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NECESSARY AND SUFFICIENT CONDITIONS FOR
OSCILLATION OF NONLINEAR NEUTRAL FIRST ORDER
DIFFERENTIAL EQUATIONS WITH SEVERAL DELAYS

SHYAM SUNDAR SANTRA

Abstract. In this work, necessary and sufficient conditions for oscillations of
the solutions of a class of nonlinear first-order neutral differential equations with
several delays of the form(

x(t) + r(t)x(t− τ)
)′

+

m∑
i=1

φi(t)H
(
x(t− σi)

)
= 0

are established under various ranges of r(t). Finally, two illustrating examples
are presented to show the feasibility and the effectiveness of the main results.
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1. INTRODUCTION

Consider a class of first-order nonlinear neutral delay differential equations
of the form (

x(t) + r(t)x(t− τ)
)′

+
m∑
i=1

φi(t)H
(
x(t− σi)

)
= 0,(1)

where

τ, σi ∈ R+ = (0,+∞), i = 1, 2...,m, r ∈ C([0,∞),R), φ ∈ C(R+,R+),

and H is nondecreasing with

H ∈ C(R,R) with uH(u) > 0 for u 6= 0.

The purpose of this work is to establish necessary and sufficient conditions
for the oscillations of (1) under different ranges of r(t). The motivation of the
present paper has come from the work [13]. In [13], Santra has considered(

x(t) + p(t)x(t− τ)
)′

+

m∑
i=1

qi(t)H
(
x(t− σi)

)
= f(t),(2)
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and (
x(t) + p(t)x(t− τ)

)′
+

m∑
i=1

qi(t)H
(
x(t− σi)

)
= 0.(3)

He has established sufficient conditions for the oscillation and the non-oscillation
of the solutions of (2) and (3) for any |p(t)| < +∞, when H is linear, sublinear
and superlinear. In this direction, we refer to some related works ([1, 2, 3],
[11, 12, 13], [15], [17]) and the references therein.

In the last decade, the study of the asymptotic and oscillatory behavior
of solutions of neutral differential equations is considered a major area of
research. This is because of the development in science and technology and
the challenges that the new classes of such equations provide in these applied
areas. The delay differential equations play an important role in modeling
virtually every physical, technical, or biological process, from celestial motion,
to bridge design, to interactions between neurons.

Definition 1.1. By a solution of the differential equation (1) we understand
a function x ∈ C([−ρ,∞),R) such that x(t)+r(t)x(t−τ) is once continuously
differentiable and (1) is satisfied for t ≥ 0, where ρ = max{τ, σi} for i =
1, . . . ,m, and sup{|x(t)| : t ≥ t0} > 0 for every t0 ≥ 0. A solution of (1) is
said to be oscillatory if it has arbitrarily large zeros; otherwise, it is called
non-oscillatory.

2. NECESSARY AND SUFFICIENT CONDITIONS FOR OSCILLATIONS

In this section, we establish a necessary and sufficient condition for the
asymptotic behavior of solutions of a class of first order nonlinear neutral
differential equations of the form (1). We need the following lemma.

Lemma 2.1. ([7]) Let r, x, z ∈ C([0,∞),R) be such that z(t) = x(t) +
r(t)x(t − τ), t ≥ τ > 0, x(t) > 0, t ≥ t1 > τ , lim inft→∞ x(t) = 0 and
limt→∞ z(t) = L exist. Let r(t) satisfy one of the following conditions:

i) 0 ≤ r1 ≤ r(t) ≤ r2 < 1,
ii) 1 < r3 ≤ r(t) ≤ r4 <∞,
iii) −∞ < −r5 ≤ r(t) ≤ 0,

where ri > 0, 1 ≤ i ≤ 5. Then L = 0.

Remark 2.2. If, in the above lemma, x(t) < 0, for all t ≥ τ > 0, lim supt→∞
x(t) = 0 and limt→∞ z(t) = L ∈ R exists, then L = 0.

Theorem 2.3. Let 0 ≤ r1 ≤ r(t) ≤ r2 < 1, t ∈ R+. Let H be Lipschitzian
on the intervals of the form [a, b], 0 < a < b <∞. Then every solution of (1)
converges to zero as t→∞ if and only if

(A1)
∫∞
0

∑m
i=1 φi(t)dt =∞.

Proof. Suppose that (A1) holds. Let x(t) be a solution of (1) on [tx,∞],
tx ≥ 0. If x(t) is oscillatory, then there is nothing to prove. Suppose the
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solution satisfies x(t) > 0, for t ≥ tx. Set

z(t) = x(t) + r(t)x(t− τ), t ≥ t0.(4)

From (1), it follows that

z′(t) = −
m∑
i=1

φi(t)H
(
x(t− σ)

)
< 0,(5)

holds and hence z(t) is a decreasing function, for t ≥ t1 > t0 + ρ. Since
z(t) > 0, for t ≥ t2. So, limt→∞ z(t) exists. Consequently, z(t) > x(t) implies
that x(t) is bounded. Our objective is to show that limt→∞ x(t) = 0. For this,
we need to show that lim inft→∞ x(t) = 0. If lim inft→∞ x(t) 6= 0, then there
exists t3 > t2 and β > 0 such that x(t− σ) ≥ β > 0 for t ≥ t3. Ultimately,∫ t

t3

m∑
i=1

φi(s)H
(
x(s− σ)

)
ds ≥ H(β)

[∫ t

t3

m∑
i=1

φi(s)ds

]
→ +∞, as t→∞,

due to (A1). On the other hand, we integrate (5) from t3 to t(> t3) to obtain∫ t

t3

m∑
i=1

φi(s)H
(
x(s− σ)

)
ds = −

[
z(s)

]t
t3
<∞, as t→∞,

which is a contradiction. Therefore, lim inft→∞ x(t) = 0. Consequently,
limt→∞ z(t) = 0, due to Lemma 2.1. As a result,

0 = lim
t→∞

z(t) = lim sup
t→∞

(
x(t) + r(t)x(t− τ)

)
≥ lim sup

t→∞
x(t)

implies that lim supt→∞ x(t) = 0, that is limt→∞ x(t) = 0.
If x(t) < 0, for t ≥ t0, then we set y(t) = −x(t), for t ≥ t0, in (1), we find(

y(t) + r(t)y(t− τ)
)′

+

m∑
i=1

φi(t)H
(
y(t− σi)

)
= 0,

and proceeding as above, we find the same contradiction. This completes the
proof of the theorem.

Next, we suppose that ∫ ∞
0

m∑
i=1

φi(t)dt <∞(6)

and we need to show that the equation (1) admits a non-oscillatory solution
which does not tend to zero as t → ∞, when the limit exists. Suppose there
exists t1 > 0 such that ∫ ∞

t1

m∑
i=1

φi(s)ds <
1− r2
10K

,
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whereK = max{K1, H(1)} andK1 is the Lipschitz constant ofH on
[2(1−r2)

5 , 1
]
.

For t2 > t1, we set Y = BC([t2,∞),R), the space of real-valued bounded con-
tinuous functions on [t2,∞). Clearly, Y is a Banach space with respect to the
sup norm defined by

||y|| = sup{|y(t)| : t ≥ t2}.

Define

S =

{
u ∈ Y :

2(1− r2)
5

≤ u(t) ≤ 1, t ≥ t2
}
.

Clearly, S is a closed and convex subspace of Y . Let T : S → S be defined by

Tx(t)

=

{
Tx(t2 + ρ), t ∈ [t2, t2 + ρ]

−r(t)x(t− τ) + 2+3r2
5 +

∫∞
t

∑m
i=1 φi(s)H

(
x(s− σ)

)
ds, t ≥ t2 + ρ.

For every x ∈ S,

Tx(t) ≤ 2 + 3r2
5

+H(1)

[∫ ∞
t

m∑
i=1

φi(s)ds

]

<
2 + 3r2

5
+

1− r2
10

=
1 + r2

2
< 1

and

Tx(t) ≥ −r(t)x(t− τ) +
2 + 3r2

5

≥ −r2 +
2 + 3r2

5
=

2(1− r2)
5

imply that Tx ∈ S. Now, for y1, y2 ∈ S,

|Ty1(t)− Ty2(t)| ≤ |r(t)||y1(t− τ)− y2(t− τ)|

+K1

∫ ∞
t

m∑
i=1

φi(s)|y1(s− σ)− y2(s− σ)|ds,

that is

|Ty1(t)− Ty2(t)| ≤ r2||y1 − y2||+K1||y1 − y2||

[∫ ∞
t

m∑
i=1

φi(s)ds

]

<

(
r2 +

1− r2
10

)
||y1 − y2||,

which implies that

||Ty1 − Ty2|| ≤ µ||y1 − y2||,
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and thus T is a contraction mapping, where µ = r2 + 1−r2
10 = 1+9r2

10 < 1. Since
S is complete and T is a contraction on S, by Banach’s fixed point theorem,

T has a unique fixed point x in
[
2(1−r2)

5 , 1
]
. Hence Tx = x and

x(t) =

{
x(t2 + ρ), t ∈ [t2, t2 + ρ]

−r(t)x(t− τ) + 2+3r2
5 +

∫∞
t

∑m
i=1 φi(s)H

(
x(s− σ)

)
ds, t ≥ t2 + ρ

is a non-oscillatory solution of (1) on
[
2(1−r2)

5 , 1
]

such that limt→∞ x(t) 6= 0.

Therefore, (A1) is necessary. This completes the proof of the theorem. �

Theorem 2.4. Let 1 < r3 ≤ r(t) ≤ r4 < ∞, t ∈ R+ and r23 > r4. Suppose
that H is Lipschitzian on the intervals of the form [a, b], 0 < a < b <∞. Then
every solution of (1) converges to zero as t→∞ if and only if (A1) holds.

Proof. The sufficient part is the same as in the proof of Theorem 2.3. For
the necessary part, we suppose that (6) holds. It is possible to find t1 > 0
such that ∫ ∞

t1

m∑
i=1

φi(t)dt <
r3 − 1

2K
,

where K = max{K1,K2}, K1 is the Lipschitz constant of H on [a, b] and
K2 = G(b) such that

a =
2λ(r3

2 − r4)− r4(r3 − 1)

2r32r4

b =
r3 − 1 + 2λ

2r3
, λ >

r4(r3 − 1)

2(r32 − r4)
> 0.

Let Y = BC([t2,∞),R) be the space of real-valued bounded continuous func-
tions on [t2,∞). Clearly, Y is a Banach space with respect to the sup norm
defined by

||y|| = sup{|y(t)| : t ≥ t2}.

Define

S = {u ∈ Y : a ≤ u(t) ≤ b, t ≥ t2} .

It is easy to verify that S is a closed convex subspace of Y . Let T : S → S be
such that

Tx(t) ={
Tx(t2 + ρ), t ∈ [t2, t2 + ρ]

−x(t+τ)
r(t+τ) + λ

r(t+τ) + 1
r(t+τ)

[∫∞
t+τ

∑m
i=1 φi(s)H

(
x(s− σ)

)
ds
]
, t ≥ t2 + ρ.
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For every x ∈ S,

Tx(t) ≤ H(b)

r(t+ τ)

[∫ ∞
t+τ

m∑
i=1

φi(s)ds

]
+

λ

r(t+ τ)

≤ 1

r3

[
r3 − 1

2
+ λ

]
= b

and

Tx(t) ≥ −x(t+ τ)

r(t+ τ)
+

λ

r(t+ τ)

> − b

r3
+
λ

r4

= −r3 − 1 + 2λ

2r23
+
λ

r4

=
2λ(r3

2 − r4)− r4(r3 − 1)

2r32r4
= a

imply that Tx ∈ S. For y1, y2 ∈ S

|Ty1y(t)− Ty2(t)| ≤
1

|r(t+ τ)|
|y1(t+ τ)− y2(t+ τ)|

+
K

|r(t+ τ)|

[∫ ∞
t+τ

m∑
i=1

φi(s)|y1(s− σ)− y2(s− σ)|ds

]
,

that is

|Ty1(t)− Ty2(t)| ≤
1

r3
||y1 − y2||+

K

r3
||y1 − y2||

[∫ ∞
t+τ

m∑
i=1

φi(s)ds

]

<

(
1

r3
+
r3 − 1

2r3

)
||y1 − y2||,

which implies that
||Ty1 − Ty2|| ≤ µ||y1 − y2||,

and thus T is a contraction, where µ =
(

1
r3

+ r3−1
2r3

)
< 1. Hence by Banach’s

fixed point theorem, T has a unique fixed point which is a non-oscillatory
solution of (1) on [a, b]. Thus the proof of the theorem is complete. �

Theorem 2.5. Let −1 < −r5 ≤ r(t) ≤ 0, t ∈ R+, r5 > 0. Then every
solution of (1) converges to zero as t→∞ if and only if (A1) holds.

Proof. Proceeding as in the proof of Theorem 2.3, we obtain (5). Hence,
z(t) is monotonic on [t2,∞), t2 > t1. Let z(t) > 0 for t ≥ t2. So, limt→∞ z(t)
exists. Let z(t) < 0, for t ≥ t2. We claim that x(t) is bounded. If not, there
exists {ηn} such that ηn →∞ as n→∞, x(ηn)→∞ as n→∞ and

x(ηn) = max{x(s) : t2 ≤ s ≤ ηn}.
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Therefore,

z(ηn) = x(ηn) + r(ηn)x(ηn − τ)

≥ (1− r5)x(ηn)

→ +∞, as n→∞,

which is in contradiction with z(t) > 0. So, our claim holds. Consequently,
z(t) ≤ x(t) implies that limt→∞ z(t) exists. Hence, for any z(t), x(t) is
bounded. Using the same type of argument as in the proof of Theorem 2.3, it
is easy to show that lim inft→∞ x(t) = 0 and by Lemma 2.1, limt→∞ z(t) = 0.
Indeed,

0 = lim
t→∞

z(t) = lim sup
t→∞

(
x(t) + r(t)x(t− τ)

)
≥ lim sup

t→∞
x(t) + lim inf

t→∞

(
−r5x(t− τ)

)
= (1− r5) lim sup

t→∞
x(t)

implies that lim supt→∞ x(t) = 0. The rest of the proof follows from Theorem
2.3.

Next, we suppose that (6) holds. Then there exist t1 > 0 such that∫ ∞
t1

m∑
i=1

φi(t)dt <
1− r5
5H(1)

, t ≥ t1.

For t2 > t1, let Y = BC([t2,∞),R) be the space of all real-valued bounded
continuous functions defined on [t2,∞). Clearly, Y is a Banach space with
respect to the sup norm defined by

||y|| = sup{|y(t)| : t ≥ t2}.

Let K = {y ∈ Y : y(t) ≥ 0, t ≥ t2}. Then, Y is a partially ordered Banach
space (see p.30 in [7]). For u, v ∈ Y , we define u ≤ v, if u− v ∈ K. Let

S =

{
X ∈ Y :

1− r5
5
≤ x(t) ≤ 1, t ≥ t2

}
.

If x0(t) = 1−r5
5 , then x0 ∈ S and x0 = g.l.b. of S. Further, if φ ⊂ S∗ ⊂ S,

then

S∗ =

{
x ∈ Y : l1 ≤ x(t) ≤ l2,

1− r5
5
≤ l1, l2 ≤ 1

}
.

Let v0(t) = l′2, t ≥ t3, where l′2 = sup{l2 : 1−r5
5 ≤ l2 ≤ 1}. Then v0 ∈ S and

v0 = l.u.b. of S∗. For t3 = t2 + ρ, define T : S → S by

Tx(t) =

{
Tx(t3), t ∈ [t2, t3]

−r(t)x(t− τ) + 1−r5
5 +

∫∞
t

∑m
i=1 φi(s)H

(
x(s− σ)

)
ds, t ≥ t3.
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For every x ∈ S, Tx(t) ≥ 1−r5
5 and

Tx(t) ≤ r5 +
1− r5

5
+H(1)

[∫ ∞
t

m∑
i=1

φi(s)ds

]

<
2 + 3r5

5
< 1

imply that Tx ∈ S. Now, for x1, x2 ∈ S, it is easy to verify that x1 ≤ x2
implies that Tx1 ≤ Tx2. Hence by the Knaster-Tarski fixed point theorem (see
Theorem 1.7.3 in [7]), T has a unique fixed point such that limt→∞ x(t) 6= 0.
This completes the proof of the theorem. �

Theorem 2.6. Let −∞ < −r6 ≤ r(t) ≤ −r7 < −1, t ∈ R+ and r6, r7 > 0.
Let H be Lipschitzian on the intervals of the form [a, b], 0 < a < b <∞. Then
every bounded solution of (1) converges to zero as t→∞ if and only if (A1)
holds.

Proof. The proof of the theorem follows from the proof of the Theorem 2.4.
For the necessary part, we need to mention the following inequality∫ ∞

t1

m∑
i=1

φi(t)dt <
r7 − 1

2K
,

where K = max{K1,K2}, K1 is the Lipschitz constant of H on [a, b], K2 =
H(b) such that

a =
2λr7 − r6(r7 − 1)

2r6r7
, b =

λ

r7 − 1

for

λ >
r6(r7 − 1)

2r7
> 0,

and

Tx(t) =


Tx(t2 + ρ), t ∈ [t2, t2 + ρ]

−x(t+τ)
r(t+τ) −

λ
r(t+τ) + 1

r(t+τ)

[∫∞
t+τ

∑m
i=1 φi(s)H

(
x(s− σ)

)
ds
]
,

t ≥ t2 + ρ.

This completes the proof of the theorem. �

Remark 2.7. In the above theorems, H could be linear, sublinear or su-
perlinear.

Remark 2.8. Lemma 2.1 does not include r(t) ≡ 1, for all t (see for e.g
[7]). The present analysis does not allow the case r(t) ≡ −1, for all t. Hence,
in our discussion, a necessary and sufficient condition is established, excluding
r(t) = ±1, for all t. It seems that a different approach is necessary to study the
case r(t) = ±1. However, in the following, the author succeeded to establish
necessary and sufficient conditions for the case r(t) = −1.
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Theorem 2.9. Let −∞ < −r6 ≤ r(t) ≤ −r7 ≤ −1, r6, r7 > 0, t ∈ R+ and
τ > σ. Assume that

(A2) H(uv) = H(u)H(v), u, v ∈ R
and

(A3)
∫ ±∞
±c

dx
H(x) <∞

hold. Then every solution of (1) oscillates if and only if (A1) holds.

Proof. For the proofs of the necessary and sufficient parts of the theorem
we refer to Theorem 2.6 and Theorem 3.2 in [13]. �

Theorem 2.10. Let −∞ < −r6 ≤ r(t) ≤ −r7 ≤ −1, r6, r7 > 0 and t ∈ R+.
Assume that (A2) holds. Then every bounded solution of (1) oscillates if and
only if (A1) holds.

Proof. For the proofs of the necessary and sufficient parts of the theorem
we refer to Theorem 2.6 and Theorem 3.3 from [13]. �

Theorem 2.11. Let −1 < −r5 ≤ r(t) ≤ 0, r5 > 0 and t ∈ R+. Assume
that (A2) hold. Furthermore assume that

(A4)
∫ ±c2
c1

dx
H(x) <∞

hold. Then every solution of the system (1) oscillates if and only if (A1) hold.

Proof. For the proofs of the necessary and sufficient parts of the theorem
we refer to Theorem 2.5 and Theorem 3.4 [13], respectively. �

3. EXAMPLES

Example 3.1. Consider(
x(t) + e−πx(t− π)

)′
+ e−2πx(t− 2π) + e−3πx(t− 3π) = 0,(7)

where r(t) = e−π, φ1(t) = e−2π, φ2(t) = e−3π, τ = π, m = 2, σ1 = 2π, σ2 = 3π
and H(x) = x. Clearly, ∫ ∞

0

[
φ1(t) + φ2(t)

]
dt =∞.

Hence, by Theorem 2.3, every solutions of (7) converges to zero as t → ∞.
Indeed, x(t) = e−t sin t is such a solution of (7).

Example 3.2. Consider(
x(t) + e−πx(t− π)

)′
+ e−6πx3(t− 2π) + e−9πx3(t− 3π) = 0,(8)

where r(t) = e−π, φ1(t) = e−6π, φ2(t) = e−9π, τ = π, m = 2, σ1 = 2π, σ2 = 3π

and H(x) = x3. Clearly,

∫ ∞
0

[φ1(t) + φ2(t)]dt = ∞. Hence, by Theorem 2.3,

every solution of (8) converges to zero as t → ∞. Indeed, x(t) = e−t sin t is
such a solution of (8).
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