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PERIOD OF BALANCING NUMBERS MODULO PRODUCT
OF CONSECUTIVE PELL AND PELL-LUCAS NUMBERS

PRASANTA KUMAR RAY and BIJAN KUMAR PATEL

Abstract. The period of balancing numbers modulom, denoted by π(m), is the
least positive integer t such that {Bt, Bt+1} ≡ {0, 1} (mod m), where Bt denotes
the t-th balancing number. In this article, the periods of balancing numbers
modulo product of consecutive Pell and Pell-Lucas numbers are examined.
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1. INTRODUCTION

It is well known that the Lucas sequence in the general form is defined by
the binary recurrence

(1) xn+1 = Axn +Bxn−1,

where A,B ∈ Z with AB 6= 0. This sequence provides two independent
sequences, i.e., one sequence is not a constant multiple of the other, with the
first sequence having initial values x0 = 0 and x1 = 1, while the second one
has initial values x0 = 2 and x1 = A. It can also be seen that any other
sequence obtained from (1) can be expressed as a linear combination of these
two sequences. In particular, for A = 2 and B = 1 in (1), one can extract
two independent sequences namely, the Pell and Pell-Lucas sequences, that
are recursively defined by Pn+1 = 2Pn +Pn−1, for n ≥ 1, with P0 = 0, P1 = 1,
and Qn+1 = 2Qn + Qn−1, for n ≥ 1, with Q0 = 1, Q1 = 1. The product
of Pell and Pell-Lucas sequences with similar indices gives another interesting
sequence known as the sequence of balancing numbers [6]. As usual, a natural
number n is said to be a balancing number with balancer r, if it is the solution
of the Diophantine equation

(2) 1 + 2 + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n+ r).

Behera et al. have also shown that a natural number n is a balancing number
if and only if n2 is a triangular number [1]. From these two definitions, the
sequence of balancing numbers {Bn} can be listed as {0, 1, 6, 35, 204, . . . }. A
sequence closely associated with balancing numbers is the sequence of Lucas-
balancing numbers {Cn}, where Cn =

√
8B2

n + 1, for every natural number
n [5]. Balancing and Lucas-balancing numbers have the same recurrence re-
lations, but with different initial values. That is, Bn+1 = 6Bn − Bn−1, for
n ≥ 1, with B0 = 0, B1 = 1, and Cn+1 = 6Cn−Cn−1, for n ≥ 1, with C0 = 1,
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C1 = 3. The study of balancing numbers and their related sequences is now a
source of attraction for many theorists because of their wonderful and amazing
properties.

Panda et al. examined in [7] the periodicity of balancing numbers modulo
primes. According to them, the period modulo m, denoted by π(m), is the
smallest positive integer t for which {Bt, Bt+1} ≡ {0, 1} (mod m). They have
also shown that π(Bn) = 2n. The rank of balancing numbers, α(n) of a natural
number n, is defined as the smallest natural number k such that n divides Bk
[8]. Patel et al. [8] developed some relations between period, rank and order
of the balancing numbers. Among them, one such important relation is that
the period of a sequence of balancing numbers is equal to the product of the
rank of apparition and its order.

Marques established in [3, 4] some identities concerning the order of appear-
ance of Fibonacci numbers modulo consecutive Fibonacci and Lucas numbers.
In a subsequent paper [2] Khaochim et al. have extended Marques’ ideas
to study the period of Fibonacci numbers modulo consecutive Fibonacci num-
bers. In this article, we study the period of balancing numbers modulo product
of consecutive Pell and Pell-Lucas numbers. Among other properties we will
show that, for any natural number n,

π(PnPn+1Pn+2) = n(n+ 1)(n+ 2),

and

π(QnQn+1Qn+2Qn+3) =

{
n(n+ 1)(n+ 2)(n+ 3), if n 6≡ 0 (mod 3)
n(n+1)(n+2)(n+3)

3 , if n ≡ 0 (mod 3).

2. PRELIMINARIES

In this section, we present some known results concerning the divisibility
properties of balancing numbers. Throughout this article, for any two positive
integers a and b, (a, b) and [a, b] denote the greatest common divisor and the
least common multiple of a and b, respectively.

The following results are valid for any natural numbers m,n and can be
found in [5].

Lemma 2.1. Bm divides Bn if and only if m divides n.

Lemma 2.2. (Bm, Bn) = B(m,n).

Lemma 2.3. Bm+n = BmCn + CmBn.

The following two results from [6] hold for any positive integers m and n.

Lemma 2.4. Pm divides Pn if and only if m divides n.

Lemma 2.5. For all n ≥ 2,

(i) Pn+1Pn−1 − P 2
n = (−1)n

(ii) Qn+1Qn−1 −Q2
n = 2(−1)n−1.
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The following results concerning the periodicity of balancing numbers can
be found in [7].

Lemma 2.6. If m divides n, then π(m) divides π(n).

Lemma 2.7. If m divides Bn, then π(m) divides 2n.

Lemma 2.8. For any natural number n, π(Bn) = 2n.

Lemma 2.9. For any natural number n,

π(Pn) =

{
n, if n is even
2n, if n is odd.

Lemma 2.10. For any natural number n,

π(Qn) =

{
2n, if n is even
n, if n is odd.

The following results can be found in [8].

Lemma 2.11. For any positive integers m and n, π([m,n]) = [π(m), π(n)].

Lemma 2.12. If Bn divides m, then n divides π(m).

3. PERIOD MODULO PRODUCT OF CONSECUTIVE PELL NUMBERS

The following lemmas are useful while proving the subsequent theorems.

Lemma 3.1. For all natural numbers n, π(P2Pn) = 2n.

Proof. Since a balancing number is the product of a Pell number and a Pell-
Lucas number, we have B2n = P2nQ2n, for any natural number n. Using the
identity P2n = 2Bn (see [6]) and since P2 = 2, we get B2n = P2PnQnQ2n ≡ 0
(mod P2Pn). Furthermore, using Lemma 2.3, B2n+1 ≡ C2n (mod P2Pn). But
C2n = C2

n + 8B2
n (see [5]) and, since C2

n = 1 + 8B2
n, B2n+1 = 1 + 16B2

n ≡ 1
(mod P2Pn). Therefore, π(P2Pn) divides 2n. On the other hand, Bn 6≡ 0
(mod P2Pn), because Qn is odd, for all natural numbers n. Hence π(P2Pn) >
n. Since n < π(P2Pn) ≤ 2n, we conclude that π(P2Pn) = 2n. �

Lemma 3.2. For any natural number n,

π(PnPn+2) =

{
2n(n+ 2), if n ≡ 0 (mod 2)
n(n+ 2), if n ≡ 1 (mod 2).

Proof. Consider the case that n is odd. Clearly, Pn+ε divides PnPn+2, when
ε ∈ {0, 2}. It follows from Lemma 2.9 that 2(n+ε) divides π(PnPn+2). Since n
is odd, we observe that 2, n and n+2 are pairwise co-prime and hence 2n(n+2)
divides π(PnPn+2). Further, as Bn = PnQn, Pn and Pn+2 both divide Bn(n+2).
By Lemma 2.5, Pn and Pn+2 are relatively prime, and thus, for any odd
natural number n, PnPn+2 divides Bn(n+2). Consequently, π(PnPn+2) divides
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π(Bn(n+2)) = 2n(n+ 2). On the other hand, for n even, (2n, 2(n+ 2)) = 4 and
(Pn, Pn+2) = 2. Therefore using 2.9 and 2.11, we have

π(PnPn+2) = π([Pn, Pn+2](Pn, Pn+2))

= π([Pn, Pn+2]× 2)

= [π(2Pn), π(2Pn+2)]

= [2n, 2(n+ 2)]

=
4n(n+ 2)

(2n, 2(n+ 2))

= n(n+ 2),

which ends the proof. �

The following results show that the periodicity of the sequence of balancing
numbers modulo product of two or three consecutive Pell numbers equals the
product of that consecutive natural numbers.

Theorem 3.3. For any natural number n, π(PnPn+1) = n(n+ 1).

Proof. According to Lemma 2.4, we have that Pn divides Pn(n+1) and Pn+1

divides Pn(n+1). Since (Pn, Pn+1) = 1, PnPn+1 divides Pn(n+1), and hence
π(PnPn+1) divides π(Pn(n+1)) = n(n+ 1). On the other hand, for α ∈ {0, 1},
Pn+α divides PnPn+1. It follows from Lemma 2.9 that, according to the parity
of n, either n+α or 2(n+α) divides π(PnPn+1). But, for any n, (n, n+1) = 1
and therefore n(n+ 1) divides π(PnPn+1). This completes the proof. �

Theorem 3.4. For n ≥ 2, π(PnPn+1Pn+2) = n(n+ 1)(n+ 2).

Proof. For any δ ∈ {0, 1, 2}, Pn+δ divides Pn(n+1)(n+2). Consider n is odd.
Then Pn, Pn+1 and Pn+2 are pairwise co-prime. Therefore, PnPn+1Pn+2 di-
vides Pn(n+1)(n+2). By Lemma 2.5, π(PnPn+1Pn+2) divides n(n + 1)(n + 2).
On the other hand, Pn+δ divides PnPn+1Pn+2, for δ ∈ {0, 1, 2}. Using Lemma
2.9, 2(n + ε) divides π(PnPn+1Pn+2), for any ε ∈ {0, 2} and (n + 1) divides
π(PnPn+1Pn+2), which implies that (n+δ) divides π(PnPn+1Pn+2). Since n is
odd, n, n+1 and n+2 are pairwise co-prime. Therefore, n(n+1)(n+2) divides
π(PnPn+1Pn+2). Now consider n is even. Then (2(n+ 1), 2n(n+ 2)) = 2 and
(PnPn+2, Pn+1) = 1. Using Lemma 2.9, 2.11 and 3.2, we have

π(PnPn+1Pn+2) = π([Pn+1, PnPn+2])

= [π(Pn+1), π(PnPn+2)]

= [2(n+ 1), 2n(n+ 2)]

=
2n(n+ 1)(n+ 2)

(2(n+ 1), n(n+ 2))

= n(n+ 1)(n+ 2),

which completes the proof. �
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Theorem 3.5. For n 6≡ 0 (mod 3)

π(PnPn+1Pn+2Pn+3) = n(n+ 1)(n+ 2)(n+ 3).

Proof. For n 6≡ 0 (mod 3), (Pn, Pn+3) = 1, and therefore

(PnPn+2, Pn+1Pn+3) = 1.

Using Lemma 3.2, π(PnPn+2) = n(n + 2) or 2n(n + 2), and π(Pn+1Pn+3) =
(n+ 1)(n+ 3) or 2(n+ 1)(n+ 3), according to the parity of n. It follows that
the greatest common divisor of (2n(n+2), (n+1)(n+3)) and (n(n+2), 2(n+
1)(n+ 3)) equals 2. Now, by Lemma 2.11, we have

π(PnPn+1Pn+2Pn+3) = π([PnPn+2, Pn+1Pn+3]),

which implies that

π(PnPn+1Pn+2Pn+3) = [π(PnPn+2), π(Pn+1Pn+3)].

Consequently,

π(PnPn+1Pn+2Pn+3) =
2n(n+ 2)(n+ 1)(n+ 3)

(2n(n+ 2), (n+ 1)(n+ 3))

or

2n(n+ 2)(n+ 1)(n+ 3)

(n(n+ 2), 2(n+ 1)(n+ 3))
,

which implies π(PnPn+1Pn+2Pn+3) = n(n + 1)(n + 2)(n + 3). This ends the
proof. �

4. PERIOD MODULO PRODUCT OF CONSECUTIVE PELL-LUCAS NUMBERS

The following result shows that the periodicity of the sequence of balancing
numbers modulo product of two consecutive Pell-Lucas numbers equals twice
the product of that consecutive natural numbers.

Theorem 4.1. For any natural number n, π(QnQn+1) = 2n(n+ 1).

Proof. For α ∈ {0, 1}, Qn+α divides QnQn+1. It follows from Lemma 2.10
that, according to the parity of n, either 2(n+α) or n+α divides π(QnQn+1).
But, for n odd and even, we have (n, 2(n + 1)) = 1 and (2n, n + 1) = 1,
respectively. Therefore, 2n(n+1) divides π(QnQn+1). On the other hand, Qn
andQn+1 both divide Bn(n+1). Since (Qn, Qn+1) = 1, QnQn+1 divides Bn(n+1).
By Lemma 2.8, π(QnQn+1) divides 2n(n + 1). Consequently, π(QnQn+1) =
2n(n+ 1). �

The following lemma is useful while proving the subsequent theorem.

Lemma 4.2. For any natural number n, π(QnQn+2) = n(n+ 2).
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Proof. For an even n, Qn and Qn+2 both divide QnQn+2. By Lemma 2.10,
2n and 2(n + 2) both divide π(QnQn+2). Since n is even, for distinct a,
b ∈ {−1, 1}, (2an, 2b(n + 2)) = 1 (the choice of a and b depends on the class
of n modulo 4). Hence 2a+bn(n + 2) divides π(QnQn+2), which implies that
n(n + 2) divides π(QnQn+2). On the other hand, Qn and Qn+2 both divide
Bn(n+2)/2. For all n ∈ N, (Qn, Qn+2) are relatively prime, thus QnQn+2 divides
Bn(n+2)/2. By Lemmas 2.6 and 2.10, π(QnQn+2) divides n(n+2). Now, for an
odd n, both Qn and Qn+2 divide QnQn+2, and thus n and (n+ 2) both divide
π(QnQn+2). Since n is odd, n and n + 2 are relatively prime, thus n(n + 2)
divides π(QnQn+2). Furthermore, Qn and Qn+2 both divide Qn(n+2). Since
(Qn, Qn+2) = 1, QnQn+2 divides Qn(n+2). Therefore, π(QnQn+2) divides
n(n+ 2) and this is what had to be shown. �

Theorem 4.3. For any natural number n,

π(QnQn+1Qn+2) =

{
n(n+ 1)(n+ 2), if n ≡ 0 (mod 2)
2n(n+ 1)(n+ 2), if n ≡ 1 (mod 2).

Proof. For δ ∈ {0, 1, 2}, Qn+δ divides QnQn+1Qn+2. For n ≡ 0 (mod 2), by
Lemma 2.10, 2n, n+1 and 2(n+2) each divides π(QnQn+1Qn+2). For distinct
a, b ∈ {−1, 1}, 2an, n+ 1 and 2b(n+ 2) are pairwise co-prime (the choice of a
and b depends on the class of n modulo 4). Thus, 2a+bn(n+ 1)(n+ 2) divides
π(QnQn+1Qn+2), which implies n(n+1)(n+2) divides π(QnQn+1Qn+2). Fur-
thermore, for δ ∈ {0, 1, 2}, Qn+δ divides Bn(n+1)(n+2)/2. Since, Qn, Qn+1 and
Qn+2 are pairwise co-prime, therefore QnQn+1Qn+2 divides Bn(n+1)(n+2)/2.
Using Lemma 2.2, π(QnQn+1Qn+2) divides n(n+1)(n+2). On the other hand,
for δ ∈ {0, 1, 2}, Qn+δ divides Bn(n+1)(n+2). For n ≡ 1 (mod 2), Qn, Qn+1 and
Qn+2 are pairwise co-prime. Thus, QnQn+1Qn+2 divides Bn(n+1)(n+2). By
using Lemmas 2.6 and 2.10, π(QnQn+1Qn+2) divides 2n(n + 1)(n + 2). Fur-
thermore, for δ ∈ {0, 1, 2}, Qn+δ divides QnQn+1Qn+2 and, using Lemma 2.10,
we get that n, 2(n + 1) and n + 2 each divides π(QnQn+1Qn+2). Since n is
odd, n, 2(n+ 1) and n+ 2 are pairwise co-prime. Therefore 2n(n+ 1)(n+ 2)
divides π(QnQn+1Qn+2), which completes the proof. �

Theorem 4.4. For any natural number n,

π(QnQn+1Qn+2Qn+3) =

{
n(n+ 1)(n+ 2)(n+ 3), if n 6≡ 0 (mod 3)
n(n+ 1)(n+ 2)(n+ 3)/3, if n ≡ 0 (mod 3).

Proof. For any natural number n, QnQn+2 and Qn+1Qn+3 are pairwise co-
prime. Let n 6≡ 0 (mod 3). Then (n(n + 2), (n + 1)(n + 3)) = 1. By Lemma
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2.10 and 4.2, we have

π(QnQn+1Qn+2Qn+3) = π([QnQn+2, Qn+1Qn+3])

= [π(QnQn+2), π(Qn+1Qn+3)]

= [n(n+ 2), (n+ 1)(n+ 3)]

=
n(n+ 2)(n+ 1)(n+ 3)

(n(n+ 2), (n+ 1)(n+ 3))

= n(n+ 1)(n+ 2)(n+ 3).

Let n ≡ 0 (mod 3). Then (n(n + 2), (n + 1)(n + 3)) = 3. Continuing as
above, we get the desired result. �
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