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SOME GENERALIZATIONS OF AN INEQUALITY
DUE TO A. BEURLING
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Abstract. The purpose of the paper is to provide several generalizations of
an inequality due to A. Beurling. These generalizations deal with higher order
differentiable functions, as well as with functions of two variables defined on
rectangular domains.
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1. INTRODUCTION

C. P. Niculescu [10] proved the following result.

Theorem 1.1 (C. P. Niculescu [10]). Let E be a Banach space, and let u :
[a, b]→ E be a twice differentiable function such that u′′ is Bochner integrable.
Then

(1.1) max {‖u(a)‖, ‖u(b)‖}+
b− a

4

∫ b

a
‖u′′(t)‖dt ≥ sup

t∈[a,b]
‖u(t)‖.

In particular, inequality (1.1) ensures that under the assumptions of Theo-
rem 1.1 one has

(1.2)

∫ b

a
‖u′′(t)‖dt ≥ 4

b− a
sup
t∈[a,b]

‖u(t)‖

whenever u satisfies u(a) = u(b) = 0. In the special case of real-valued func-
tions, inequality (1.2) is attributed to A. Beurling (see, for instance, [1, 6, 7]
or the monograph [9, p. 305]) and it has attracted the interest of numerous
mathematicians. Several improvements and generalizations of (1.2) have been
established, especially in the context of higher order differentiable functions
(see [4, 11, 12]).

The purpose of the present paper is to present other generalizations of (1.2).
More precisely, in section 2 we prove a new generalization of inequality (1.2)
for higher order differentiable functions, while in section 3 we establish two
generalizations of (1.2) for rectangular domains.
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2. A BEURLING-TYPE INEQUALITY FOR HIGHER ORDER DIFFERENTIABLE

FUNCTIONS

Theorem 2.1. Let n ≥ 2 be a natural number, and let u ∈ Cn−2[a, b] ∩
Cn(a, b) be a function such that

(2.1) u(k)(a) = u(k)(b) = 0 for all k = 0, 1, . . . , n− 2.

Then one has

(2.2)

∫ b

a

∣∣∣u(n)(t)∣∣∣dt ≥ 2αn(n− 1)!

(b− a)n−1
sup
t∈[a,b]

|u(t)|,

where

(2.3) αn :=

{
n if n is even

n− 1 if n is odd.

Proof. Let t0 be a point in [a, b] such that

|u(t0)| = sup
t∈[a,b]

|u(t)|.

If t0 = a or t0 = b, then u(t) = 0 for all t ∈ [a, b] due to (2.1), and inequality
(2.2) is obvious. Suppose next that t0 ∈ (a, b). Without restricting the ge-
nerality we may assume that u(t0) ≥ 0 (otherwise we replace u by −u). By
the Taylor-Lagrange mean value theorem it results the existence of two points
ξ1 ∈ (a, t0) and ξ2 ∈ (t0, b) such that

u(t0) =
n−2∑
k=0

u(k)(a)

k!
(t0 − a)k +

u(n−1)(ξ1)

(n− 1)!
(t0 − a)n−1

and

u(t0) =
n−2∑
k=0

u(k)(b)

k!
(t0 − b)k +

u(n−1)(ξ2)

(n− 1)!
(t0 − b)n−1.

Taking into account (2.1) we deduce that

(2.4) u(n−1)(ξ1) =
(n− 1)!u(t0)

(t0 − a)n−1

and

(2.5) (−1)n−1u(n−1)(ξ2) =
(n− 1)!u(t0)

(b− t0)n−1
.

Depending on n, we have the following two possible cases.
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Case I: n is even. Then we have∫ b

a

∣∣∣u(n)(t)∣∣∣dt ≥ ∫ ξ2

ξ1

∣∣∣u(n)(t)∣∣∣ dt ≥ ∣∣∣∣∫ ξ2

ξ1

u(n)(t)dt

∣∣∣∣(2.6)

=
∣∣∣u(n−1)(ξ1)− u(n−1)(ξ2)∣∣∣

= (n− 1)!u(t0)

(
1

(t0 − a)n−1
+

1

(b− t0)n−1

)
.

Since the function f(x) := 1/xn−1 is convex on (0,∞), by Jensen’s inequality
we have

f(t0 − a) + f(b− t0) ≥ 2f

(
b− a

2

)
,

i.e.,

(2.7)
1

(t0 − a)n−1
+

1

(b− t0)n−1
≥ 2n

(b− a)n−1
.

By (2.6) and (2.7) it follows that (2.2) holds.

Case II: n is odd. Since u(n−2)(a) = u(n−2)(b) = 0, it follows that there is

some ξ ∈ (a, b) such that u(n−1)(ξ) = 0. If ξ = ξ1 or ξ = ξ2, then by (2.4) and
(2.5) it follows that u(t0) = 0, whence (2.2) holds. If ξ 6= ξ1 and ξ 6= ξ2 then
we have

2

∫ b

a

∣∣∣u(n)(t)∣∣∣dt ≥ ∫ max(ξ,ξ1)

min(ξ,ξ1)

∣∣∣u(n)(t)∣∣∣ dt+

∫ max(ξ,ξ2)

min(ξ,ξ2)

∣∣∣u(n)(t)∣∣∣ dt
≥

∣∣∣∣∫ ξ1

ξ
u(n)(t)dt

∣∣∣∣+

∣∣∣∣∫ ξ2

ξ
u(n)(t)dt

∣∣∣∣
=

∣∣∣u(n−1)(ξ1)∣∣∣+
∣∣∣u(n−1)(ξ2)∣∣∣

≥ u(n−1)(ξ1) + u(n−1)(ξ2)

= (n− 1)!u(t0)

(
1

(t0 − a)n−1
+

1

(b− t0)n−1

)
.

Using (2.7) we deduce that∫ b

a

∣∣∣u(n)(t)∣∣∣ dt ≥ 2n−1(n− 1)!

(b− a)n−1
u(t0),

i.e., (2.2) holds in this case, too. �

In fact, Theorem 2.1 works even in the general framework of Banach spaces.

Theorem 2.2. Let E 6= {0} be a Banach space, let n ≥ 2 be a natural
number, and let u : [a, b]→ E be a function satisfying the following conditions:

(i) u ∈ Cn−2([a, b], E) ∩ Cn((a, b), E);

(ii) u(k)(a) = u(k)(b) = 0 for all k = 0, 1, . . . , n− 2;

(iii) u(n) is Bochner integrable.
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Then ∫ b

a

∥∥∥u(n)(t)∥∥∥dt ≥ 2αn(n− 1)!

(b− a)n−1
sup
t∈[a,b]

‖u(t)‖,

where αn is defined by (2.3).

Proof. According to the Weierstrass theorem, there exists a point t0 ∈ [a, b]
such that ‖u(t0)‖ = supt∈[a,b] ‖u(t)‖. Let x∗ be an arbitrary linear functional
in the dual space E∗, whose norm equals 1. By virtue of Theorem 2.1 we have

|x∗(u(t0))| ≤ sup
t∈[a,b]

|x∗(u(t))| ≤ (b− a)n−1

2αn(n− 1)!

∫ b

a
|x∗(u(n)(t))|dt

≤ (b− a)n−1

2αn(n− 1)!

∫ b

a
‖u(n)(t)‖dt.

Choosing now x∗ ∈ E∗ such that ‖x∗‖ = 1 and |x∗(u(t0))| = ‖u(t0)‖ we obtain
the conclusion. �

3. MULTIVARIATE BEURLING-TYPE INEQUALITIES FOR RECTANGULAR

DOMAINS

The purpose of this section is to establish two multivariate generalizations
of Beurling’s inequality for functions defined on rectangular domains in R2.
Throughout this section A := [a, b]× [c, d] denotes such a rectangle.

Theorem 3.1. Let u : A→ R be a function satisfying the following condi-
tions:

(i) u is continuous on A;
(ii) all partial derivatives ux, uxy, uxyx, and uxyxy exist and are con-
tinuous on A;

(iii) u(∂A) = uxy(∂A) = {0}.
Then one has

(3.1)

∫ ∫
A
|uxyxy(x, y)|dxdy ≥ 16

(b− a)(d− c)
sup

(x,y)∈A
|u(x, y)|.

Proof. Let (x0, y0) be a point inA such that |u(x0, y0)| = sup(x,y)∈A |u(x, y)|.
If (x0, y0) ∈ ∂A, then u(x, y) = 0 for all (x, y) ∈ A due to (iii), and in this case
(3.1) is obvious. Suppose next that (x0, y0) is an interior point of A. Without
restricting the generality we may assume that u(x0, y0) ≥ 0 (otherwise we
replace u by −u). By the mean value theorem for functions of two variables
it results the existence of a point (ξ1, ξ2) ∈ (a, x0)× (c, y0) such that

u(a, c)− u(x0, c)− u(a, y0) + u(x0, y0) = (x0 − a)(y0 − c)uxy(ξ1, ξ2).
Taking into account (iii), we get

(3.2)
u(x0, y0)

(x0 − a)(y0 − c)
= uxy(ξ1, ξ2).
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Set A1 := [a, ξ1]× [c, ξ2]. Due to (iii) we also have

(3.3) uxy(ξ1, ξ2) =

∫ ∫
A1

uxyxy(x, y)dxdy ≤
∫ ∫

A1

|uxyxy(x, y)|dxdy.

By (3.2) and (3.3) we deduce that

(3.4)
u(x0, y0)

(x0 − a)(y0 − c)
≤
∫ ∫

A1

|uxyxy(x, y)|dxdy.

Analogously, there exist points (η1, η2) ∈ (x0, b) × (y0, d), (ξ′1, ξ
′
2) ∈ (a, x0) ×

(y0, d), (η′1, η
′
2) ∈ (x0, b)× (c, y0) such that

(3.5)
u(x0, y0)

(b− x0)(d− y0)
= uxy(η1, η2) ≤

∫ ∫
A2

|uxyxy(x, y)|dxdy,

(3.6)
u(x0, y0)

(x0 − a)(d− y0)
= −uxy(ξ′1, ξ′2) ≤

∫ ∫
A3

|uxyxy(x, y)|dxdy,

(3.7)
u(x0, y0)

(b− x0)(y0 − c)
= −uxy(η′1, η′2) ≤

∫ ∫
A4

|uxyxy(x, y)|dxdy,

where A2 := [η1, b]× [η2, d], A3 := [a, ξ′1]× [ξ′2, d], and A4 := [η′1, b]× [c, η′2]. By
adding the inequalities (3.4), (3.5), (3.6), and (3.7), and taking into account
that

4∑
i=1

∫ ∫
Ai

|uxyxy(x, y)|dxdy ≤
∫ ∫

A
|uxyxy(x, y)|dxdy,

we obtain∫ ∫
A
|uxyxy(x, y)|dxdy(3.8)

≥ u(x0, y0)

(
1

(x0 − a)(y0 − c)
+

1

(b− x0)(d− y0)

+
1

(x0 − a)(d− y0)
+

1

(b− x0)(y0 − c)

)
.

It is obvious that the Hessian matrix of the function f(x, y) := 1
xy is positive

definite on (0,∞)×(0,∞), whence f is convex on (0,∞)×(0,∞). By Jensen’s
inequality we have

f(x0 − a, y0 − c) + f(b− x0, d− y0) + f(x0 − a, d− y0) + f(b− x0, y0 − c)

≥ 4f

(
b− a

2
,
d− c

2

)
,
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i.e.,

1

(x0 − a)(y0 − c)
+

1

(b− x0)(d− y0)
+

1

(x0 − a)(d− y0)
+

1

(b− x0)(y0 − c)

≥ 16

(b− a)(d− c)
.

This inequality and (3.8) prove (3.1). �

Next we present our second Beurling-type inequality for rectangular do-
mains, which is also the main result of our paper.

Theorem 3.2. Let u : A→ R be a function satisfying the following condi-
tions:

(i) u is continuous on A;
(ii) all partial derivatives ux, uxx, uxxy, and uxxyy exist and are con-
tinuous on A;

(iii) u(a, y) = u(b, y) = 0 for all y ∈ [c, d];
(iv) uxx(x, c) = uxx(x, d) = 0 for all x ∈ [a, b].

Then the following inequality holds

(3.9)

∫ ∫
A
|uxxyy(x, y)|dxdy ≥ 16

(b− a)(d− c)
sup

(x,y)∈A
|u(x, y)|.

In the proof of Theorem 3.2 we need the following two auxiliary results.

Lemma 3.3. Let g : [a, b] → R be a function which is twice continuously
differentiable on [a, b], and let f(x) := |g(x)| for all x ∈ [a, b]. Then the
following assertions are true:

1◦ f is right differentiable on [a, b) and

(3.10) f ′+(x) =
(
sgn g(x)

)
g′(x) +

(
1− |sgn g(x)|

)
|g′(x)|

for all x ∈ [a, b). In particular, |f ′+(x)| = |g′(x)| for all x ∈ [a, b).

2◦ f ′+ is right differentiable on [a, b) and

f ′′+(x) :=
(
f ′+
)′
+

(x)(3.11)

=
(
sgn g(x)

)
g′′(x) +

(
1− |sgn g(x)|

) (
sgn g′(x)

)
g′′(x)

+
(
1− |sgn g(x)|

) (
1− |sgn g′(x)|

)
|g′′(x)|

for all x ∈ [a, b). In particular, |f ′′+(x)| = |g′′(x)| for all x ∈ [a, b).

Proof. 1◦ Let x0 ∈ [a, b) arbitrarily chosen. If g(x0) 6= 0, then there exists
r > 0 such that [x0, x0 + r) ⊆ [a, b) and sgn g(x) = sgn g(x0) for all x ∈
[x0, x0 + r). Then

f(x) =
(
sgn g(x)

)
g(x) =

(
sgn g(x0)

)
g(x), for all x ∈ [x0, x0 + r).

Therefore, f is right differentiable at x0 and f ′+(x0) =
(
sgn g(x0)

)
g′(x0), prov-

ing the validity of (3.10).
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If g(x0) = 0, then for all x ∈ [a, b) with x > x0 we have

f(x)− f(x0)

x− x0
=
|g(x)|
x− x0

=

∣∣∣∣g(x)− g(x0)

x− x0

∣∣∣∣ .
Therefore, there exists the limit

lim
x↘x0

f(x)− f(x0)

x− x0
=

∣∣∣∣ lim
x↘x0

g(x)− g(x0)

x− x0

∣∣∣∣ = |g′(x0)|.

In other words, f is right differentiable at x0 and f ′+(x0) = |g′(x0)|. This
shows that (3.10) holds in this case, too.

2◦ Let x0 ∈ [a, b). If g(x0) 6= 0, then there exists r > 0 such that [x0, x0 +
r) ⊆ [a, b) and sgn g(x) = sgn g(x0) = ±1 for all x ∈ [x0, x0 + r). By 1◦ it
follows that

f ′+(x) =
(
sgn g(x)

)
g′(x) =

(
sgn g(x0)

)
g′(x) for all x ∈ [x0, x0 + r).

Therefore, f ′+ is right differentiable at x0 and f ′′+(x0) =
(
sgn g(x0)

)
g′′(x0),

proving the validity of (3.11).
Now suppose that g(x0) = 0. By 1◦ it follows that f ′+(x0) = |g′(x0)|.

Assume first that g′(x0) 6= 0. Then there exists r > 0 such that [x0, x0 + r) ⊆
[a, b) and sgn g′(x) = sgn g′(x0) = ±1 for all x ∈ [x0, x0 + r). Therefore,
g is strictly monotone on [x0, x0 + r), whence sgn g(x) = sgn g′(x0) for all
x ∈ (x0, x0 + r). By 1◦ it results that

f ′+(x) =
(
sgn g′(x0)

)
g′(x) for all x ∈ [x0, x0 + r).

Consequently, f ′+ is right differentiable at x0 and f ′′+(x0) =
(
sgn g′(x0)

)
g′′(x0),

i.e., (3.11) holds in this case, too.
Finally, assume that g(x0) = g′(x0) = 0. Depending on g′′(x0), we distin-

guish the following two possible cases.

Case I: g′′(x0) 6= 0.
Then the continuity of g′′ ensures the existence of an r > 0 such that

[x0, x0 + r) ⊆ [a, b) and sgn g′′(x) = sgn g′′(x0) = ±1 for all x ∈ [x0, x0 + r).
It results that g′ is strictly monotone on [x0, x0 + r), whence sgn g′(x) =
sgn g′′(x0) for all x ∈ (x0, x0 + r), because g′(x0) = 0. Thus g is strictly
monotone on [x0, x0+r) and sgn g(x) = sgn g′′(x0) for all x ∈ (x0, x0+r). By 1◦

it follows that f ′+(x) =
(
sgn g′′(x0)

)
g′(x) for all x ∈ [x0, x0+r). Consequently,

f ′+ is right differentiable at x0 and f ′′+(x0) =
(
sgn g′′(x0)

)
g′′(x0) = |g′′(x0)|,

proving the validity of (3.11).

Case II: g′′(x0) = 0.
Taking into consideration 1◦, for every x ∈ (x0, b) we have∣∣∣∣f ′+(x)− f ′+(x0)

x− x0

∣∣∣∣ =
|f ′+(x)|
x− x0

=
|g′(x)|
x− x0

=

∣∣∣∣g′(x)− g′(x0)
x− x0

∣∣∣∣ .
Since limx↘x0

g′(x)−g′(x0)
x−x0 = g′′(x0) = 0, we deduce that f ′+ is right differen-

tiable at x0 and f ′′+(x0) = 0 = |g′′(x0)|. This completes the proof. �
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Lemma 3.4. Let f : [a, b] → R be a function which is continuous on [a, b],
right differentiable on (a, b), and satisfies f(a) = f(b) = 0. Then

sup
x∈[a,b]

|f(x)| ≤ b− a
4

b−0∨
a+0

(f ′+),

where
b−0∨
a+0

(f ′+) = lim
α↘a, β↗b

β∨
α

(f ′+).

Proof. Let x0 ∈ [a, b] be a point such that |f(x0)| = supx∈[a,b] |f(x)|. If

x0 = a or x0 = b, then f vanishes on [a, b] and there is nothing to prove.
Suppose that x0 ∈ (a, b). Without losing the generality we may assume that
f(x0) ≥ 0 (otherwise we replace f by −f). According to the mean-value
theorem for right differentiable functions (see, for instance, [2, Theorem 3.2.9])
we have

inf
x∈(a,x0)

f ′+(x) ≤ f(x0)− f(a)

x0 − a
=

f(x0)

x0 − a
≤ sup

x∈(a,x0)
f ′+(x)

and, analogously,

− sup
x∈(x0,b)

f ′+(x) ≤ f(x0)

b− x0
≤ − inf

x∈(x0,b)
f ′+(x).

Now let ε > 0 be arbitrarily chosen. By the above inequalities it follows that
there exist two points x1 ∈ (a, x0) and x2 ∈ (x0, b) such that

f(x0)

x0 − a
− ε ≤ f ′+(x1) and

f(x0)

b− x0
− ε ≤ −f ′+(x2),

whence

f(x0)

(
1

x0 − a
+

1

b− x0

)
≤ 2ε+ f ′+(x1)− f ′+(x2) ≤ 2ε+

b−0∨
a+0

(f ′+).

Letting ε↘ 0 and taking into account (2.7), we get

b−0∨
a+0

(f ′+) ≥ f(x0)

(
1

x0 − a
+

1

b− x0

)
≥ 4

b− a
f(x0).

�

Proof of Theorem 3.2. Let (x0, y0) be a point in A such that

|u(x0, y0)| = sup
(x,y)∈A

|u(x, y)|,

and let u0 : [a, b] → R be the function defined by u0(x) := u(x, y0). Then
u0 ∈ C2[a, b] and u0(a) = u0(b) = 0, due to (ii) and (iii). By Theorem 2.1 we
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have

|u(x0, y0)| = sup
x∈[a,b]

|u0(x)| ≤ b− a
4

∫ b

a
|u′′0(x)|dx,

i.e.,

|u(x0, y0)| ≤
b− a

4

∫ b

a
|uxx(x, y0)|dx.

Further, let F : [c, d]→ R be the function defined by

F (y) :=

∫ b

a
|uxx(x, y)|dx.

Since uxx is continuous on A, it follows that F is continuous on [c, d]. Let
y1 ∈ [c, d] be a point such that F (y1) = supy∈[c,d] F (y). Then we have

(3.12) |u(x0, y0)| ≤
b− a

4
F (y0) ≤

b− a
4

F (y1).

Next, let f : A→ R be the function defined by f(x, y) := |uxx(x, y)|. Since
uxx(x, ·) is differentiable on [c, d] for every x ∈ [a, b], by Lemma 3.3 it follows
that f(x, ·) is right differentiable on [c, d) for all x ∈ [a, b] and∣∣∣(f ′+)y(x, y)

∣∣∣ = |uxxy(x, y)| for all (x, y) ∈ [a, b]× [c, d).

Because uxxy is continuous on A, a standard argument based on the dominated
convergence theorem shows that F is right differentiable on [c, d) and

F ′+(y) =

∫ b

a

(
f ′+
)
y
(x, y)dx for all y ∈ [c, d).

By Lemma 3.4 it follows that

(3.13) F (y1) ≤
d− c

4

d−0∨
c

(F ′+).

Combining (3.12) and (3.13) we deduce that

(3.14) |u(x0, y0)| ≤
(b− a)(d− c)

16

d−0∨
c

(F ′+).

By applying once again Lemma 3.3 it follows that for all x ∈ [a, b] the
function

(
f ′+
)
y
(x, ·) is right differentiable on [c, d) and∣∣∣(f ′′+)yy(x, y)

∣∣∣ = |uxxyy(x, y)| for all (x, y) ∈ [a, b]× [c, d).

In the above equality we use the notation
(
f ′′+
)
yy

:=

(((
f ′+
)
y

)′
+

)
y

. The

continuity of uxxyy on A together with the dominated convergence theorem

ensure that F ′+ is right differentiable on [c, d) and F ′′+(y) =
∫ b
a

(
f ′′+
)
yy

(x, y)dx,

for all y ∈ [c, d).
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Now we have
d−0∨
c

(F ′+) ≤
∫ d

c
|F ′′+(y)|dy =

∫ d

c

∣∣∣∣∫ b

a

(
f ′′+
)
yy

(x, y)dx

∣∣∣∣ dy
≤

∫ d

c

(∫ b

a

∣∣∣(f ′′+)yy(x, y)
∣∣∣dx)dy

=

∫ d

c

(∫ b

a
|uxxyy(x, y)|dx

)
dy,

hence

(3.15)
d−0∨
c

(F ′+) ≤
∫ ∫

A
|uxxyy(x, y)| dxdy.

By (3.14) and (3.15) we conclude that (3.9) holds. �
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