf{ρ(e, f) | e ∈ E, f ∈ F}
+ inf{ρ(e, d) | e ∈ E, d ∈ D}, inf{ρ(e, f) | e ∈ E, f ∈ F}
+ inf{ρ(c, f) | c ∈ C, f ∈ F}+ inf{ρ(c, b) | c ∈ C, b ∈ B}}
≤max{infρ(a, d), infρ(c, b)}+ max{infρ(c, f), infρ(e, d)}
=d((A,B), (C,D)) + d((C,D), (E,F )),

since inf{ρ(e, f) | e ∈ E, f ∈ F} = ρ(E,F ) = 0. �

We denote by MC the category of pseudometric contexts. The morphisms
are exactly those context morphisms (f, f∗) : (G1,M1, I1; ρ1) → (G2,M2, I2;
ρ2) in FC satisfying ρ2(f

−1(g1)f
∗(m1)) ≤ ρ1(g,m) for all g ∈ G1 and m ∈M1,

and ρ1(f(g2), f
∗−1(m2)) ≤ ρ2(g2,m2) for all g ∈ G2 and m ∈M2.

Remark 4.13. 1) gI1f
∗(m) ⇔ f(g)I2m is equivalent to g ∈ f∗(m)′ ⇔

f(g) ∈ m′, which implies f(f∗(m)′) ⊆ m′. Dually, we obtain that f∗(f(g)′) ⊆
g′.

2) The class SMC of standard pseudometric contexts is a full subcategory
of MC, the category of pseudometric contexts.

3) A more natural description of a morphism in MC would be that inherited
from Ctx: Since to every pseudometric we can associate the context of that
pseudometric, the morphisms in MC could be viewed as those inherited from
Ctx. But this would lead to a very restrictive description of the morphisms
between the correspondent concept latices as isometrics.

Every pseudometric d on a context K induces a pseudometric ρ : B(K) ×
B(K) → R by ρ((A,B), (C,D)) = max{d(A,D), d(C,B)} on B(K), the com-
plete lattice of formal concepts of K. Its restriction to γG × µM , i.e., T ◦
S(K) = (γG, µM,≤; ρ) is obviously a pseudometric between γG and µM and
(γG, µM,≤; ρ) is a metric context. To see this, take an arbitrary g ∈ G. Now

ρ(γg, γg≤) = ρ(γg, {m ∈M | γg ≤ µm})
= inf{ρ(γg, µm) | m ∈ g′}
= inf{max{d(g′′,m′′), d(m′, g′)} | m ∈ g′}.

Since {m} ⊆ g′, it follows that g′′ ⊆ m′ and m′′ ⊆ g′. The distance between
g and g′ is zero, which implies that for every ε > 0, there is an m0 ∈ g′ with
d(g,m0) < ε, hence d(g′′,m′′0) < ε.

On the other hand, d(m′0, g
′) = inf{d(h, n) | h ∈ m′0, n ∈ g′}. By the

rectangle inequality, we have

d(h, n) ≤ d(g,m0) + d(g, n) + d(h,m0)

≤ ε+ d(g, n) + d(h,m0),
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hence

inf{d(h, n) | h ∈ m′0, n ∈ g′} ≤ ε+ inf{d(g, n) + d(h,m0) | h ∈ m′0, n ∈ g′}
= ε+ inf{d(g, n) | h ∈ g′}+ inf{d(h,m0) | h ∈ m′0}
= ε+ d(g, g′) + d(m′0,m0)

= ε.

We conclude that ρ(γg, γg≤) = 0 and also ρ(µm≤, µm) = 0.

Remark 4.14. We have proved even more. For all objects g ∈ G and for all
ε > 0, there is an attribute m ∈M with ρ(γg, µm) < ε and symmetrically for
the attributes, that means every object concept can be approximated by some
attribute concept and, dually, every attribute concept can be approximated
by some object concept.

Let us have a closer look to (B(K), γG, µM ; ρ). Since K was a standard
pseudometric context, then d(A,B) = 0 for all concepts (A,B) ∈ B(K). That
means, for example, that for all ε > 0, there is an m ∈ B with d(A,m) < ε,
hence d(A,m′′) < ε. Since m ∈ B implies A ⊆ m′, we have d(m′, B) ≤
d(A,B) = 0. We conclude that B(K) satisfies the following density property:

(∆) For every (A,B) ∈ B(K), there is a g ∈ A and an m ∈ B with
ρ((A,B), γg) < ε and ρ((A,B), µm) < ε.

Let us consider the category Lm whose object class consists of triples
(V,G,M), where V is a complete lattice, G is a supremum dense subset of
V , M is an infimum dense subset of V and d : V × V → R is a pseudometric
on V , satisfying

(D)∀p ∈ V ∀ε > 0 ∃g ∈ G : g ≤ p,∃m ∈M : p ≤ m, d(g, p) < ε, d(p,m) < ε.

The morphisms in this category are given by the morphisms of L, i.e., pairs
of mappings (f, f∗) : (V1, G1,M1; d1)→ (V2, G2,M2; d2), where f and f∗ are
contractions, satisfying the following condition:

(d) d1(f
−1(g2), f

∗(m2)) ≤ d2(g2,m2) for every g ∈ G2 and m ∈M2

d2(f(g1), f
∗−1(m1)) ≤ d1(g1,m1) for every g1 ∈ G1 and m1 ∈M1.

Theorem 4.15. The categories SMC and Lm are dually equivalent.

Proof. Since the imposed conditions where likely to extend the given duality
between the category of formal contexts FC and that of complete lattices L,
we have to check whether the restrictions to SMC and Lm of the functors T
and S are well-defined. Let us consider the functor T : L → FC and denote
its restriction to Lm also by T . We will prove that the restriction of T still
acts on objects and morphisms within the category SMC.

For (V,G,M ; d) in Lm, we have T (V,G,M ; d) = (G,M,≤; d) where we have
denoted by d its restriction d := d|G×M

to G ×M . The context (G,M,≤; d)
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is a pseudometric context since density implies d(g, g≤) = 0 = d(m≤,m) for
g ∈ G and m ∈M .

Let (A,B) ∈ B(G,M,≤). Then there is a p ∈ V with (A,B) = (↓p ∩ G, ↑
p ∩M). Density implies that for all ε > 0, there is a g ∈↓p ∩G and an m ∈↑
p ∩M with d(g, p) < ε and d(m, p) < ε, i.e., d(g,m) < 2ε, which implies that
d(A,B) = 0. We conclude that the functor T is well defined on objects. For
the well-definedness on morphisms, let us consider (f, f∗) : (V1, G1,M1; ρ1)→
(V2, G2,M2; ρ2) a morphism in Lm. Then T (f, f∗) = (f∗|M2

, f|G1
) : (G2,M2,≤

; ρ2) → (G1,M1,≤; ρ1). By the definition, it is obvious that condition (d) for
contexts is satisfied by T (f, f∗). We conclude that the restriction of T to the
pseudometric case, T : Lm→ SMC is well-defined.

Let us now consider the functor S : FC → L. Applying S to a standard
pseudometric context, we obtain S(G,M, I; d) = (B(G,M, I), γG, µM ; ρ).
The restriction of S to the pseudometric case is well-defined on objects, since
d(A,B) = 0 for every (A,B) ∈ B(G,M, I) implies the existence of elements
g ∈ A and m ∈ B with d(A,m) < ε and d(g,B) < ε for some ε > 0. By
the definition of ρ, we have ρ((A,B), µm) = max{d(A,m′′), d(m′, B)}. Since
d(A,m) < ε, it follows that d(A,m′′) < ε, and m ∈ B leads to A ⊆ m′,
which implies d(m′, B) = 0 by d(A,B) = 0. Hence ρ((A,B), µm) < ε, and
ρ((A,B), γg) < ε by analogous arguments. We just have proved that the
density condition holds in (B(G,M, I), γG, µM ; ρ).

The functor S is also well-defined on morphisms in SMC. To see this, let
K1 := (G1,M1, I1; ρ1) and K2 := (G2,M2, I2; ρ2) be two standard pseudo-
metric contexts in SMC and (α, β) : K1 → K2 a morphism between K1 and
K2. Then S(α, β) = (ψ, φ) : (B(K2), γG2, µM2; d2) → (B(K1), γG1, µM1; d1),
where φ : B(K1)→ B(K2) and ψ : B(K2)→ B(K1) are given by

φ(A1, B1) = (β(B1)
′, β(B1)

′′) for every (A1, B1) ∈ B(K1), and

ψ(A2, B2) = (α(A2)
′′, α(A2)

′) for every (A2, B2) ∈ B(K2).

Now we have

d2(φ(A1, B1), φ(C1, D1)) = d2((β(B1)
′, β(B1)

′′), (β(D1)
′, β(D1)

′′))

= max{ρ2(β(B1)
′, β(D1)

′′), ρ2(β(D1)
′, β(B1)

′′)}.

The following is true

β(B1)
′ = {g2 ∈ G2 | g2I2n2 for all n2 ∈ β(B1)}
= {g2 ∈ G2 | g2I2b(m1) for all m1 ∈ B1}
= {g2 ∈ G2 | α(g2)I1m1 for all m1 ∈ B1}
= {g2 ∈ G2 | α(g2) ∈ B′1(= A1)} = α−1(A1).

We can analogously prove that β(D1)
′ = α−1(C1).
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Since (C1, D1) ∈ B(K1), we have C1 =
⋂
m1∈D1

m′1. Now

α−1(C1) =
⋂

m1∈D1

α−1(m′1) =
⋂

m1∈D1

β(m′′1)′

=
⋂

m1∈D1

β(m1)
′ = (

⋃
m1∈D1

β(m1))
′,

which implies β(D1)
′′ =

⋃
m1∈D1

β(m1). Using (d), we obtain

ρ2(β(B1)
′, β(D′′1)) = ρ2(

⋃
g1∈A1

α−1(g1),
⋃

m1∈D1

β(m1))

≤ ρ2(α−1(g1), β(m1))

≤ ρ1(g1,m1)

for every g1 ∈ A1 and m1 ∈ D1. It follows that ρ2(β(B1)
′, β(D1)

′′) ≤
ρ1(A1, D1), and similarly ρ2(β(D1)

′, β(B1)
′′) ≤ ρ1(C1, B1), i.e., the restriction

of S to the metric case is well-defined.
Let (V,G,M ; d) be an object in Lm. Then (V,G,M) is isomorphic to

(B(G,M,≤), γG, µM). We prove that this isomorphism is an isometry. For
(A,B) and (C,D) ∈ B(G,M,≤), there exists elements p and q in V , with
(A,B) = (↓p ∩G, ↑q ∩M) and (C,D) = (↓q ∩G, ↑q ∩M).

By definition, ρ((A,B), (C,D)) = max{d(A,D), d(C,B)}. Using the den-
sity condition we obtain that for all ε > 0, there are some a ∈ A and some
δ ∈ D with d(p, a) < ε and d(q, δ) < ε. Now d(a, δ) ≤ d(a, p)+d(p, q)+d(q, δ),
and so |d(a, δ) − d(p, q)| < 2ε; hence d(A,D) = d(p, q). Similarly, d(C,B) =
d(p, q) concluding that the given isomorphism in L is an isometry, i.e., an
isomorphism in Lm.

If K := (G,M, I; d) is a standard pseudometric context, then (G,M, I) is
isomorphic to (γG, µM,≤) in FC. We only have to prove that this isomor-
phism is also an an isomorphism in SMC.

By definition, ρ(γg, µm) = max{d(g′′,m′′), d(m′, g′)} for every g ∈ G and
m ∈M ; hence for every ε > 0, there are n ∈ g′ and h ∈ m′ with d(g, n) < ε and
d(h, b) < ε, which by leads to d(g,m) ≤ d(g, n)+d(h, n)+d(h, b) < 2ε+d(h, n)
by the rectangle inequality, implying d(g,m) ≤ d(m′, g′). Since g ∈ g′′ and
m ∈ m′′, we obtain d(g′′,m′′) ≤ d(g,m).

But K was a standard pseudometric context, i.e., d(g, g′) = d(m′,m) = 0
for every g ∈ G and m ∈ M , that means that for every ε > 0, there are
n ∈ g′ and h ∈ m′ with d(g, n) < ε and d(h,m) < ε wherefrom follows that
d(h, n) < 2ε+ d(g,m), hence d(m′, g′) ≤ d(g,m).

In conclusion, we just have proved the commutativity of the following two
diagrams in SMC and Lm, respectively
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(G1,M1, I1; d1)
ι1−−−−→ TS(G1,M1, I1; d1)

(β,α)

y yTS(β,α)
(G2,M2, I2; d2) −−−−→

ι2
TS(G2,M2, I2; d2)

(V1, G1,M1; ρ1)
j1−−−−→ (B(G1,M1,≤), γG1, µM1; ρ1)

(φ,ψ)

y y(ψ|M2
,φ|G1

)

(V2, G2,M2; ρ2) −−−−→
j2

(B(G2,M2,≤), γG2, µM2; ρ2)

which concludes the proof. �

We have seen that every pseudometric on a context K leads to a family of
relations (Pε)ε≥0 allowing a representation of pseudometric contexts as mul-
ticontexts; moreover, this representation is a categorical equivalence. Since
this representation depends only on the properties of the pseudometric d on
the context K, we conclude that the same construction can be made for every
pseudometric lattice in Lm. Consider the category L′ of complete lattices
(V,G,M) enhanced with a family of relations (Pε)ε≥0 which are satisfying the
following axioms
(M) Pε(x, y)→ Pδ(x, y), δ ≥ ε,

Pε(x, y) ∧ Pδ(y, z)→ Pε+δ(x, z);

(M∞) ∀δ > ε : Pδ(x, y)→ Pε(x, y), ε ≥ 0;

(D) ∀x ∃g ∃m ∀ε : Pε(x, g) ∧ Pε(x,m).

The morphisms of this category are those from L, i.e., pair of mappings
(f, f∗) where f : V1 → V2 and f∗ : V2 → V1 respect the relations (Pε)ε≥0, i.e.,
for (f, f∗) : (V1, G1,M1, (Pε))→ (V2, G2,M2, (Qε)) the following holds

∀ε > 0 ∀g ∈ V1 ∀m ∈ V2 : Pε(g, f
∗(m))⇔ Qε(f(g),m).

By all the above results, the following holds true.

Theorem 4.16. The following categories are equivalent

Lm
∼=−−−−→ L′

∼=
y y∼=

SMCop −−−−→∼= C′op
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